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Abstract— Android ransomware has become one of the most 

dangerous types of attack that have occurred recently due to the 

increasing use of the Android operating system. Generally, 

ransomware is based on the idea of encrypting the files in the 

victim’s device and then demanding money to provide the 

decryption password. Machine learning techniques are 

increasingly used for Android ransomware detection and 

analysis. In this study, Android ransomware is detected using 

Bootstrap Aggregating based Multivariate Adaptive Regression 

Splines (Bagging MARS) for the first time in feature selection. A 

feature matrix with 134 permissions and API calls in total was 

reduced to 34 features via the proposed Bagging MARS feature 

selection technique. Multi-Layer Perceptron (MLP), one of the 

classification techniques, produced the best accuracy with 

90.268%. Additionally, the proposed feature selection method 

yielded more successful results compared to the filter, wrapper, 

and embedded methods used. Thus, this method, which was used 

for the first time to detect the common features of Android 

Ransomware, will enable the next Android Ransomware 

detection systems to work faster and with a higher success rate. 

Keywords— Bagging, feature selection, machine learning, MARS, 

ransomware, static analysis 

I. INTRODUCTION 

Ransomware may infect a victim’s computer when the 

victim opens an e-mail attachment sent to him/her, visits a 

website, downloads an unsecure file, or installs unapproved 

software. After infecting the victim’s computer, the malicious 

software begins the first encryption phase by deleting the 

unencrypted original files, thereby preventing the victim from 

access ing their files. The attacker does not allow access to the 

original files until he/she is paid a ransom via a payment 

method such as virtual money. 

If the ransom is not paid in the time specified by the 

attacker, he/she destroys the encryption key and permanently 

deletes the data [1]. In the beginning, the majority of 

ransomware victims were Windows desktop users. After a 

while, ransomware emerged on different platforms including 

Android, iOS and other mobile operating systems. In recent 

years, types of attack shifted towards ransomware of a 

particular type [2]. Ransomware attacks continued at the 

beginning of 2020 with a range of rapidly spreading 

ransomware including Maze, Sodinokibi, DoppelPaymer, 

Nemty, Nefilim, CLOP and Sekhmet. According to the 

cybersecurity firm Emsisoft, attackers published the stolen 

data on their own websites in case a payment was not made. 

Emsisoft announced that the aim of ransomware groups is, 

in general, selling the stolen data to rivals, using the stolen data 

to attack business partners of the victim and publishing the 

victim’s private information on their webpages for everyone 

to see.Some attackers have exploited COVID-19 with 

reventive measures to prevent future incidents [3]. 

 
Figure 1. Industries Affected by Ransomware 

As seen in Figure 1, ransomware victims range across a 

broad spectrum including industries such as production, health 

and education to municipal management [4]. Mobile operating 

systems used around the globe are 74.25% Android, 25.15% 

iOS, 0.23% Samsung and 0.37% other operating systems [5]. 

According to Chebyshev (2020) [6], there were 60.176 mobile 

ransomware attacks in 2018 worldwide, while this number 

rose to 68.362 in 2019. Victims of the largest 11 ransomware 

attacks in 2020 have spent 144,2 million dollars up to now on 

various costs ranging from investigating the attack, reinstating 

networks and restoring backups, paying computer hackers and 

applying according to these numbers, there is a 13.6% increase 

in mobile ransomware attacks, annually. The distribution of 

recent ransomware attacks across countries is given in Figure 

2 [7]. Ransomware hides in uncertified source downloads, 

Google Play applications and exploitation kits using security 

vulnerabilities that are yet unpublicized, and spread from 

there. There are two ransomware types, crypto-ransomware 

and screen locker ransomware. Crypto-ransomware encrypts 

the user’s data and files. The key used in the encryption 

process is required to decrypt them. 

Screen locker ransomware is activated by the user 

downloading a fake application from Google Play store or a 
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third-party market, and the mobile device then being rendered 

inoperable by locking the user screen. In general, a 

ransomware attack has three main stages: Earning the 

execution privilege, preventing access, and finally notifying 

the victim with the ransom message [8]. 

 
Figure 2. Distribution of Ransomware Attacks across 

Countries 

Ransomware is a one of the type of malware. However, it 

has its own characteristics. Since they encrypt and store the 

files on the infected system, cleaning them from the system 

does not save the victim’s information. Ransomware’s work 

differently than other malware requires the use of different 

operating features specific to ransomware in their detection. 

Some of these features are given below. In recent years, 

ransomware attackers have found many methods to avoid 

detection by antivirus software and security utilities. However, 

ransomware does have some common properties that can 

allow the detection tools to reveal them. In the Android 

environment, ransomware has been found to have some 

common behavior and features, as follows [9-10]. 

Obtaining administrator privileges 

• Detecting and disabling working anti-viruses 

• Encrypting user files on the device 

• Stealing contact information 

• Starting device camera and taking photos 

• Locking or unlocking the device 

• Turning ring and notification tones off 

• Showing threatening short messages 

As a result, the use of unique features in the detection of 

Ransomware will increase the detection speed and accuracy. 

For this reason, it has become necessary to work specifically 

for Ransomware. Although there have been various studies to 

detect malicious ransomware, there are not many studies on 

Android ransomware detection. Automated malicious 

software analysis can be performed via two traditional 

methods, static and dynamic. Static analysis is basically the 

investigation of resources obtained via re-compilation before 

executing the code. Static analysis is a investigation simple 

and fast method. Dynamic analysis, on the other hand, is a 

method that investigates behavior emerging from the 

execution of the software on either a real machine or a virtual 

environment. In this study, static analysis is used for 

ransomware investigation. In this study, a dataset of 2990 

samples in total was used for feature selection. As a result, 

Bagging-MARS was more efficient than the other feature 

selection methods it was compared with. The proposed 

method considerably exceeded Random Forest, one of the 

most commonly used and best-known embedded methods in 

the literature. 

Also, the accuracy rate of Bagging-MARS surpasses 

Random Forest in all machine learning techniques used. In 

Section 2 of this study, a literature review is performed on 

related work. Section 3 covers some basic concepts related to 

the theoretical substructure of the proposed technique. In 

Section 4, information about the dataset and the evaluation 

metrics used are given, and the experimental results of the 

proposed technique are presented. In Section 5, the application 

results from the Bagging-MARS technique are discussed and 

interpreted in the conclusions. 

II. RELATED WORK 

Recent research on Android ransomware detection has 

developed various approaches to make detection and 

prevention of such malware more effective. In this article, 

studies by Kirubavathi and Anne (2024) [11], Rahima et al. 

(2024) [12], and Li et al. (2024) [13] have contributed to 

significant developments in this field by highlighting different 

techniques and methods. Kirubavathi and Anne used 

behavioral analysis and machine learning techniques in the 

detection of Android ransomware in their study. This study 

focuses on identifying specific behavioral patterns of 

ransomware, thus enabling the detection of malware. The 

proposed model optimizes the detection process by monitoring 

the behaviors of ransomware on Android devices. With this 

approach, early warning systems are being developed to 

prevent the spread of ransomware. Rahima and his colleagues 

presented an approach based on hamming distance, a new 

feature selection method, for the detection of Android 

ransomware. This study aimed to increase the accuracy of the 

detection model by using this new method in the feature 

selection phase. Rahima and his team managed to make the 

detection of ransomware more sensitive and faster with this 

method, and especially emphasized the benefits of hamming 

distance. Li and his colleagues developed an Android 

ransomware detection framework called ARdetector. This 

framework detects ransomware using both static and dynamic 

analysis methods. The study aims to provide a multi-layered 

defense mechanism against ransomware attacks, preventing 

attacks from being hidden in various ways. ARdetector has 

been presented as a powerful tool in the analysis of Android 

applications and has achieved high accuracy rates in 

ransomware detection.  

Also, the feature selection stage is a critical step in 

obtaining an efficient classifier model because, along with the 

effect of input data on designing a strong classifier, it is 

directly affected by long execution times and classifier 

accuracy. 
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Feature selection and population classification has caught 

the attention of many researchers in statistics, machine 

learning, neural networks and data mining for years. Fast 

Correlation-Based Filtering (FCBF) was proposed by Deisy et 

al. (2007) [14] to remove both irrelevant and unnecessary 

features using symmetric similarity. When the recent studies 

on feature selection were investigated, Yıldız and Doğru 

(2019) [15] proposed a method to detect malicious Android 

software via feature selection with the Genetic Algorithm 

(GA). Three different classification techniques consisting of 

separate feature subsets chosen by GA were applied to detect 

and comparatively analyze malicious Android software.  

Chakravarty, (2020) [16] investigated the most effective 

permission recognition using feature reduction. They used 

Gain Ratio and J48 to evaluate the features selected and 

features used for feature reduction in Random Forest, Multi-

Layer Perceptron, Sequential Minimal Optimization (SMO) 

and Randomizable Filtered classifiers. Experimental results 

showed that five permissions may provide almost complete 

feature accuracy and therefore optimize the malicious 

detection software system.  

Varma et al. (2020) [17] contributed to finding the minimal 

feature set for malicious software detection using a series of 

importance values of dependent features along with Ant 

Colony Optimization (ACO) as a heuristic search technique. 

The malicious software dataset called claMP, which has both 

integrated and raw features, was accepted as the comparison 

dataset for this study. Analytical results proved that claMP can 

achieve 97.15% and 92.8% data storage optimization with 

minimum loss of accuracy for integrated and raw datasets, 

respectively.  

In published literature, there are few studies proposing 

static and/or dynamic approaches to detect Android 

ransomware. Some studies using static analysis – Andronio et 

al. (2015) [4]– investigated the common properties and 

analysis results for existing mobile ransomware families. They 

proposed HellDroid, which is a fast, effective and fully 

automated approach that recognizes harmless software, known 

and unknown malicious software and examples of them.  

The working principle of Helldroid is generally based on 

detecting the building blocks necessary for mobile 

ransomware to work. It detects if an application is trying to 

lock or encrypt the device without user permission and if 

ransom requests are shown on screen. HellDroid shows almost 

zero false positives in a large dataset consisting of hundreds of 

apk files, including harmless/malicious software and 

ransomware.  

Zheng et al. (2016) [18] proposed GreatEatlon, which is a 

next generation mobile ransomware detector. As a preventive 

countermeasure, they envisioned the deployment of 

GreatEatlon in the application store. In essence, GreatEatlon 

uses static program analysis techniques to extract the correct 

information dataflow necessary to resolve reflection-based, 

anti-analysis attempts and detect malicious usage of the device 

management API and cryptographic APIs.  

Mercaldo et al. (2016) [19] proposed a method that can 

identify the characteristic properties of a ransomware program 

inside malicious software and detect the ransomware. 

According to experimental results, they claimed that the 

proposed method can be the correct way to develop 

commercial solutions that successfully detect ransomware and 

prevent their effects.  

Maiorca et al. (2017) [10] utilized the information 

extracted from API packets that enabled characterizing 

applications without any special information regarding user-

defined content such as the application language. Results 

obtained from the data showed that it is possible to detect 

Android ransomware and distinguish them from malicious 

software in general with a very high accuracy. Moreover, they 

correctly distinguished true ransomware from the false 

positives using R-PackDroid to identify applications detected 

as ransomware with a very low confidence by the Virustotal 

service.  

Cimitille et al. (2017) [20] proposed a technique based on 

formal methods to detect malicious ransomware in Android 

devices. They made the method usable by implementing it in 

a tool called Talos. Results obtained showed that Talos was 

quite effective in recognizing ransomware even if it was 

hidden, and detected them with a 99% accuracy.  

In some studies using dynamic analysis, Song et al. (2016) 

[21] proposed an effective method to prevent mutated 

ransomware attacks exploiting vulnerabilities in existing 

systems against novel ransomware patterns on Android 

platforms. The proposed technique was based on investigating 

these processes by processor usage, memory usage and 

input/output ratio based statistical methods to detect those 

processes exhibiting abnormal behavior. If a suspicious 

ransomware-executing process was detected, the proposed 

method stopped the process and the user was requested to 

delete the programs related to that process. The high detection 

speed was thanks to the method being applicable to Android 

source code instead of the mobile application.  

Chen et al. (2018) [22] gathered 2,721 ransomware 

samples covering most of the existing Android ransomware 

families and proposed a method characterized systematically 

by various aspects including time diagrams and malicious 

intent features. Moreover, since the detection results of 

existing anti-virus tools are quite unsuccessful, they proposed 

a new real-time detection system called RansomProber to 

detect ransomware extorting users by encrypting data. 

RansomProber can deduce if file encryption services have 

been started manually or not by analyzing the user interface 

widgets of related activities and the user’s finger movement 

coordinates. Experimental results showed that RansomProber 

could effectively detect encrypting ransomware with high 

accuracy and acceptable execution time performance.  

On the other hand, there are studies that perform both 

dynamic and static analyses. When some of these studies were 

investigated, Ferrante et al. (2017) [23] proposed a hybrid 

method that could actively withstand ransomware. The 

proposed method consisted of a dynamic approach that first 

observed the execution time behavior of applications that were 

going to be used on a device before installation with a static 

approach, and then determined if the system was under attack 

or not. While they used the frequency of process codes in their 

static ransomware detection, the dynamic detection takes the 

CPU, memory and network usages and system call statistics 
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into account. They evaluated the performance of their hybrid 

detection technique in a dataset with both ransomware and 

legal applications. Results showed that although both the static 

and dynamic detection methods provided good performance in 

ransomware detection, the hybrid method showed the best 

performance, detecting ransomware with 100% sensitivity and 

having a false positive rate below 4%.  

Gharib et al. (2017) [24] proposed the DNA-Droid which 

has a two-layer detection framework. They used a dynamic 

analysis layer on top of a static analysis layer as a 

complementary layer. In DNA-Droid, they used new features 

and a deep neural network to obtain a series of features with a 

powerful capacity to distinguish ransomware and harmless 

samples. Furthermore, sequence ordering techniques were 

used to profile ransomware families. A web system was 

developed to extract dynamic features for researchers. DNA-

Droid has been tested against thousands of samples. Example 

results showed that it has a high precision and recall even in 

detecting unknown ransomware samples while keeping the 

false negative rate below 1.5%. 

III. THEORETICAL BACKROUND  

A. Android Ransomware Permissions and Application 

Programming Interface Calls 

A permission for an Android application developer is a 

constraint that limits access to documents, a part of the code, 

or data in the device. It is applied to protect critical data that 

can be limited, and protect the code. Every permission is 

defined with a unique label. In general, the label indicates the 

limited action.  

Today, every Android application developed has a related 

AndroidManifest.xml file. The manifest file contains all the 

necessary details needed for the Android platform to execute 

the application since its compilation. Moreover, it gives 

information about application components such as services 

and activities.  

Android applications are compressed files with an “.apk” 

extension. Android is developed via an Application 

Programming Interface (API) and consists of four types of 

components: activities, services, broadcast receivers and 

content providers. Android software interacts with 

applications using these components. In application 

packages, instead of multiple class files, all classes are 

packaged into a single file with a “.dex” extension. Android 

application packages are jar files that contain the application 

byte code, local code libraries, application resources and the 

AndroidManifest. The AndroidManifest is an XML file that 

contains information like the application package name and 

the application permissions. It is written in a human-readable 

XML format and transformed into binary XML during 

compilation [25].  

Feature selection is a method used to select the most 

appropriate features that can be more easily classified into a 

specific class (malicious or harmless). In this study, the 

permissions and the API Calls parameters are used as features 

that can be helpful in determining if the Android software is 

malicious or not. To find these features, the Apktool reverse 

engineering tool is used. The AndroidManifest.xml and the 

smali files are investigated for permission requests and API 

Calls, respectively. These features were obtained by writing a 

bash script in the Ubuntu operating system. As a result, the 

feature matrix with a total of 134 permissions and API Calls 

was transformed into a feature matrix with the best 34 

features. 

B. The Proposed Method 

Feature selection techniques identify and remove 

irrelevant and redundant information, enhancing the 

effectiveness of data mining algorithms [26]. As computer 

and information technologies have advanced, the analysis of 

multi-dimensional databases has become inevitable. The 

curse of dimensionality decreases classifier performance on 

high-dimensional datasets due to increased complexity, 

training requirements, and computation times. Reducing the 

number of features is essential to address this issue. 

Dimensionality reduction can be achieved through feature 

extraction or feature selection. Feature extraction compresses 

or transforms original features but lacks interpretability, 

while feature selection removes irrelevant and redundant 

features to choose the best subsets. Three feature selection 

algorithms are: Filter technique: Features are ranked and 

selected based on this ranking for model evaluation.Wrapper 

method: Features are tested with a machine learning 

algorithm to select the subset that improves model 

performance using heuristic methods like forward and 

backward selection.Embedded method: Combines filter and 

wrapper techniques to rank and select the highest-ranking 

features, enhancing classifier performance [27].In this study, 

the Bagging-MARS method is proposed for Android 

ransomware detection. This method achieved higher accuracy 

with 34 features compared to other techniques, as shown in 

Figure 3. 

 
Figure 3. Architecture of the Proposed Technique 
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C. Bootstrapping 

Bootstrap algorithms are used to create and resample large 

datasets. The bootstrap method reevaluates the statistical 

inferences of some parameters. Numerous resampling 

iterations are performed to make this process more reliable. 

Variance estimates are successfully obtained using the 

bootstrap method, which is frequently used for variance 

estimation. Additionally, the bootstrap method is superior 

when the sample distribution is not normal or when variance 

analysis is conducted on very small datasets. Bootstrapping is 

a method that is quite easy to understand and can be used with 

limited assumptions, without the need for intensive 

mathematical formulas [28]. 

A small number of samples with a high-dimensional 

feature space causes a decline in classifier performance in 

machine learning, statistics, and data mining systems. The 

results of feature selection methods significantly impact the 

success of data mining processes, especially when datasets 

are large. To obtain the best results from feature selection 

methods, it is necessary to conduct a comprehensive search in 

the search space and ensure accuracy in classification by 

checking each subset of features. It is not necessary to check 

each subset of features to achieve the same performance; it 

demonstrates that only a very small combination subset needs 

to be checked to achieve the same performance with a 

comprehensive approach. 

The success of data mining algorithms stems from 

different factors. For instance, the quality of the input data  is 

one of these factors. If the data contains irrelevant or 

redundant information or noise, the learning process across 

the search space will be more difficult. Feature selection 

techniques allow for the identification and removal of some 

irrelevant and redundant information. Such a process depends 

on the selection of a subset of optimal features that maximizes 

the efficiency of the data mining algorithm on the initial data. 

In the context of classification, bootstrapping repeats the 

entire classification experiment many times to obtain 

estimation accuracy from repeated experiments. Therefore, 

many bootstrap resamples are generated by (randomly) 

replicating each original sample to estimate the error rate in a 

few samples [29]. A sample of size m is taken from the 

original sample through resampling. Sampling with 

replacement means that some data points may be skipped 

[30]. 

D. Multivariate Adaptive Regression Splines (MARS) 

MARS is a non-parametric regression method developed 

in the early 1990s by Jerome H. Friedman [31]. Designed for 

both binary and continuous outcome variables, MARS is 

known for its flexibility, accuracy, and speed. Unlike linear 

methods, MARS considers subsets of variables by dividing 

the predictor variable space into overlapping regions to form 

spline functions called basis functions [32, 33]. This method 

effectively handles non-monotonic relationships between 

predictor variables, making it superior in interpreting 

complex relationships in high-dimensional data compared to 

other linear and parametric methods [34, 35]. 

 
Figure 4. Inflection Point of the Spline Function 

Friedman (1991) [36] recommended including the main 

region while determining sibling subregions, as this makes 

future splits more effective (Lewis and Stevens, 1991) [37]. 

MARS is used for prediction when the output variable is 

continuous and for classification when the output variable is 

categorical, demonstrating its wide applicability as a highly 

flexible, accurate, and fast technique [38]. Figure 4 shows the 

inflection point of a spline function [39]. 

In constructing the MARS model, the initial maximum 

model is refined using a backtracking algorithm that 

eliminates the least effective variables one by one. submodels 

generated during this process are compared using the 

Generalized Cross-Validation (GCV) criterion to determine 

the best-approximating submodel. 

𝐺𝐶𝑉 =
∑ (𝑦𝑖−�̂�𝜆(𝑥𝑖))

2
𝑁
𝑖=1

(1−𝑀(𝜆)/𝑁)2
  (1) 

Here, 𝑀(𝜆)  and 𝑁  show the effective parameter count 

and the number of observations, respectively. In this 

expression, 𝑀(𝜆)  is found by 𝑀(𝜆) = 𝑟 + 𝑐𝐾  where 𝑟  and 

𝐾 denote the number of independent basis functions and the 

number of nodes selected in the incremental part, 

respectively. Bagging-MARS Pseudo Code is as follows. 

Input: Dataset D (n samples, m features) 

Output: Final Bagging-MARS Model 
1. Determine hyperparameters: 

- B: Number of bootstrap samples 
- M: Maximum number of iterations for MARS model 

- P: Penalty parameter 

- Nk: Maximum number of nodes 
2. Create an empty model list: Model_List = [] 

3. For b = 1 to B: 

a. Create bootstrap sample: D_b = Bootstrap sample(D) 
b. Train MARS model: 

Model_b = MARS (D_b, Max_Iteration=M, Penalty=P, Nk=Nk) 

c. Add model to model list: Model_List.append(Model_b) 
End For 

4. Make predictions for final model: 

a. Make predictions on test data X: 
Predictions = [] 

For each Model in Model_List: 

Prediction = Model.predict(X) 
Predictions.append(Prediction) 

End For 

b. Calculate the final prediction (average or majority vote): 
Final_Prediction = Aggregate (Predictions) 

5. Evaluate the final model: 

a. Final_Accuracy = Evaluate (Final_Prediction, Actual Values) 
b. Final_F_Measure = Calculate_F_Measure(Final_Prediction, Actual 

Values) 

6. Return the final model and performance metrics as output. 
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IV. EXPERIMENT AND DISCUSSION 

To evaluate the performance of machine learning methods 

for classifying Android ransomware, several metrics are used 

as follows: 

𝐴𝐶𝐶 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
   (2) 

𝑇𝑃𝑅 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
   (3) 

 

𝑇𝑁𝑅 =
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
   (4) 

𝑃 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
    (5) 

𝐹 −𝑀 =
(2×𝑃×𝑇𝑃𝑅)

(𝑃+𝑇𝑃𝑅)
   (6) 

In this study, 990 benign data points from the Google Play 

Store [40] and 2000 malicious data points from Virustotal 

[41], Andrototal, and Ransommobi [42] were collected as 

detailed in Table 1. 

TABLE I. Android Datasets 

Dataset Source 
Number of 

Samples 
Features 

Benign (Non-

Malicious) 
Google Play Store 990 

Application permissions, 

API calls 

Malicious 
Virustotal, Andrototal, 

Ransommobi 
2000 

Application permissions, 

API calls 

The study utilized thirteen feature selection methods, 

encompassing Bagging-MARS, Random Forest, AdaBoost, 

Naive Bayes, J48, Logistic Regression, Information Gain, 

Gain Ratio, Chi-Square, Correlation, OneR, and RRelief. For 

the classification task, five machine learning techniques were 

employed: Logistic Regression, Multi-Layer Perceptron 

(MLP), Support Vector Machines (SVM), Decision Trees 

(DT), and Bayesian methods. 

TABLE II. Performance Evaluation Results (Precision) 

  Machine Learning Tecniques 

Feature Selection Techniques Logistic MLP SVM DT Bayes 

Logistic Regression 0.670 0.681 0.660 0.665 0.663 

Information Gain 0.660 0.604 0.660 0.660 0.783 

Gain Ratio 0.660 0.604 0.660 0.660 0.660 

Chi-Square 0.739 0.608 0.723 0.718 0.747 

Correlation 0.842 0.849 0.842 0.852 0.856 

One R 0.736 0.727 0.744 0.749 0.747 

RRelief 0.760 0.754 0.760 0.760 0.760 

J48 0.848 0.828 0.859 0.845 0.816 

Naive Bayes 0.848 0.828 0.859 0.845 0.816 

SVM 0.848 0.858 0.856 0.857 0.793 

Random Forest 0.875 0.877 0.876 0.875 0.841 

AdaBoost 0.591 0.616 0.587 0.586 0.649 

Prop.  Bagging-MARS 0.904 0.905 0.897 0.898 0.887 

 

The precision performance results, as illustrated in Table 

2, indicate that the Bagging-MARS method achieved the 

highest precision, with a value of 0.905. This was followed by 

Random Forest with a precision of 0.877, SVM with 0.858, 

and J48 with 0.828. In contrast, Information Gain and Gain 

Ratio exhibited the lowest precision, both scoring 0.604. 

Overall, it was observed that filter methods generally 

underperformed during the feature selection process for 

ransomware detection. 

TABLE III. Performance Evaluation Results (F-Measure) 

 Machine Learning Techniques 

Feature Selection Techniques Logistic MLP SVM DT Bayes 

Logistic Regression 0.640 0.682 0.643 0.667 0.665 

Information Gain 0.643 0.604 0.643 0.643 0.565 

Gain Ratio 0.643 0.603 0.643 0.643 0.643 

Chi-Square 0.568 0.608 0.567 0.567 0.558 

Correlation 0.796 0.796 0.796 0.795 0.795 

One R 0.705 0.707 0.710 0.712 0.557 

RRelief 0.753 0.752 0.753 0.753 0.753 

J48 0.825 0.857 0.828 0.860 0.744 

Naive Bayes 0.816 0.827 0.811 0.818 0.750 

SVM 0.794 0.802 0.797 0.803 0.777 

Random Forest 0.875 0.876 0.842 0.874 0.778 

AdaBoost 0.554 0.621 0.572 0.571 0.651 

Prop.  Bagging-MARS 0.901 0.903 0.897 0.898 0.868 
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The F-Measure values, as presented in Table 3, reveal that 

the Bagging-MARS technique outperformed all other feature 

selection methods, achieving the highest F-Measure of 0.903. 

This was followed by Random Forest with an F-Measure of 

0.876, and SVM with an F-Measure of 0.802. In contrast, 

Information Gain and Gain Ratio recorded the lowest F-

Measure values among the methods evaluated. 

TABLE IV. Performance Evaluation Results (Accuracy) 

  Machine Learning Tecniques 

Feature Selection Techniques Logistic MLP SVM DT Bayes 

Logistic Regression 69.264 68.327 66.889 69.495 66.655 

Information Gain 66.889 65.050 66.889 66.889 57.525 

Gain Ratio 66.889 65.016 66.889 66.889 66.889 

Chi-Square 68.127 65.217 68.026 67.993 56.488 

Correlation 81.638 81.806 81.638 81.739 81.839 

One R 69.699 69.966 70.167 70.334 56.388 

RRelief 76.689 76.220 76.689 76.689 76.689 

J48 83.712 85.652 84.281 86.154 74.114 

Naive Bayes 83.077 83.110 82.943 83.144 74.248 

SVM 81.605 82.308 81.973 82.375 79.197 

Random Forest 87.424 87.559 85.451 87.391 77.191 

AdaBoost 66.488 64.816 66.890 66.923 65.284 

Prop.  Bagging-MARS 90.033 90.268 89.715 89.765 86.421 

 

The accuracy performance results, as detailed in Table 4, 

demonstrate that the Bagging-MARS technique achieved the 

highest accuracy, with a value of 90.268%. This was followed 

by Random Forest, which attained an accuracy of 87.559%, 

and SVM, with an accuracy of 82.308%. In contrast, 

Information Gain and Gain Ratio produced the lowest 

accuracy values among the evaluated methods. Notably, the 

method introduced in this study for the first time outperformed 

the widely recognized Random Forest method, which is 

frequently cited in the literature. Additionally, AdaBoost, 

another well-known ensemble method, recorded an accuracy 

of 64.816%. The Bagging-MARS method clearly 

outperformed AdaBoost in this context. 

V. CONCLUSIONS 

In this study, a MARS method based on Bagging feature 

selection was proposed. It has been shown that this technique 

has advantages compared to other existing methods for 

improving classification. To conduct a comparative analysis 

for the detection of unknown Android ransomware, thirteen 

feature selection methods and five machine learning methods 

were investigated. To observe the effectiveness of feature 

selection, standard Android permissions and permissions 

selected by Bagging-MARS were used with classifiers. The 

models were built from static analysis based on the 

investigation of application permissions. Experimental results 

showed that the best performance was produced by MLP with 

90.268% accuracy and an F-Measure of 0.903. Bagging-

MARS is the most effective feature selection method for 

improving classification techniques in this comparison. The 

proposed method significantly outperformed Random Forest, 

one of the most commonly used and well-known embedded 

methods in the literature. The accuracy rate of Bagging-

MARS surpasses Random Forest across all machine learning 

techniques used. Bagging-MARS achieved 90.268% 

accuracy, while Random Forest remained at 87.559% 

accuracy. 

In conclusion, this study clearly demonstrates the high 

efficiency of the MARS method based on Bagging feature 

selection in detecting Android ransomware. The detailed 

analysis thoroughly examined the impact of various feature 

selection methods and machine learning techniques on correct 

classification performance. In this context, the Bagging-

MARS method shows a significant advantage over other 

alternatives, proving to be an extremely valuable tool, 

especially in the context of Android ransomware detection. 

The results may encourage future security-focused studies 

to consider such feature selection and machine learning 

approaches more in-depth for ransomware detection and 

prevention on the Android platform. The larger-scale 

application of such methods can help develop more effective 

protection mechanisms against rapidly evolving ransomware 

threats. This study paves the way for further advancements in 

research on Android ransomware detection. 

CONFLICT OF INTEREST 

The author declares that there is no conflict of interest. 

REFERENCES 

[1] Rajput, T. S. (2017). Evolving threat agents: Ransomware and their 
variants. International Journal of Computer Applications, 164, 28–34. 

[2] Uma, E., & Kannan, A. (2014). Improved cross site scripting filter for 
input validation against attacks in web services. Kuwait Journal of 
Science, 41(2). 

[3] Nowinson, M. (2020). The biggest ransomware attack of 2020. CRN. 
https://www.crn.com/slide-shows/security/the-11-biggest-
ransomware-attacks-of-2020-so-far 

[4] Jesus, M. D., Malubay, M. & Ramos, A.C. (2020). Ransomware report: 
Avaddon and new techniques emerge, industrial sector targeted. 
TrendMicro. 
https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-
digital-threats/ransomware-report-avaddon-and-new-techniques-
emerge-industrial-sector-targeted 

[5] Statcounter. (2020). Mobile operating system market share worldwide. 
Statcounter. https://gs.statcounter.com/os-market-
share/mobile/worldwide 

[6] Chebyshev, V. (2020). Mobile malware evolution 2019. Securelist. 
https://securelist.com/mobile-malware-evolution-2019/96280/ 

[7] C. E. (2020). Ransomware facts, trends & statistics for 2020. Safety 
Detectives. https://www.safetydetectives.com/blog/ransomware-
statistics/ 



Journal of Emerging Computer Technologies 
Gencer and Basciftci 

45 

[8] Alsoghyer, S., & Almomani, I. (2019). Ransomware detection system 
for Android applications. Electronics, 8, 868.  

[9] Andronio, N., Zanero, S., & Maggi, F. (2015). Heldroid: Dissecting and 
detecting mobile ransomware. In Research in Attacks, Intrusions, and 
Defenses: 18th International Symposium, RAID 2015, Kyoto, Japan, 
November 2-4, 2015. Proceedings 18 (pp. 382-404). Springer 
International Publishing. 

[10] Maiorca, D., Mercaldo, F., Giacinto, G., Visaggio, C. A., & Martinelli, 
F. (2017, April). R-PackDroid: API package-based characterization 
and detection of mobile ransomware. In Proceedings of the symposium 
on applied computing (pp. 1718-1723). 

[11] Kirubavathi, G., & Anne, W. R. (2024). Behavioral-based detection of 
Android ransomware using machine learning techniques. International 
Journal of System Assurance Engineering and Management, 1–22.  

[12] Manzil, H. H. R., & Naik, S. M. (2024). Android ransomware detection 
using a novel hamming distance-based feature selection. Journal of 
Computer Virology and Hacking Techniques, 20(1), 71–93.  

[13] Li, D., Shi, W., Lu, N., Lee, S. S., & Lee, S. (2024). ARdetector: 
Android ransomware detection framework. The Journal of 
Supercomputing, 80(6), 7557–7584. 

[14] Deisy, C., Subbulakshmi, B., Baskar, S., & Ramaraj, N. (2007). 
Efficient dimensionality reduction approaches for feature selection. In 
2007 International Conference on Computational Intelligence and 
Multimedia Applications (ICCIMA 2007). 

[15] Yildiz, O., & Doğru, I. A. (2019). Permission-based Android malware 
detection system using feature selection with genetic algorithm. 
International Journal of Software Engineering and Knowledge 
Engineering, 29, 245–262. 

[16] Chakravarty, S. (2020, June). Feature selection and evaluation of 
permission-based android malware detection. In 2020 4th International 
conference on trends in electronics and informatics 
(ICOEI)(48184) (pp. 795-799). IEEE. 

[17] Varma, R. K., Akhila, K., & Mallidi, S. K. R. (2020). Feature reduction 
and optimization of malware detection system using ant colony 
optimization and rough sets. International Journal of Information 
Security and Privacy, 14(3), 95–114. 

[18] Zheng, C., Dellarocca, N., Andronio, N., Zanero, S., & Maggi, F. 
(2017). GreatEatlon: Fast, static detection of mobile ransomware. In 
Security and Privacy in Communication Networks (pp. 136–156). 
Springer International Publishing. 

[19] Mercaldo, F., Nardone, V., & Santone, A. (2016). Ransomware inside 
out. In 2016 11th International Conference on Availability, Reliability 
and Security (pp. 628–637). 

[20] Cimitile, A., Mercaldo, F., Nardone, V., Santone, A., & Visaggio, C. 
A. (2018). Talos: No more ransomware victims with formal methods. 
International Journal of Information Security, 17(6), 719–738. 

[21] Song, S., Kim, B., & Lee, S. (2016). The effective ransomware 
prevention technique using process monitoring on Android platform. 
Mobile Information Systems, 2016, 2946735.  

[22] Chen, J., Wang, C., Zhao, Z., Chen, K., Du, R., & Ahn, G. (2018). 
Uncovering the face of Android ransomware: Characterization and 
real-time detection. IEEE Transactions on Information Forensics and 
Security, 13(5), 1286–1300.  

[23] Ferrante, A., Malek, M., Martinelli, F., Mercaldo, F., & Milosevic, J. 
(2017). Extinguishing ransomware - A hybrid approach to Android 
ransomware detection. In Proceedings of the 10th International 
Symposium on Foundations and Practice of Security (pp. 49–64). 
Springer International Publishing. 

[24] Gharib, A., & Ghorbani, A. (2017). DNA-Droid: A real-time Android 
ransomware detection framework. In Proceedings of the 11th 
International Conference on Network and System Security (pp. 256–
272). Springer International Publishing. 

[25] Rastogi, V., Chen, Y., & Jiang, X. (2013). DroidChameleon: 
Evaluating Android antimalware against transformation attacks. In 
Proceedings of the 8th ACM SIGSAC Symposium on Information, 
Computer and Communications Security (pp. 329–334).  

[26] Diaz-Diaz, N., Aguilar-Ruiz, J. S., & Nepomuceno, J. A. (2005). 
Feature selection based on bootstrapping. In Proceedings of the 2005 
ICSC Congress on Computational Intelligence Methods and 
Applications. 

[27] Ilham, S., Abderrahim, G., & Abdelhakim, B. A. (2018). Permission 
based malware detection in Android devices. In Proceedings of the 3rd 
International Conference on Smart City Applications (pp. 83). 
Association for Computing Machinery.  

[28] Simon, J. L., & Bruce, P. C. (1991). Resampling: A tool for everyday 
statistical work. Chance, 4(1), 22–32.  

[29] Efron, B. (1983). Estimating the error rate of a prediction rule: 
Improvement on cross-validation. Journal of the American Statistical 
Association, 78(382), 316–331.  

[30] Pokhriyal, A. (2021). What is bootstrap sampling in statistics and 
machine learning? Analytics Vidhya. https://medium.com/analytics-
vidhya/what-is-bootstrapping-in-machine-learning-777fc44e222a 

[31] Banks, D. (2001). Exploratory data analysis: Multivariate approaches 
(Nonparametric regression). In International Encyclopedia of the 
Social & Behavioral Sciences (pp. 5087–5092). Elsevier. 

[32] Muñoz, J., & Felicísimo, Á. M. (2004). Comparison of statistical 
methods commonly used in predictive modelling. Journal of 
Vegetation Science, 15(2), 285–292.  

[33] Put, R., Xu, Q. S., Massart, D. L., & Vander Heyden, Y. (2004). 
Multivariate adaptive regression splines (MARS) in chromatographic 
quantitative structure–retention relationship studies. Journal of 
Chromatography A, 1055(1), 11–19.  

[34] Olecka, A. (2007). Beyond classification: Challenges of data mining 
for credit scoring. In Knowledge Discovery and Data Mining: 
Challenges and Realities (pp. 139-161). IGI Global. 

[35] Xu, Q. S., Daeyaert, F., Lewi, P. J., & Massart, D. L. (2006). Studies of 
relationship between biological activities and HIV reverse transcriptase 
inhibitors by multivariate adaptive regression splines with curds and 
whey. Chemometrics and Intelligent Laboratory Systems, 82(1–2), 24–
30.  

[36] Friedman, J. H. (1991). Multivariate adaptive regression splines (with 
discussion). The Annals of Statistics, 19(1), 1–141.  

[37] Lewis, P. A. W., & Stevens, J. G. (1991). Nonlinear modeling of time 
series using multivariate adaptive regression splines (MARS). Journal 
of the American Statistical Association, 86(416), 864–877.  

[38] Mukhopadhyay, A., & Iqbal, A. (2009). Prediction of mechanical 
property of steel strips using multivariate adaptive regression splines. 
Journal of Applied Statistics, 36(1), 1–9.  

[39] Ağraz, M., & Purutçuoğlu, V. (2019). Extended lasso-type MARS 
(LMARS) model in the description of biological network. Journal of 
Statistical Computation and Simulation, 89(1), 1–14.  

[40] Google. (2020). Google. Access date:2021. 
http://play.google.com/store 

[41] Virustotal. (2020). Virustotal. Access date:2021. 
https://www.virustotal.com 

[42] Ransommobi. (2020). Ransommobi. Access date:2021. 
https://www.ransommobi.com 

 


