
Journal of Emerging Computer Technologies
Research Article

Received: 2024-08-06 | Reviewing: 2024-08-07 & 2024-09-03| Accepted: 2024-09-04 | Online: 2024-09-04 | Issue Date: 2024-12-31
Doi: 10.57020/ject.1528965

Cite (APA): Gencer, K., Başçiftçi, F. (2024). Android Ransomware Detection System using Feature Selection with Bootstrap Aggregating MARS. Journal of Emerging Computer

Technologies, 4(1), 38-45. Doi: 10.57020/ject.1528965

Volume:4, No:1, Year: 2024, Pages: 38-45, December 2024, Journal of Emerging Computer Technologies

38

Android Ransomware Detection System using

Feature Selection with Bootstrap Aggregating

MARS
Kerem GENCER

Afyon Kocatepe University

Faculty Of Engineering, Computer Engineering

Afyonkarahisar, Türkiye

kgencer@aku.edu.tr

0000-0002-2914-1056

(Corresponding Author)

Fatih BAŞÇİFTÇİ

Selcuk University

Faculty Of Technology, Computer Engineering

Konya, Türkiye

basciftci@selcuk.edu.tr

0000-0003-1679-7416

Abstract— Android ransomware has become one of the most

dangerous types of attack that have occurred recently due to the

increasing use of the Android operating system. Generally,

ransomware is based on the idea of encrypting the files in the

victim’s device and then demanding money to provide the

decryption password. Machine learning techniques are

increasingly used for Android ransomware detection and

analysis. In this study, Android ransomware is detected using

Bootstrap Aggregating based Multivariate Adaptive Regression

Splines (Bagging MARS) for the first time in feature selection. A

feature matrix with 134 permissions and API calls in total was

reduced to 34 features via the proposed Bagging MARS feature

selection technique. Multi-Layer Perceptron (MLP), one of the

classification techniques, produced the best accuracy with

90.268%. Additionally, the proposed feature selection method

yielded more successful results compared to the filter, wrapper,

and embedded methods used. Thus, this method, which was used

for the first time to detect the common features of Android

Ransomware, will enable the next Android Ransomware

detection systems to work faster and with a higher success rate.

Keywords— Bagging, feature selection, machine learning, MARS,

ransomware, static analysis

I. INTRODUCTION

Ransomware may infect a victim’s computer when the

victim opens an e-mail attachment sent to him/her, visits a

website, downloads an unsecure file, or installs unapproved

software. After infecting the victim’s computer, the malicious

software begins the first encryption phase by deleting the

unencrypted original files, thereby preventing the victim from

access ing their files. The attacker does not allow access to the

original files until he/she is paid a ransom via a payment

method such as virtual money.

If the ransom is not paid in the time specified by the

attacker, he/she destroys the encryption key and permanently

deletes the data [1]. In the beginning, the majority of

ransomware victims were Windows desktop users. After a

while, ransomware emerged on different platforms including

Android, iOS and other mobile operating systems. In recent

years, types of attack shifted towards ransomware of a

particular type [2]. Ransomware attacks continued at the

beginning of 2020 with a range of rapidly spreading

ransomware including Maze, Sodinokibi, DoppelPaymer,

Nemty, Nefilim, CLOP and Sekhmet. According to the

cybersecurity firm Emsisoft, attackers published the stolen

data on their own websites in case a payment was not made.

Emsisoft announced that the aim of ransomware groups is,

in general, selling the stolen data to rivals, using the stolen data

to attack business partners of the victim and publishing the

victim’s private information on their webpages for everyone

to see.Some attackers have exploited COVID-19 with

reventive measures to prevent future incidents [3].

Figure 1. Industries Affected by Ransomware

As seen in Figure 1, ransomware victims range across a

broad spectrum including industries such as production, health

and education to municipal management [4]. Mobile operating

systems used around the globe are 74.25% Android, 25.15%

iOS, 0.23% Samsung and 0.37% other operating systems [5].

According to Chebyshev (2020) [6], there were 60.176 mobile

ransomware attacks in 2018 worldwide, while this number

rose to 68.362 in 2019. Victims of the largest 11 ransomware

attacks in 2020 have spent 144,2 million dollars up to now on

various costs ranging from investigating the attack, reinstating

networks and restoring backups, paying computer hackers and

applying according to these numbers, there is a 13.6% increase

in mobile ransomware attacks, annually. The distribution of

recent ransomware attacks across countries is given in Figure

2 [7]. Ransomware hides in uncertified source downloads,

Google Play applications and exploitation kits using security

vulnerabilities that are yet unpublicized, and spread from

there. There are two ransomware types, crypto-ransomware

and screen locker ransomware. Crypto-ransomware encrypts

the user’s data and files. The key used in the encryption

process is required to decrypt them.

Screen locker ransomware is activated by the user

downloading a fake application from Google Play store or a

Journal of Emerging Computer Technologies
Gencer and Basciftci

39

third-party market, and the mobile device then being rendered

inoperable by locking the user screen. In general, a

ransomware attack has three main stages: Earning the

execution privilege, preventing access, and finally notifying

the victim with the ransom message [8].

Figure 2. Distribution of Ransomware Attacks across

Countries

Ransomware is a one of the type of malware. However, it

has its own characteristics. Since they encrypt and store the

files on the infected system, cleaning them from the system

does not save the victim’s information. Ransomware’s work

differently than other malware requires the use of different

operating features specific to ransomware in their detection.

Some of these features are given below. In recent years,

ransomware attackers have found many methods to avoid

detection by antivirus software and security utilities. However,

ransomware does have some common properties that can

allow the detection tools to reveal them. In the Android

environment, ransomware has been found to have some

common behavior and features, as follows [9-10].

Obtaining administrator privileges

• Detecting and disabling working anti-viruses

• Encrypting user files on the device

• Stealing contact information

• Starting device camera and taking photos

• Locking or unlocking the device

• Turning ring and notification tones off

• Showing threatening short messages

As a result, the use of unique features in the detection of

Ransomware will increase the detection speed and accuracy.

For this reason, it has become necessary to work specifically

for Ransomware. Although there have been various studies to

detect malicious ransomware, there are not many studies on

Android ransomware detection. Automated malicious

software analysis can be performed via two traditional

methods, static and dynamic. Static analysis is basically the

investigation of resources obtained via re-compilation before

executing the code. Static analysis is a investigation simple

and fast method. Dynamic analysis, on the other hand, is a

method that investigates behavior emerging from the

execution of the software on either a real machine or a virtual

environment. In this study, static analysis is used for

ransomware investigation. In this study, a dataset of 2990

samples in total was used for feature selection. As a result,

Bagging-MARS was more efficient than the other feature

selection methods it was compared with. The proposed

method considerably exceeded Random Forest, one of the

most commonly used and best-known embedded methods in

the literature.

Also, the accuracy rate of Bagging-MARS surpasses

Random Forest in all machine learning techniques used. In

Section 2 of this study, a literature review is performed on

related work. Section 3 covers some basic concepts related to

the theoretical substructure of the proposed technique. In

Section 4, information about the dataset and the evaluation

metrics used are given, and the experimental results of the

proposed technique are presented. In Section 5, the application

results from the Bagging-MARS technique are discussed and

interpreted in the conclusions.

II. RELATED WORK

Recent research on Android ransomware detection has

developed various approaches to make detection and

prevention of such malware more effective. In this article,

studies by Kirubavathi and Anne (2024) [11], Rahima et al.

(2024) [12], and Li et al. (2024) [13] have contributed to

significant developments in this field by highlighting different

techniques and methods. Kirubavathi and Anne used

behavioral analysis and machine learning techniques in the

detection of Android ransomware in their study. This study

focuses on identifying specific behavioral patterns of

ransomware, thus enabling the detection of malware. The

proposed model optimizes the detection process by monitoring

the behaviors of ransomware on Android devices. With this

approach, early warning systems are being developed to

prevent the spread of ransomware. Rahima and his colleagues

presented an approach based on hamming distance, a new

feature selection method, for the detection of Android

ransomware. This study aimed to increase the accuracy of the

detection model by using this new method in the feature

selection phase. Rahima and his team managed to make the

detection of ransomware more sensitive and faster with this

method, and especially emphasized the benefits of hamming

distance. Li and his colleagues developed an Android

ransomware detection framework called ARdetector. This

framework detects ransomware using both static and dynamic

analysis methods. The study aims to provide a multi-layered

defense mechanism against ransomware attacks, preventing

attacks from being hidden in various ways. ARdetector has

been presented as a powerful tool in the analysis of Android

applications and has achieved high accuracy rates in

ransomware detection.

Also, the feature selection stage is a critical step in

obtaining an efficient classifier model because, along with the

effect of input data on designing a strong classifier, it is

directly affected by long execution times and classifier

accuracy.

Journal of Emerging Computer Technologies
Gencer and Basciftci

40

Feature selection and population classification has caught

the attention of many researchers in statistics, machine

learning, neural networks and data mining for years. Fast

Correlation-Based Filtering (FCBF) was proposed by Deisy et

al. (2007) [14] to remove both irrelevant and unnecessary

features using symmetric similarity. When the recent studies

on feature selection were investigated, Yıldız and Doğru

(2019) [15] proposed a method to detect malicious Android

software via feature selection with the Genetic Algorithm

(GA). Three different classification techniques consisting of

separate feature subsets chosen by GA were applied to detect

and comparatively analyze malicious Android software.

Chakravarty, (2020) [16] investigated the most effective

permission recognition using feature reduction. They used

Gain Ratio and J48 to evaluate the features selected and

features used for feature reduction in Random Forest, Multi-

Layer Perceptron, Sequential Minimal Optimization (SMO)

and Randomizable Filtered classifiers. Experimental results

showed that five permissions may provide almost complete

feature accuracy and therefore optimize the malicious

detection software system.

Varma et al. (2020) [17] contributed to finding the minimal

feature set for malicious software detection using a series of

importance values of dependent features along with Ant

Colony Optimization (ACO) as a heuristic search technique.

The malicious software dataset called claMP, which has both

integrated and raw features, was accepted as the comparison

dataset for this study. Analytical results proved that claMP can

achieve 97.15% and 92.8% data storage optimization with

minimum loss of accuracy for integrated and raw datasets,

respectively.

In published literature, there are few studies proposing

static and/or dynamic approaches to detect Android

ransomware. Some studies using static analysis – Andronio et

al. (2015) [4]– investigated the common properties and

analysis results for existing mobile ransomware families. They

proposed HellDroid, which is a fast, effective and fully

automated approach that recognizes harmless software, known

and unknown malicious software and examples of them.

The working principle of Helldroid is generally based on

detecting the building blocks necessary for mobile

ransomware to work. It detects if an application is trying to

lock or encrypt the device without user permission and if

ransom requests are shown on screen. HellDroid shows almost

zero false positives in a large dataset consisting of hundreds of

apk files, including harmless/malicious software and

ransomware.

Zheng et al. (2016) [18] proposed GreatEatlon, which is a

next generation mobile ransomware detector. As a preventive

countermeasure, they envisioned the deployment of

GreatEatlon in the application store. In essence, GreatEatlon

uses static program analysis techniques to extract the correct

information dataflow necessary to resolve reflection-based,

anti-analysis attempts and detect malicious usage of the device

management API and cryptographic APIs.

Mercaldo et al. (2016) [19] proposed a method that can

identify the characteristic properties of a ransomware program

inside malicious software and detect the ransomware.

According to experimental results, they claimed that the

proposed method can be the correct way to develop

commercial solutions that successfully detect ransomware and

prevent their effects.

Maiorca et al. (2017) [10] utilized the information

extracted from API packets that enabled characterizing

applications without any special information regarding user-

defined content such as the application language. Results

obtained from the data showed that it is possible to detect

Android ransomware and distinguish them from malicious

software in general with a very high accuracy. Moreover, they

correctly distinguished true ransomware from the false

positives using R-PackDroid to identify applications detected

as ransomware with a very low confidence by the Virustotal

service.

Cimitille et al. (2017) [20] proposed a technique based on

formal methods to detect malicious ransomware in Android

devices. They made the method usable by implementing it in

a tool called Talos. Results obtained showed that Talos was

quite effective in recognizing ransomware even if it was

hidden, and detected them with a 99% accuracy.

In some studies using dynamic analysis, Song et al. (2016)

[21] proposed an effective method to prevent mutated

ransomware attacks exploiting vulnerabilities in existing

systems against novel ransomware patterns on Android

platforms. The proposed technique was based on investigating

these processes by processor usage, memory usage and

input/output ratio based statistical methods to detect those

processes exhibiting abnormal behavior. If a suspicious

ransomware-executing process was detected, the proposed

method stopped the process and the user was requested to

delete the programs related to that process. The high detection

speed was thanks to the method being applicable to Android

source code instead of the mobile application.

Chen et al. (2018) [22] gathered 2,721 ransomware

samples covering most of the existing Android ransomware

families and proposed a method characterized systematically

by various aspects including time diagrams and malicious

intent features. Moreover, since the detection results of

existing anti-virus tools are quite unsuccessful, they proposed

a new real-time detection system called RansomProber to

detect ransomware extorting users by encrypting data.

RansomProber can deduce if file encryption services have

been started manually or not by analyzing the user interface

widgets of related activities and the user’s finger movement

coordinates. Experimental results showed that RansomProber

could effectively detect encrypting ransomware with high

accuracy and acceptable execution time performance.

On the other hand, there are studies that perform both

dynamic and static analyses. When some of these studies were

investigated, Ferrante et al. (2017) [23] proposed a hybrid

method that could actively withstand ransomware. The

proposed method consisted of a dynamic approach that first

observed the execution time behavior of applications that were

going to be used on a device before installation with a static

approach, and then determined if the system was under attack

or not. While they used the frequency of process codes in their

static ransomware detection, the dynamic detection takes the

CPU, memory and network usages and system call statistics

Journal of Emerging Computer Technologies
Gencer and Basciftci

41

into account. They evaluated the performance of their hybrid

detection technique in a dataset with both ransomware and

legal applications. Results showed that although both the static

and dynamic detection methods provided good performance in

ransomware detection, the hybrid method showed the best

performance, detecting ransomware with 100% sensitivity and

having a false positive rate below 4%.

Gharib et al. (2017) [24] proposed the DNA-Droid which

has a two-layer detection framework. They used a dynamic

analysis layer on top of a static analysis layer as a

complementary layer. In DNA-Droid, they used new features

and a deep neural network to obtain a series of features with a

powerful capacity to distinguish ransomware and harmless

samples. Furthermore, sequence ordering techniques were

used to profile ransomware families. A web system was

developed to extract dynamic features for researchers. DNA-

Droid has been tested against thousands of samples. Example

results showed that it has a high precision and recall even in

detecting unknown ransomware samples while keeping the

false negative rate below 1.5%.

III. THEORETICAL BACKROUND

A. Android Ransomware Permissions and Application

Programming Interface Calls

A permission for an Android application developer is a

constraint that limits access to documents, a part of the code,

or data in the device. It is applied to protect critical data that

can be limited, and protect the code. Every permission is

defined with a unique label. In general, the label indicates the

limited action.

Today, every Android application developed has a related

AndroidManifest.xml file. The manifest file contains all the

necessary details needed for the Android platform to execute

the application since its compilation. Moreover, it gives

information about application components such as services

and activities.

Android applications are compressed files with an “.apk”

extension. Android is developed via an Application

Programming Interface (API) and consists of four types of

components: activities, services, broadcast receivers and

content providers. Android software interacts with

applications using these components. In application

packages, instead of multiple class files, all classes are

packaged into a single file with a “.dex” extension. Android

application packages are jar files that contain the application

byte code, local code libraries, application resources and the

AndroidManifest. The AndroidManifest is an XML file that

contains information like the application package name and

the application permissions. It is written in a human-readable

XML format and transformed into binary XML during

compilation [25].

Feature selection is a method used to select the most

appropriate features that can be more easily classified into a

specific class (malicious or harmless). In this study, the

permissions and the API Calls parameters are used as features

that can be helpful in determining if the Android software is

malicious or not. To find these features, the Apktool reverse

engineering tool is used. The AndroidManifest.xml and the

smali files are investigated for permission requests and API

Calls, respectively. These features were obtained by writing a

bash script in the Ubuntu operating system. As a result, the

feature matrix with a total of 134 permissions and API Calls

was transformed into a feature matrix with the best 34

features.

B. The Proposed Method

Feature selection techniques identify and remove

irrelevant and redundant information, enhancing the

effectiveness of data mining algorithms [26]. As computer

and information technologies have advanced, the analysis of

multi-dimensional databases has become inevitable. The

curse of dimensionality decreases classifier performance on

high-dimensional datasets due to increased complexity,

training requirements, and computation times. Reducing the

number of features is essential to address this issue.

Dimensionality reduction can be achieved through feature

extraction or feature selection. Feature extraction compresses

or transforms original features but lacks interpretability,

while feature selection removes irrelevant and redundant

features to choose the best subsets. Three feature selection

algorithms are: Filter technique: Features are ranked and

selected based on this ranking for model evaluation.Wrapper

method: Features are tested with a machine learning

algorithm to select the subset that improves model

performance using heuristic methods like forward and

backward selection.Embedded method: Combines filter and

wrapper techniques to rank and select the highest-ranking

features, enhancing classifier performance [27].In this study,

the Bagging-MARS method is proposed for Android

ransomware detection. This method achieved higher accuracy

with 34 features compared to other techniques, as shown in

Figure 3.

Figure 3. Architecture of the Proposed Technique

Journal of Emerging Computer Technologies
Gencer and Basciftci

42

C. Bootstrapping

Bootstrap algorithms are used to create and resample large

datasets. The bootstrap method reevaluates the statistical

inferences of some parameters. Numerous resampling

iterations are performed to make this process more reliable.

Variance estimates are successfully obtained using the

bootstrap method, which is frequently used for variance

estimation. Additionally, the bootstrap method is superior

when the sample distribution is not normal or when variance

analysis is conducted on very small datasets. Bootstrapping is

a method that is quite easy to understand and can be used with

limited assumptions, without the need for intensive

mathematical formulas [28].

A small number of samples with a high-dimensional

feature space causes a decline in classifier performance in

machine learning, statistics, and data mining systems. The

results of feature selection methods significantly impact the

success of data mining processes, especially when datasets

are large. To obtain the best results from feature selection

methods, it is necessary to conduct a comprehensive search in

the search space and ensure accuracy in classification by

checking each subset of features. It is not necessary to check

each subset of features to achieve the same performance; it

demonstrates that only a very small combination subset needs

to be checked to achieve the same performance with a

comprehensive approach.

The success of data mining algorithms stems from

different factors. For instance, the quality of the input data is

one of these factors. If the data contains irrelevant or

redundant information or noise, the learning process across

the search space will be more difficult. Feature selection

techniques allow for the identification and removal of some

irrelevant and redundant information. Such a process depends

on the selection of a subset of optimal features that maximizes

the efficiency of the data mining algorithm on the initial data.

In the context of classification, bootstrapping repeats the

entire classification experiment many times to obtain

estimation accuracy from repeated experiments. Therefore,

many bootstrap resamples are generated by (randomly)

replicating each original sample to estimate the error rate in a

few samples [29]. A sample of size m is taken from the

original sample through resampling. Sampling with

replacement means that some data points may be skipped

[30].

D. Multivariate Adaptive Regression Splines (MARS)

MARS is a non-parametric regression method developed

in the early 1990s by Jerome H. Friedman [31]. Designed for

both binary and continuous outcome variables, MARS is

known for its flexibility, accuracy, and speed. Unlike linear

methods, MARS considers subsets of variables by dividing

the predictor variable space into overlapping regions to form

spline functions called basis functions [32, 33]. This method

effectively handles non-monotonic relationships between

predictor variables, making it superior in interpreting

complex relationships in high-dimensional data compared to

other linear and parametric methods [34, 35].

Figure 4. Inflection Point of the Spline Function

Friedman (1991) [36] recommended including the main

region while determining sibling subregions, as this makes

future splits more effective (Lewis and Stevens, 1991) [37].

MARS is used for prediction when the output variable is

continuous and for classification when the output variable is

categorical, demonstrating its wide applicability as a highly

flexible, accurate, and fast technique [38]. Figure 4 shows the

inflection point of a spline function [39].

In constructing the MARS model, the initial maximum

model is refined using a backtracking algorithm that

eliminates the least effective variables one by one. submodels

generated during this process are compared using the

Generalized Cross-Validation (GCV) criterion to determine

the best-approximating submodel.

𝐺𝐶𝑉 =
∑ (𝑦𝑖−�̂�𝜆(𝑥𝑖))

2
𝑁
𝑖=1

(1−𝑀(𝜆)/𝑁)2
 (1)

Here, 𝑀(𝜆) and 𝑁 show the effective parameter count

and the number of observations, respectively. In this

expression, 𝑀(𝜆) is found by 𝑀(𝜆) = 𝑟 + 𝑐𝐾 where 𝑟 and

𝐾 denote the number of independent basis functions and the

number of nodes selected in the incremental part,

respectively. Bagging-MARS Pseudo Code is as follows.

Input: Dataset D (n samples, m features)

Output: Final Bagging-MARS Model
1. Determine hyperparameters:

- B: Number of bootstrap samples
- M: Maximum number of iterations for MARS model

- P: Penalty parameter

- Nk: Maximum number of nodes
2. Create an empty model list: Model_List = []

3. For b = 1 to B:

a. Create bootstrap sample: D_b = Bootstrap sample(D)
b. Train MARS model:

Model_b = MARS (D_b, Max_Iteration=M, Penalty=P, Nk=Nk)

c. Add model to model list: Model_List.append(Model_b)
End For

4. Make predictions for final model:

a. Make predictions on test data X:
Predictions = []

For each Model in Model_List:

Prediction = Model.predict(X)
Predictions.append(Prediction)

End For

b. Calculate the final prediction (average or majority vote):
Final_Prediction = Aggregate (Predictions)

5. Evaluate the final model:

a. Final_Accuracy = Evaluate (Final_Prediction, Actual Values)
b. Final_F_Measure = Calculate_F_Measure(Final_Prediction, Actual

Values)

6. Return the final model and performance metrics as output.

Journal of Emerging Computer Technologies
Gencer and Basciftci

43

IV. EXPERIMENT AND DISCUSSION

To evaluate the performance of machine learning methods

for classifying Android ransomware, several metrics are used

as follows:

𝐴𝐶𝐶 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 (2)

𝑇𝑃𝑅 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (3)

𝑇𝑁𝑅 =
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
 (4)

𝑃 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (5)

𝐹 −𝑀 =
(2×𝑃×𝑇𝑃𝑅)

(𝑃+𝑇𝑃𝑅)
 (6)

In this study, 990 benign data points from the Google Play

Store [40] and 2000 malicious data points from Virustotal

[41], Andrototal, and Ransommobi [42] were collected as

detailed in Table 1.

TABLE I. Android Datasets

Dataset Source
Number of

Samples
Features

Benign (Non-

Malicious)
Google Play Store 990

Application permissions,

API calls

Malicious
Virustotal, Andrototal,

Ransommobi
2000

Application permissions,

API calls

The study utilized thirteen feature selection methods,

encompassing Bagging-MARS, Random Forest, AdaBoost,

Naive Bayes, J48, Logistic Regression, Information Gain,

Gain Ratio, Chi-Square, Correlation, OneR, and RRelief. For

the classification task, five machine learning techniques were

employed: Logistic Regression, Multi-Layer Perceptron

(MLP), Support Vector Machines (SVM), Decision Trees

(DT), and Bayesian methods.

TABLE II. Performance Evaluation Results (Precision)

 Machine Learning Tecniques

Feature Selection Techniques Logistic MLP SVM DT Bayes

Logistic Regression 0.670 0.681 0.660 0.665 0.663

Information Gain 0.660 0.604 0.660 0.660 0.783

Gain Ratio 0.660 0.604 0.660 0.660 0.660

Chi-Square 0.739 0.608 0.723 0.718 0.747

Correlation 0.842 0.849 0.842 0.852 0.856

One R 0.736 0.727 0.744 0.749 0.747

RRelief 0.760 0.754 0.760 0.760 0.760

J48 0.848 0.828 0.859 0.845 0.816

Naive Bayes 0.848 0.828 0.859 0.845 0.816

SVM 0.848 0.858 0.856 0.857 0.793

Random Forest 0.875 0.877 0.876 0.875 0.841

AdaBoost 0.591 0.616 0.587 0.586 0.649

Prop. Bagging-MARS 0.904 0.905 0.897 0.898 0.887

The precision performance results, as illustrated in Table

2, indicate that the Bagging-MARS method achieved the

highest precision, with a value of 0.905. This was followed by

Random Forest with a precision of 0.877, SVM with 0.858,

and J48 with 0.828. In contrast, Information Gain and Gain

Ratio exhibited the lowest precision, both scoring 0.604.

Overall, it was observed that filter methods generally

underperformed during the feature selection process for

ransomware detection.

TABLE III. Performance Evaluation Results (F-Measure)

 Machine Learning Techniques

Feature Selection Techniques Logistic MLP SVM DT Bayes

Logistic Regression 0.640 0.682 0.643 0.667 0.665

Information Gain 0.643 0.604 0.643 0.643 0.565

Gain Ratio 0.643 0.603 0.643 0.643 0.643

Chi-Square 0.568 0.608 0.567 0.567 0.558

Correlation 0.796 0.796 0.796 0.795 0.795

One R 0.705 0.707 0.710 0.712 0.557

RRelief 0.753 0.752 0.753 0.753 0.753

J48 0.825 0.857 0.828 0.860 0.744

Naive Bayes 0.816 0.827 0.811 0.818 0.750

SVM 0.794 0.802 0.797 0.803 0.777

Random Forest 0.875 0.876 0.842 0.874 0.778

AdaBoost 0.554 0.621 0.572 0.571 0.651

Prop. Bagging-MARS 0.901 0.903 0.897 0.898 0.868

Journal of Emerging Computer Technologies
Gencer and Basciftci

44

The F-Measure values, as presented in Table 3, reveal that

the Bagging-MARS technique outperformed all other feature

selection methods, achieving the highest F-Measure of 0.903.

This was followed by Random Forest with an F-Measure of

0.876, and SVM with an F-Measure of 0.802. In contrast,

Information Gain and Gain Ratio recorded the lowest F-

Measure values among the methods evaluated.

TABLE IV. Performance Evaluation Results (Accuracy)

 Machine Learning Tecniques

Feature Selection Techniques Logistic MLP SVM DT Bayes

Logistic Regression 69.264 68.327 66.889 69.495 66.655

Information Gain 66.889 65.050 66.889 66.889 57.525

Gain Ratio 66.889 65.016 66.889 66.889 66.889

Chi-Square 68.127 65.217 68.026 67.993 56.488

Correlation 81.638 81.806 81.638 81.739 81.839

One R 69.699 69.966 70.167 70.334 56.388

RRelief 76.689 76.220 76.689 76.689 76.689

J48 83.712 85.652 84.281 86.154 74.114

Naive Bayes 83.077 83.110 82.943 83.144 74.248

SVM 81.605 82.308 81.973 82.375 79.197

Random Forest 87.424 87.559 85.451 87.391 77.191

AdaBoost 66.488 64.816 66.890 66.923 65.284

Prop. Bagging-MARS 90.033 90.268 89.715 89.765 86.421

The accuracy performance results, as detailed in Table 4,

demonstrate that the Bagging-MARS technique achieved the

highest accuracy, with a value of 90.268%. This was followed

by Random Forest, which attained an accuracy of 87.559%,

and SVM, with an accuracy of 82.308%. In contrast,

Information Gain and Gain Ratio produced the lowest

accuracy values among the evaluated methods. Notably, the

method introduced in this study for the first time outperformed

the widely recognized Random Forest method, which is

frequently cited in the literature. Additionally, AdaBoost,

another well-known ensemble method, recorded an accuracy

of 64.816%. The Bagging-MARS method clearly

outperformed AdaBoost in this context.

V. CONCLUSIONS

In this study, a MARS method based on Bagging feature

selection was proposed. It has been shown that this technique

has advantages compared to other existing methods for

improving classification. To conduct a comparative analysis

for the detection of unknown Android ransomware, thirteen

feature selection methods and five machine learning methods

were investigated. To observe the effectiveness of feature

selection, standard Android permissions and permissions

selected by Bagging-MARS were used with classifiers. The

models were built from static analysis based on the

investigation of application permissions. Experimental results

showed that the best performance was produced by MLP with

90.268% accuracy and an F-Measure of 0.903. Bagging-

MARS is the most effective feature selection method for

improving classification techniques in this comparison. The

proposed method significantly outperformed Random Forest,

one of the most commonly used and well-known embedded

methods in the literature. The accuracy rate of Bagging-

MARS surpasses Random Forest across all machine learning

techniques used. Bagging-MARS achieved 90.268%

accuracy, while Random Forest remained at 87.559%

accuracy.

In conclusion, this study clearly demonstrates the high

efficiency of the MARS method based on Bagging feature

selection in detecting Android ransomware. The detailed

analysis thoroughly examined the impact of various feature

selection methods and machine learning techniques on correct

classification performance. In this context, the Bagging-

MARS method shows a significant advantage over other

alternatives, proving to be an extremely valuable tool,

especially in the context of Android ransomware detection.

The results may encourage future security-focused studies

to consider such feature selection and machine learning

approaches more in-depth for ransomware detection and

prevention on the Android platform. The larger-scale

application of such methods can help develop more effective

protection mechanisms against rapidly evolving ransomware

threats. This study paves the way for further advancements in

research on Android ransomware detection.

CONFLICT OF INTEREST

The author declares that there is no conflict of interest.

REFERENCES

[1] Rajput, T. S. (2017). Evolving threat agents: Ransomware and their
variants. International Journal of Computer Applications, 164, 28–34.

[2] Uma, E., & Kannan, A. (2014). Improved cross site scripting filter for
input validation against attacks in web services. Kuwait Journal of
Science, 41(2).

[3] Nowinson, M. (2020). The biggest ransomware attack of 2020. CRN.
https://www.crn.com/slide-shows/security/the-11-biggest-
ransomware-attacks-of-2020-so-far

[4] Jesus, M. D., Malubay, M. & Ramos, A.C. (2020). Ransomware report:
Avaddon and new techniques emerge, industrial sector targeted.
TrendMicro.
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-
digital-threats/ransomware-report-avaddon-and-new-techniques-
emerge-industrial-sector-targeted

[5] Statcounter. (2020). Mobile operating system market share worldwide.
Statcounter. https://gs.statcounter.com/os-market-
share/mobile/worldwide

[6] Chebyshev, V. (2020). Mobile malware evolution 2019. Securelist.
https://securelist.com/mobile-malware-evolution-2019/96280/

[7] C. E. (2020). Ransomware facts, trends & statistics for 2020. Safety
Detectives. https://www.safetydetectives.com/blog/ransomware-
statistics/

Journal of Emerging Computer Technologies
Gencer and Basciftci

45

[8] Alsoghyer, S., & Almomani, I. (2019). Ransomware detection system
for Android applications. Electronics, 8, 868.

[9] Andronio, N., Zanero, S., & Maggi, F. (2015). Heldroid: Dissecting and
detecting mobile ransomware. In Research in Attacks, Intrusions, and
Defenses: 18th International Symposium, RAID 2015, Kyoto, Japan,
November 2-4, 2015. Proceedings 18 (pp. 382-404). Springer
International Publishing.

[10] Maiorca, D., Mercaldo, F., Giacinto, G., Visaggio, C. A., & Martinelli,
F. (2017, April). R-PackDroid: API package-based characterization
and detection of mobile ransomware. In Proceedings of the symposium
on applied computing (pp. 1718-1723).

[11] Kirubavathi, G., & Anne, W. R. (2024). Behavioral-based detection of
Android ransomware using machine learning techniques. International
Journal of System Assurance Engineering and Management, 1–22.

[12] Manzil, H. H. R., & Naik, S. M. (2024). Android ransomware detection
using a novel hamming distance-based feature selection. Journal of
Computer Virology and Hacking Techniques, 20(1), 71–93.

[13] Li, D., Shi, W., Lu, N., Lee, S. S., & Lee, S. (2024). ARdetector:
Android ransomware detection framework. The Journal of
Supercomputing, 80(6), 7557–7584.

[14] Deisy, C., Subbulakshmi, B., Baskar, S., & Ramaraj, N. (2007).
Efficient dimensionality reduction approaches for feature selection. In
2007 International Conference on Computational Intelligence and
Multimedia Applications (ICCIMA 2007).

[15] Yildiz, O., & Doğru, I. A. (2019). Permission-based Android malware
detection system using feature selection with genetic algorithm.
International Journal of Software Engineering and Knowledge
Engineering, 29, 245–262.

[16] Chakravarty, S. (2020, June). Feature selection and evaluation of
permission-based android malware detection. In 2020 4th International
conference on trends in electronics and informatics
(ICOEI)(48184) (pp. 795-799). IEEE.

[17] Varma, R. K., Akhila, K., & Mallidi, S. K. R. (2020). Feature reduction
and optimization of malware detection system using ant colony
optimization and rough sets. International Journal of Information
Security and Privacy, 14(3), 95–114.

[18] Zheng, C., Dellarocca, N., Andronio, N., Zanero, S., & Maggi, F.
(2017). GreatEatlon: Fast, static detection of mobile ransomware. In
Security and Privacy in Communication Networks (pp. 136–156).
Springer International Publishing.

[19] Mercaldo, F., Nardone, V., & Santone, A. (2016). Ransomware inside
out. In 2016 11th International Conference on Availability, Reliability
and Security (pp. 628–637).

[20] Cimitile, A., Mercaldo, F., Nardone, V., Santone, A., & Visaggio, C.
A. (2018). Talos: No more ransomware victims with formal methods.
International Journal of Information Security, 17(6), 719–738.

[21] Song, S., Kim, B., & Lee, S. (2016). The effective ransomware
prevention technique using process monitoring on Android platform.
Mobile Information Systems, 2016, 2946735.

[22] Chen, J., Wang, C., Zhao, Z., Chen, K., Du, R., & Ahn, G. (2018).
Uncovering the face of Android ransomware: Characterization and
real-time detection. IEEE Transactions on Information Forensics and
Security, 13(5), 1286–1300.

[23] Ferrante, A., Malek, M., Martinelli, F., Mercaldo, F., & Milosevic, J.
(2017). Extinguishing ransomware - A hybrid approach to Android
ransomware detection. In Proceedings of the 10th International
Symposium on Foundations and Practice of Security (pp. 49–64).
Springer International Publishing.

[24] Gharib, A., & Ghorbani, A. (2017). DNA-Droid: A real-time Android
ransomware detection framework. In Proceedings of the 11th
International Conference on Network and System Security (pp. 256–
272). Springer International Publishing.

[25] Rastogi, V., Chen, Y., & Jiang, X. (2013). DroidChameleon:
Evaluating Android antimalware against transformation attacks. In
Proceedings of the 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security (pp. 329–334).

[26] Diaz-Diaz, N., Aguilar-Ruiz, J. S., & Nepomuceno, J. A. (2005).
Feature selection based on bootstrapping. In Proceedings of the 2005
ICSC Congress on Computational Intelligence Methods and
Applications.

[27] Ilham, S., Abderrahim, G., & Abdelhakim, B. A. (2018). Permission
based malware detection in Android devices. In Proceedings of the 3rd
International Conference on Smart City Applications (pp. 83).
Association for Computing Machinery.

[28] Simon, J. L., & Bruce, P. C. (1991). Resampling: A tool for everyday
statistical work. Chance, 4(1), 22–32.

[29] Efron, B. (1983). Estimating the error rate of a prediction rule:
Improvement on cross-validation. Journal of the American Statistical
Association, 78(382), 316–331.

[30] Pokhriyal, A. (2021). What is bootstrap sampling in statistics and
machine learning? Analytics Vidhya. https://medium.com/analytics-
vidhya/what-is-bootstrapping-in-machine-learning-777fc44e222a

[31] Banks, D. (2001). Exploratory data analysis: Multivariate approaches
(Nonparametric regression). In International Encyclopedia of the
Social & Behavioral Sciences (pp. 5087–5092). Elsevier.

[32] Muñoz, J., & Felicísimo, Á. M. (2004). Comparison of statistical
methods commonly used in predictive modelling. Journal of
Vegetation Science, 15(2), 285–292.

[33] Put, R., Xu, Q. S., Massart, D. L., & Vander Heyden, Y. (2004).
Multivariate adaptive regression splines (MARS) in chromatographic
quantitative structure–retention relationship studies. Journal of
Chromatography A, 1055(1), 11–19.

[34] Olecka, A. (2007). Beyond classification: Challenges of data mining
for credit scoring. In Knowledge Discovery and Data Mining:
Challenges and Realities (pp. 139-161). IGI Global.

[35] Xu, Q. S., Daeyaert, F., Lewi, P. J., & Massart, D. L. (2006). Studies of
relationship between biological activities and HIV reverse transcriptase
inhibitors by multivariate adaptive regression splines with curds and
whey. Chemometrics and Intelligent Laboratory Systems, 82(1–2), 24–
30.

[36] Friedman, J. H. (1991). Multivariate adaptive regression splines (with
discussion). The Annals of Statistics, 19(1), 1–141.

[37] Lewis, P. A. W., & Stevens, J. G. (1991). Nonlinear modeling of time
series using multivariate adaptive regression splines (MARS). Journal
of the American Statistical Association, 86(416), 864–877.

[38] Mukhopadhyay, A., & Iqbal, A. (2009). Prediction of mechanical
property of steel strips using multivariate adaptive regression splines.
Journal of Applied Statistics, 36(1), 1–9.

[39] Ağraz, M., & Purutçuoğlu, V. (2019). Extended lasso-type MARS
(LMARS) model in the description of biological network. Journal of
Statistical Computation and Simulation, 89(1), 1–14.

[40] Google. (2020). Google. Access date:2021.
http://play.google.com/store

[41] Virustotal. (2020). Virustotal. Access date:2021.
https://www.virustotal.com

[42] Ransommobi. (2020). Ransommobi. Access date:2021.
https://www.ransommobi.com

