
DUJE (Dicle University Journal of Engineering) 15:4 (2024) Page 839-851 

A Novel DNA Classification Experiment: Spatial Transcriptomics Analysis for 

Human Monkeypox DNA-Motifs with Kolmogorov–Arnold Networks 

Selçuk YAZAR1* 

1 Kırklareli University, Software Engineering Department, selcukyazar@klu.edu.tr, Orcid No: 0000-0001-6567-4995 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Introduction 

Spatial transcriptomics (ST) represents a significant 

advancement over traditional gene expression analysis 

methods by incorporating the geographical location of 

DNA within tissue sections, thereby preserving the spatial 

context of gene activity. Traditional methods, such as 

single-cell RNA sequencing (scRNAseq), lack the ability to 

maintain this spatial information, which is crucial for 

understanding the complex interactions and heterogeneity 

within tissues [1]. ST technologies, by contrast, enable the 

profiling of gene expression at a single-cell resolution while 

retaining the cellular compositions within a tissue, offering 

insights into cellular interactions that were previously 

unattainable [2]. The data produced by conventional ST 

technologies exhibit inherent characteristics such as noise, 

high dimensionality, sparsity, and multimodality, 

necessitating the utilization of specialized computational 

tools like machine learning (ML) for precise and robust 

analysis [2]. The integration of machine learning (ML) 

techniques, has further differentiated ST from traditional 

methods. The development of tools like SPADE for 

identifying spatially variable genes and PERSIST for 

optimizing gene panels for ST studies exemplifies the 

tailored approaches being developed to leverage the unique 

aspects of ST data [3, 4]. These tools, which are based on 

machine learning models, offer superior performance in 

detecting spatially relevant gene expression patterns and 

selecting informative gene targets, respectively, compared 

to methods used in traditional gene expression analysis [5], 

[6]. Additionally, the application of ST, combined with 

graph-based machine learning methods, has been 

demonstrated in research on glioblastoma multiforme, 

uncovering spatially restricted tumor niches and signaling 

networks relevant to patient survival. This highlights the 

potential of ST combined with ML to contribute to the 

development of new therapeutic strategies by providing a 

more nuanced understanding of disease pathology at the 

spatial level. ST, enhanced by machine learning techniques, 

offers a more comprehensive and nuanced understanding of 

gene expression by preserving and analyzing the spatial 

context of tissues, a capability that traditional methods lack. 

Yet, machine learning frameworks have shown to be sub-

optimal for analyzing the complex, noisy, and high-

dimensional data generated by ST due to challenges such as 

spatial resolution, sensitivity, and gene coverage [7]. Deep 

learning (DL)-based models, however, are being developed 

to address these ST-specific challenges, including 

alignment, spatial reconstruction, and spatial clustering, 

showcasing the potential for transformational applications 
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ABSTRACT 

 
Spatial Transcriptomics(ST) has emerged as a powerful tool for understanding gene expression patterns 
across different regions of a tissue or organism. It is crucial for disease research and developing new 

therapies. It allows for the measurement of gene expression across specific, localized areas of a tissue 

slide, though it does so with limited throughput. Yet, the data produced by ST technologies are 
characteristically noisy, high-dimensional, sparse, and multi-modal, encompassing elements like 

histological images and count matrices. Existing methods for analyzing ST data, which often rely on 

traditional statistical or machine learning techniques, have proven inadequate in many cases due to 
challenges like scale, multi-modality, and the inherent limitations of spatially-resolved data, including 

spatial resolution, sensitivity, and gene coverage. To address these specific challenges, researchers have 

turned to deep learning-based models. In this study, we present a novel approach to transcriptomics 
analysis using Kolmogorov-Arnold Networks (KANs), a state-of-the-art deep learning model to predict 

regional origin of monkeypox transcriptomic sample. By leveraging the ability of KANs to learn and 

represent complex, non-linear functions, we aim to uncover intricate spatial patterns of gene expression 
and gain insights into the underlying biological processes. Study’s analysis focuses on two distinct regions, 

America and Asia, and employs a KAN-based classifier. The results demonstrate the promising 

performance of KANs in this context, with a precision of 0.45 and a recall of 0.93 for the America region, 
indicating a strong ability to correctly identify samples from this region. Findings indicate that predicting 

the regional transcriptome of monkeypox from DNA motifs could facilitate image-based screening for 

phylogenetic analyses. 
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in analyzing spatially resolved transcriptomics data [8]. 

These approaches not only advance our fundamental 

understanding of biological processes but also open new 

avenues for disease research and therapeutic development. 

The historical process of human monkeypox disease traces 

back to its first identification in the Democratic Republic of 

Congo (DRC) in 1970, following the discovery of the 

monkeypox virus in monkeys in 1958 [9]. Initially endemic 

to Central and Western Africa, the disease is caused by the 

monkeypox virus (MPXV), a zoonotic orthopoxvirus 

sharing clinical similarities with smallpox but 

distinguishable by symptoms such as lymphadenopathy 

[10]. Over the years, the disease has seen a gradual increase 

in incidence, with a notable shift in the median age of 

affected individuals from children to young adults and a 

variation in fatality rates between different clades of the 

virus. Human monkeypox, caused by Monkeypox virus, has 

historical significance post smallpox eradication. The 

recent 2022 outbreak, with global spread and human-to-

human transmission, highlights its current threat level.   

The classification of human monkeypox disease using deep 

learning techniques encompasses a variety of approaches 

aimed at enhancing early detection, diagnosis, and 

understanding of the disease's spread. These methods 

leverage Convolutional Neural Networks (CNNs), transfer 

learning, ensemble learning, and feature fusion techniques 

to analyze skin lesion images and predict monkeypox 

outbreaks. One primary method involves the development 

of diagnostic models using Generalization and 

Regularization-based Transfer Learning approaches (GRA-

TLA) for binary and multiclass classification of 

monkeypox, demonstrating the potential of machine 

learning in distinguishing between infected and non-

infected individuals with high accuracy [11]. Similarly, the 

construction of a Computer-Aided Diagnosis (CAD) tool, 

"Monkey-CAD," utilizes features extracted from multiple 

CNNs, employing Discrete Wavelet Transform (DWT) for 

feature fusion and entropy-based feature selection to 

enhance classification performance [12]. The application of 

machine learning and image processing methods, including 

data augmentation and transfer learning strategies across 

various deep learning models, has been pivotal in 

developing highly accurate models for monkeypox 

diagnosis, such as "PoxNet22," which achieved 100% 

precision, recall, and accuracy [13]. Additionally, emotion 

classification from social media posts using deep learning 

models like CNN, Long-Short Term Memory (LSTM) and 

Bi-Directional LSTM (BiLSTM) have provided insights 

into public sentiment and concerns regarding monkeypox, 

indirectly aiding in geographical classification by 

identifying areas of heightened concern [13]. Deep-learning 

methods supported with transfer learning tools and 

hyperparameter optimization have been employed to detect 

monkeypox through skin lesions, with models like 

MobileNetV3-s showing remarkable results [14]. The 

development of an image-based deep convolutional neural 

network, MPXV-CNN, for identifying characteristic skin 

lesions caused by monkeypox, has shown robust 

classification performance across various skin tones and 

body regions [15]. Ensemble learning-based frameworks 

that combine probabilities from pre-trained base learners 

like Inception V3, Xception, and DenseNet169 have also 

been proposed to detect monkeypox virus presence from 

skin lesion images with high accuracy [16]. Mobile 

applications using deep learning for preliminary diagnosis 

of monkeypox through skin lesion images offer a quick and 

accessible tool for individuals, potentially aiding in the 

geographical classification by facilitating early detection 

[17]. Longitudinal studies assessing spatiotemporal risk 

factors of monkeypox infection and predicting global 

epidemiological trends using modified SEIR models and k-

means clustering analysis have provided insights into 

changing risk factors and future outbreak predictions [18]. 

Finally, the comparison of different pre-trained deep 

learning models fine-tuned for monkeypox virus detection 

has led to the development of ensemble approaches that 

improve overall performance, aiding health practitioners in 

mass screening [19]. These methods collectively contribute 

to the geographical classification of monkeypox disease by 

enabling accurate and early detection, understanding public 

sentiment, and predicting future outbreaks, thereby 

assisting in containment efforts and public health planning. 

The fact that deep learning is successful in various fields 

and is effective in the classification of monkeypox disease 

geographically, led us to analyze the DNA data of 

monkeypox disease with KANs, a new deep learning 

model, in this study. The utilization of color-coded 

representations in genetic sequence visualization offers a 

compelling approach to elucidate complex genomic 

information. By assigning specific colors to each 

nucleotide—blue for Adenine, yellow for Thymine, red for 

Cytosine, green for Guanine, and white for undefined 

nucleotides—researchers can create an intuitive visual map 

of DNA structures, facilitating the identification of patterns 

and motifs within the genetic code. This method is further 

enhanced by the implementation of advanced edge 

detection algorithms, which employ brightness and 

geometric thresholds, along with segmentation area 

parameters, to accentuate structural features that might 

otherwise remain obscure in traditional digital mapping 

techniques. Moreover, these color-coded images are 

designed to serve as input for transfer learning classification 

models, effectively bridging the gap between 

bioinformatics and machine learning. This innovative 

approach enables the application of sophisticated pattern 

recognition and classification techniques to genetic 

sequence data through their visual representations, 

potentially offering new insights into genomic structures 

and functions. 

In the study, DNA sequences associated with monkeypox 

disease were initially obtained from both American and 

Asian regions. These sequences were subsequently color-

coded, and DNA motifs were generated. Following motif 

creation, a filtering process was conducted, and the resultant 

images were subjected to classification using both KANs 

and various Artificial Neural Network (ANN) models, 

which were then compared. There are several deficiencies 

of traditional spatial transcriptomics (ST) methods such as 
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the use of tools like SPADE and PERSIST, and the 

application of graph-based ML methods, are associated 

with the paper's approach. SPADE and PERSIST tools 

exemplify tailored approaches developed to leverage the 

unique aspects of ST data. The paper's use of KANs can be 

seen as a continuation of this trend, aiming to provide 

superior performance in detecting spatially relevant gene 

expression patterns and selecting informative gene targets. 

Also in Graph-Based ML methods, The application of 

graph-based ML methods in previous research highlights 

the potential of combining ST with ML to uncover spatially 

restricted niches and signaling networks. This paper's 

approach with KANs aligns with this by offering a more 

nuanced understanding of disease pathology at the spatial 

level, potentially contributing to new therapeutic strategies. 

Model performance was evaluated based on precision, 

recall, and F1-score metrics. The highlights of this study can 

be explained as follows: 

• For the first time in this study, the DNA sequences 

that cause monkeypox disease were color-coded. 

• To the best of our knowledge, for the first time in 

this study, KANs deep learning model was employed to 

classify monkeypox DNA motifs. 

• This study shows that deep learning-based image-

screen methods can be effective in regional transcriptome 

and phylogenetic analysis. 

The remainder of the study is organized as follows: In the 

second section, information about the data set and methods 

used in the study is given. In the third section, application 

results are given, and the findings obtained with both 

KANs, and other models are compared. In the fourth 

section, discussion is made and the performance of the 

KANs model is examined. In the last section, the study was 

concluded, suggestions and future studies were mentioned.  

Material and Methods 

Datasets 

The DNA sequences utilized in the research were sourced 

from GISAID [20] and the National Center for 

Biotechnology Center (NCBI Virus) [21]. These databases 

offer a comprehensive analysis of Human Monkey Pox 

DNA records globally since its isolation in December 2022. 

During the investigation, we acquired the Asian-tagged 

series from the NCBI Virus database and the remaining 

sequences from GISAID. Data archived and shared in these 

repositories are formatted as FASTA [22] files, containing 

essential details such as date, location, quality, and 

publication information of the researchers involved in 

isolating the virus's DNA sequence. The repositories also 

indicate the quality of DNA sequences, leading us to avoid 

utilizing incomplete or low-quality sequences in our 

classification model. Presently, GISAID has published over 

5,000 complete or partial genomic sequences, while the 

NCBI Virus database contains more than 2,000 fully or 

partially labeled sequences. The cumulative count of 

complete gene sequences obtained from these databases 

amounts to 3,165. The distribution of these sequences is as 

follows: Europe 900, America (North and South) 1,448, 

Asia 926, as depicted in Figure 1. The data integrity and 

completeness in these repositories are signified by the 

requirement of a base pair count exceeding 29,000 and an 

unresolved amino acid percentage of less than 5%. These 

criteria ensure that the DNA information collected 

accurately represents all amino acid values. Despite our 

preference for fully isolated gene sequences, occasional 

utilization of sequences containing "N" placeholders was 

necessary due to limited data availability. Due to the 

relative unevenness in the distribution of DNA sequences, 

the data set collected during the study was divided into two 

groups: American and Asian. In such a study, a simple 

binary classification problem was applied. This resulted in 

two almost equally distributed classes. 

 

 

Figure 1. The complete genome sequences counts are 

distributed by continents for the training dataset. 

 

DNA Motifs 

When the DNA sequences of the Human Monkey Pox virus 

were transformed into visual representations, a strategic 

approach was employed by drawing an analogy and 

portraying them in the form of circular shapes. It is worth 

noting that an DNA sequence is comprised of four 

fundamental nucleobases, namely Adenine (A), Cytosine 

(C), Guanine (G), and Thymine (T). The representation of 

these nucleobases is further enhanced by the utilization of 

distinct color codes; Adenine-Yellow, Cytosine-Blue, 

Guanine-Green and Thymine-Red.  

The algorithm employed for the creation of DNA motifs is 

a sophisticated computational procedure utilized for the 

precise determination of the multitude of points necessary 

to discretize a circular shape into pixels. Within the intricate 

flow of this algorithmic process, the initial step involves the 

identification of points within the eight divided segments, 

followed by the meticulous determination of points within 

the remaining octant. In the meticulous process of 

pinpointing each point (x, y) along the circumference of the 

circle, the subsequent pixel coordinates are calculated as 

either (x, y + 1) or (x-1, y + 1), ensuring a systematic 

approach to pixel placement. 

The application of this algorithm was pivotal in the task of 

populating the circle generated through the utilization of 
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DNA data, meticulously translated into a character array. 

This method resulted in the creation of intricate motifs, 

whereby the RNA sequences were transformed and 

represented in images with a resolution of 200x200 pixels 

and 3 color channels, thereby enhancing the visual 

representation of the genetic information. The varying 

lengths of gene sequences under scrutiny necessitated a 

meticulous determination of the optimal dimensions within 

our circle drawing algorithm, ensuring a standardized and 

efficient computational process. The flowchart of the 

process of the stages here is given in Appendix-A in detail. 

The detailed process steps of the flow chart are as follows: 

The algorithm for DNA motif creation and filtering 

represents a sophisticated approach to transforming genetic 

sequence data into visual representations suitable for 

advanced analytical techniques, including machine learning 

applications. This process encompasses multiple stages, 

from initial data preprocessing to the generation of filtered 

images, each step carefully designed to ensure the integrity 

and relevance of the resulting motifs. 

The process commences with the initialization phase, 

wherein the algorithm establishes crucial file paths for 

FASTA input, genome storage, motif output, and filtered 

motif storage. Concurrently, a regex filter is prepared to 

facilitate efficient text processing. Subsequently, the 

algorithm engages in a meticulous FASTA file processing 

stage. Here, the contents of the FASTA file are read and 

parsed using regex splitting, effectively separating the file 

into discrete entries for individual analysis. 

Following the initial parsing, the algorithm proceeds with a 

line-by-line examination of the genetic sequences. This 

stage implements a series of stringent filters to ensure only 

high-quality, relevant genetic data is processed further. The 

filtering criteria include checks for non-empty lines, 

exclusion of header lines (those starting with ">"), 

minimum length requirements (greater than 50 characters), 

and the absence of long stretches of undefined nucleotides 

("NNNNNNNN"). Lines meeting these criteria contribute 

to the construction of a comprehensive genome string, 

which is periodically written to storage and checked against 

a minimum length threshold to ensure sufficient genetic 

material for meaningful analysis. 

The core of the motif creation process lies in the image 

generation phase. Here, the algorithm initializes key 

parameters such as image radius and origin, creating a 

bitmap with dimensions of 200x200 pixels. The algorithm 

then employs a mathematical approach to determine the 

height of each column in the circular representation, 

calculated as the square root of the difference between the 

squared radius and the squared x-coordinate. This 

calculation ensures a proper circular shape in the resulting 

image. 

In the pixel processing stage, the algorithm iterates through 

each calculated y-coordinate, mapping nucleotides from the 

genetic sequence to specific colors: Adenine to blue, 

Thymine to yellow, Cytosine to red, Guanine to green, and 

any undefined nucleotides to white. This color-coding 

scheme creates a visually distinct representation of the 

genetic sequence, with each pixel in the image 

corresponding to a specific nucleotide in the original 

sequence. 

Post-generation, the algorithm applies a sophisticated edge 

detection technique to enhance the visual patterns within the 

motif. This process involves the careful setting of brightness 

and geometric thresholds, as well as a segmentation area 

parameter. The edge detection algorithm examines each 

pixel in the context of its local neighborhood, defined by a 

circular mask. By comparing brightness values and 

calculating a segmentation area, the algorithm determines 

whether each pixel represents an edge or a continuous 

region, thereby highlighting the structural features of the 

genetic sequence in the visual representation. 

The final stages of the algorithm involve the storage of both 

the original motif image and its edge-detected variant, 

saved as PNG files in their respective directories. These 

images serve as the end product of the visualization process, 

encapsulating complex genetic information in a format 

conducive to further computational analysis. 

Ultimately, these generated images are primed for 

utilization in transfer learning classification models. This 

final step bridges the gap between bioinformatics and 

machine learning, allowing for the application of advanced 

pattern recognition and classification techniques to genetic 

sequence data through their visual representations. 

In conclusion, this algorithm represents a multifaceted 

approach to genetic sequence visualization, combining 

elements of bioinformatics, image processing, and machine 

learning preparation. By transforming complex genetic data 

into standardized, visually interpretable formats, it paves 

the way for novel insights and analytical approaches in 

genomic research and related fields. 

Throughout the process of motif creation, any gaps or 

unoccupied pixels were elegantly filled with white color to 

seamlessly complete the circular shape, albeit with a subtle 

linear flaw discernible on the right periphery. From the 

perspective of artificial neural networks, these images can 

be interpreted as multi-dimensional arrays with dimensions 

of 200x200x3, encapsulating the intricate details of the 

DNA motifs. The resultant DNA motif, a product of this 

intricate algorithmic process, is visually presented in Figure 

2 showcasing the culmination of computational precision 

and biological data integration. Before obtaining the images 

in this particular context, it was necessary for us to utilize 

the FASTA files that were acquired from various datasets, 

a crucial step in the process aimed at transforming these 

files into motifs. This transformation involved the 

meticulous separation of the data contained within these 

files into distinct DNA sequences, a task that was 

accomplished through the implementation of a specialized 

application that we meticulously crafted using the Delphi 

programming language. 
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Figure 2. The motif of the sample isolated Human Monkey 

Pox DNA and generated and filtered nucleobase the motif. 

Based on the results of this preliminary examination, 

clusters were created using the K-means clustering 

algorithm in combination with the Principal Component 

Analysis method. The aim here is to determine whether it is 

possible to separate the motif images in a phylogenetic 

analysis. The application showed that a total of 49 clusters 

belonging to 3165 DNA motifs were formed. Cluster 5 and 

cluster 21 were selected and analyzed as examples from the 

clusters obtained here. The first results obtained can be seen 

in Figure 3. 

 

 

Figure 3. K-means sample cluster comparing with phylogenetic distributions. 

The genomes shown in Figure 3 with accession numbers 

OP890527, OP752114, ON754986 belong to cluster 5 and 

the others to cluster 21. This random selection suggests that 

the DNA-motif application can be used to classify genomes 

to a certain extent. 

Also when observing the motif files acquired through our 

research endeavors, it became evident that certain segments 

within them exhibit a repetitive nature. Upon closer 

examination, we assessed that these reiterated sections 

potentially signify specific patterns within the DNA 

configuration of the virus, whereby some segments remain 

unaltered while others undergo mutations. The accurate 

functioning of the classification model hinges on the ability 

to recognize and delineate these patterns, particularly 

crucial for pinpointing mutations that vary across different 

geographical regions. Furthermore, we deliberated that the 

identification of these patterns could prove advantageous in 

constructing the hierarchical structure of phylogenetic trees 

using newly obtained DNA sequences, as well as in drawing 

comparisons with previously analyzed genetic sequences. 

A prominent technique employed in the realm of visual 

information processing, including tasks like image 

segmentation and pattern recognition, pertains to the 

utilization of the edge detection methodology. Over time, 

numerous algorithms have been devised for edge detection 

purposes. Nevertheless, it is noteworthy that the inception 

of low-level applications marked the initial stages of image 

processing methodologies, which have progressively 

evolved to more sophisticated levels in contemporary times. 

In our quest to identify repetitive motifs within the motif 

files at hand, we opted for the utilization of the low-level 

edge detection algorithm. Applying the image filter 

converted RGB pictures to grayscale from motifs obtained. 

Picture dimensions are stored as 200x200x3. 

Kolmogorov-Arnold Networks 

Kolmogorov-Arnold Networks (KANs) emerge as highly 

promising alternatives to Multi-Layer Perceptrons (MLPs) 

within the realm of neural networks. It is important to note 

that KANs boast robust mathematical underpinnings akin to 

those of MLPs: the latter are established upon the 

foundational universal approximation theorem, whereas the 

former find their basis in the esteemed Kolmogorov-Arnold 

representation theorem [24]. In a fascinating duality, KANs 

and MLPs exhibit contrasting characteristics: KANs 

implement activation functions on edges, whereas MLPs 

employ activation functions on nodes. This seemingly 

subtle alteration actually renders KANs superior to MLPs 

in terms of both model accuracy and interpretability [25].  
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KANs, highlights the foundational role of MLPs in deep 

learning, acknowledged for their expressive power in 

approximating nonlinear functions, as guaranteed by the 

universal approximation theorem. However, MLPs for their 

significant drawbacks, including their consumption of a 

vast majority of non-embedding parameters in models like 

transformers and their relative lack of interpretability 

without the aid of post-analysis tools. In contrast, KANs are 

proposed with learnable activation functions on edges, 

replacing every weight parameter with a univariate function 

parametrized as a spline, which leads to improvements in 

accuracy and interpretability over MLPs. KANs, with their 

architecture, mathematical foundation, and potential for 

scientific discovery, promising a significant leap in 

accuracy and interpretability for data fitting and PDE 

solving while potentially overcoming the curse of 

dimensionality. 

KANs leveraging the Kolmogorov-Arnold representation 

theorem to propose a neural network architecture with 

learnable activation functions on edges, replacing 

traditional weight parameters with univariate functions 

parametrized as splines. The methodology begins with the 

design of a neural network that explicitly parametrizes the 

Kolmogorov-Arnold representation, using B-spline curves 

with learnable coefficients for each 1D function, forming 

the basis of KANs. This approach allows for the creation of 

a prototype KAN, visualized as a two-layer neural network 

with activation functions placed on edges and simple 

summation performed on nodes. To enhance the model's 

capability, the paper discusses generalizing KANs to be 

wider and deeper, addressing the challenge of extending the 

Kolmogorov-Arnold representation to deeper networks by 

drawing an analogy between MLPs and KANs and defining 

a "KAN layer" as a matrix of 1D functions with trainable 

parameters.  Furthermore, KANs with existing methods, 

highlighting the continuous learning and robustness of 

KANs over traditional symbolic regression techniques. It 

also delves into the scaling laws and intrinsic 

dimensionality, providing a theoretical framework for 

understanding the efficiency and effectiveness of KANs in 

terms of model parameters and test loss. The main 

differences between KAN networks and standard MLP 

networks are shown in Table 1. 

Table 1. Kolmogorov-Arnold Networks (KANs) vs. 

Multi-Layer Perceptrons (MLPs). 

Kolmogorov-Arnold 

Network (KAN) 

Multi-Layer Perceptron 

(MLP) 

𝑓(𝑥)

= ∑ Φ𝑞 (∑ Φ𝑞.𝑝(𝑥𝑝)

𝑛

𝑝=1

)

2𝑛+1

𝑞=1

 

𝑓(𝑥) ≈  ∑ 𝑎𝑖𝜎(𝑤. 𝑥 + 𝑏𝑖)

𝑁(𝜀)

𝑖=1

 

Sum operation on nodes 

and learnable activation 

functions 

on edges. 

Learnable weights on edges 

and fixed activation 

functions on nodes. 

KAN(x) = (Φ3 ∘  Φ2 ∘
 Φ1)(𝑥) 

MLP(x) = (𝑤3 ∘ 𝜎2 ∘ 𝑤2 ∘
𝜎1 ∘ 𝑤1)(x) 

 

In Table 1, univariate functions Φp,q , Φq defined as Φp,q : [0, 

1] → R and Φq : R → R. Given an input vector x0, in a 

network of L KAN layers, KAN(x) is the output of the 

network. 

Experiments and Results 

Before the classification with KAN networks, existing 

methods were tested in order to correctly classify the motif 

structure designed for this study. One of the problems that 

can be encountered in DNA classification studies is that the 

random evolution process in gene changes is not 

predictable. However, after the motifs are obtained, the first 

naive examination shows that some patterns follow each 

other. This view is that they can be analyzed by basic 

classification methods. For this purpose, the previously 

proven transfer learning method was applied. Transfer 

learning plays a pivotal role in the field of artificial 

intelligence (AI) by enabling the application of knowledge 

gained from one task to improve performance on a related 

but different task. This technique is particularly beneficial 

in scenarios where labeled data for the target task is scarce, 

allowing models to leverage larger datasets from related 

tasks to overcome overfitting and enhance performance on 

the target task. distinguishes itself from traditional machine 

learning techniques through its unique approach of 

leveraging pre-existing knowledge from one task to 

improve performance on a related, yet distinct, task [29-31]. 

Unlike conventional machine learning methods that start 

the learning process from scratch for each new task, transfer 

learning capitalizes on the insight gained from previously 

solved problems to enhance learning efficiency and 

accuracy for new problems. This is particularly 

advantageous in scenarios where labeled data for the new 

task is scarce or expensive to obtain, as it allows the model 

to bypass the intensive data requirement typically necessary 

for training machine learning models from the ground up. 

Moreover, transfer learning is versatile in its application, 

encompassing a range of computational intelligence-based 

techniques, including neural networks, evolutionary 

algorithms, swarm intelligence, and fuzzy logic, to improve 

performance further than what vanilla transfer learning can 

achieve on its own [29]. 

Transfer learning operates by leveraging the knowledge 

acquired from one or more source tasks to improve the 

learning efficiency and performance on a related target task. 

This process is particularly beneficial in scenarios where 

labeled data for the target task are scarce or expensive to 

obtain. At its core, transfer learning involves two main 

stages: pre-training and fine-tuning [30]. During the pre-

training stage, a model is trained on a source task that has 

abundant labeled data. This model learns a set of features or 

representations that are potentially useful for the target task. 

For instance, in the domain of circuit performance 

prediction, neural networks optimally trained on data from 

one technology node can learn features that are transferable 

to another technology node, significantly reducing the 

amount of data required for accurate predictions in the 

target node [31]. 
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In this study, the weight values extracted from the pre-

existing networks were transferred initially to an 

AveragePooling layer. Subsequently, a 50% dropout was 

implemented to transfer the values from this layer to the 

neural network connections, thus mitigating overfitting 

during the learning process. The dropout mechanism 

facilitates the removal of certain network cells from the 

model, consequently averting overfitting of the neural 

network. During the final phase, the DNA sequences were 

directed to the 4-dimensional fully connected layer 

designated for classifying the four classes. The non-linear 

function selected for this layer was SoftMax. SoftMax 

function operates by taking a vector of K real numbers as 

input and normalizing it to a distribution of K probabilities 

proportionate to the exponents of the input numbers. 

Additionally, within the model, the loss function employed 

was categorical cross-entropy. This function is commonly 

utilized for single label categorization, signifying that only 

one class is relevant for each data point. Optimization 

method was preferred and used as RMSProp (Root Mean 

Square Propagation) for training. Optimization functions 

are used to determine the learning rate of the artificial neural 

network. The Learning Rate value in the optimization 

function was set as 0.001. Also training lasted for 15 

epochs. 

The classification results of the pre-trained networks used 

in the study are shown in Table 2. The network structure 

chosen for the best classification reflects an optimal model. 

 

Table 2. Test dataset results obtained in various artificial neural networks. 

# Model Precision Recall f1-score Test Accuracy 

0 MobileNet 0.6855 0.6571 0.62056 0.6571 

1 MobileNetV2 0.6468 0.6444 0.6247 0.6444 

2 InceptionV3 0.6383 0.6222 0.5768 0.6222 

3 ResNet50 0.7054 0.5809 0.4506 0.5809 

4 ResNet101 0.3157 0.5619 0.4043 0.5619 

5 DenseNet121 0.5265 0.5619 0.4043 0.5619 

6 VGG16 0.3157 0.5619 0.4043 0.5619 

7 InceptionResNetV2 0.3157 0.5619 0.4043 0.5619 

8 VGG19 0.3157 0.5619 0.4043 0.5619 

9 DenseNet169 0.6302 0.6190 0.5764 0.6190 

Table 2 shows that the MobileNet network gives the best 

results. Here, the pruned weights of this network are thought 

to cause a more effective classification. The comparative 

analysis of various artificial neural networks reveals 

MobileNet as the optimal model, demonstrating superior 

performance across multiple evaluation metrics. MobileNet 

achieved the highest recall and test accuracy (both 0.6571), 

indicating its proficiency in correctly identifying positive 

instances and overall classification accuracy. Its precision 

(0.6855) was second only to ResNet50, showcasing its 

ability to minimize false positives. The F1-score (0.62056), 

a harmonic mean of precision and recall, further 

corroborates MobileNet's balanced performance. These 

metrics are derived from standard formulae:  

Precision = TP / (TP + FP),  

Recall = TP / (TP + FN),  

F1 = 2 * (Precision * Recall) / (Precision + Recall),  

Accuracy = (TP + TN) / (TP + TN + FP + FN),  

where TP, FP, TN, and FN represent True Positives, False 

Positives, True Negatives, and False Negatives, 

respectively. MobileNet's consistent high performance 

across these metrics underscores its efficacy in scenarios 

requiring a balance between precision and recall, coupled 

with high overall accuracy. After this stage, DNA 

sequences that were separated from the dataset and not 

included in the training were tested with MobileNet. In this 

network, Test Loss is 0.5982, Test accuracy is 65.71% and 

Cohen Kappa Score is 0.25737.  Other results of the 

network are as shown in Table 3. 

Table 3. MobileNet results of Test dataset. 

Region Precision Recall f1-Score Support 

America 0.75 0.33 0.45 138 

Asia 0.64 0.92 0.75 177 

Accuracy and loss graphs for training set obtained is shown 

in Figure 4.  
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Figure 4. Training loss and accuracy plots of MobileNet model.

The confusion matrix of the test results is also shown in 

Figure 5. The confusion matrix reveals a notable level of 

accuracy in classifying our motif files. Despite the minor 

inaccuracies, it is essential to acknowledge the interrelation 

among the data elements, such as the mutation-induced 

connection observed in virus DNA. The contentious nature 

of this assertion deems it as a focal point for further 

discussion. Extensive investigation is necessary to support 

the claim that the error matrix also highlights these 

distinctions, particularly due to the absence of absolute 

geographical delineations in virus mutations. 

 

 

Figure 5. Confusion matrix was obtained in the test of two 

classes (America:1, Asia 0) in MobileNet model. 

 

Considering the success of the network model used in this 

study in the transfer learning process, the equivalent 

structure was applied to KAN networks. However, as 

expected, the results were not obtained as expected since the 

KAN network did not have a set of weights whose success 

was calculated in advance. Accuracy and loss plots for 

training process shown in Figure 6. 
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Figure 6. Training loss and accuracy plots of KAN model

In KAN networks, sum functions are used from the weights. 

In various experiments, an effective sum function could not 

be found. However, since it is still a new technology, the 

results obtained are still promising. According to the results 

obtained from the test data Accuracy is 0.45182, Precision 

is 0.43129, Recall is 0.45182, F1 Score is 0.32187 and 

Cohen Kappa Score is -0.02551. In Table 4, observed 

values from the results obtained on the test data set are 

shown. 

Table 4. KAN results of Test dataset. 

Region Precision Recall f1-Score Support 

America 0.45 0.93 0.61 292 

Asia 0.41 0.04 0.07 341 

 

The confusion matrix of the test results in KAN is also 

shown in Figure 7. 

 

Figure 7. Confusion matrix was obtained in the test of two 

classes in KAN (America:1, Asia 0). 

 

Discussion and Conclusion 

DNA classification is a critical component in the fields of 

bioinformatics and computational biology, contributing 

significantly to genome annotation, disease diagnosis, and 

evolutionary studies. Through the process of genome 

annotation, DNA classification facilitates the identification 

of functional elements within genomes, such as genes, 

regulatory regions, and non-coding DNAs. This is essential 

for comprehending the organization and function of 

genomes, thereby providing foundational insights for 

further genetic research. In the realm of disease diagnosis 

and prognosis, accurate DNA classification aids in the 

detection of genetic variations associated with various 

diseases. This capability enables early diagnosis and 

prognosis, thereby allowing for the development of 

personalized treatment strategies that can improve patient 

outcomes. Spatial transcriptomics analysis is a powerful 

technique for understanding tissue heterogeneity and gene 

expression patterns within their spatial contexts. By 

preserving the spatial organization of cells within a tissue, 

spatial transcriptomics allows researchers to identify 

distinct cell types, their spatial arrangement, and their 

interactions. This is crucial for deciphering the complexity 

of tissue composition and function. Furthermore, spatial 

transcriptomics has the potential to uncover novel cell types 

and states along with their spatial relationships, thus 

providing a more detailed understanding of tissue 

architecture and dynamics. In the study of disease 

pathology, spatial transcriptomics is instrumental in 

examining gene expression changes within the context of 

disease progression. Despite the significant advancements, 

there are several challenges associated with employing deep 

learning techniques in DNA classification and spatial 

transcriptomics analysis. One major challenge is the limited 

availability of labeled data, which is essential for training 

deep learning models. The acquisition of labeled DNA 

sequences or spatial transcriptomics data is often expensive, 

time-consuming, and necessitates expert annotation. 

Another challenge is class imbalance within genomic and 

transcriptomic datasets, where some classes, such as rare 

genetic variants or cell types, are underrepresented. This 

imbalance can lead to biased models that do not perform 

well on minority classes. Additionally, the length and 

complexity of DNA sequences pose difficulties for deep 
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learning models, which must capture long-range 

dependencies and intricate patterns to be effective. As the 

field advances, deep learning is anticipated to play an 

increasingly vital role in unraveling the complexities of 

genomes and spatial gene expression patterns, ultimately 

contributing to significant progress in basic research, 

disease understanding, and personalized medicine. 

According to the KAN results obtained in the study, for the 

America region, the model achieves a Precision of 0.45, 

indicating that 45% of the instances predicted as America 

are actually from America. The Recall is 0.93, which means 

that the model correctly identifies 93% of all instances that 

truly belong to America. The F1-Score of 0.61 suggests a 

moderate balance between Precision and Recall. The 

Support value of 292 represents the total number of 

instances from America in the dataset. On the other hand, 

the model's performance for the Asia region is significantly 

lower. The Precision is 0.41, meaning that 41% of the 

instances predicted as Asia are correctly classified. 

However, the Recall is only 0.04, indicating that the model 

identifies just 4% of all instances that actually belong to 

Asia. This extremely low Recall suggests that the model is 

struggling to recognize instances from Asia, leading to a 

high number of false negatives. The F1-Score of 0.07 

further confirms the poor performance for this region. The 

Support value of 341 shows that there are more instances 

from Asia than America in the dataset. 

The observed performance gap between the two regions 

implies a potential bias towards the America region within 

the model, as indicated by the notably higher Recall metric. 

Several factors could contribute to this bias: 

First, an imbalanced dataset might be a contributing factor, 

wherein the training data comprises a disproportionately 

larger number of instances from the America region 

compared to Asia. This imbalance can lead the model to 

favor the majority class, potentially skewing its 

performance towards better recognition of instances from 

the overrepresented region. Second, discrepancies in feature 

representation could exacerbate the bias. It is plausible that 

the features utilized for classification exhibit greater 

discriminative power for instances originating from the 

America region, thus facilitating easier identification by the 

model. This could stem from inherent differences in the 

characteristics or distributions of features between the two 

regions. Lastly, the selected model architecture might 

inherently predispose towards capturing patterns specific to 

the America region more effectively. Certain architectural 

choices, such as network depth, layer configurations, or 

activation functions, could inadvertently favor learning 

representations that align better with the characteristics 

prevalent in the America region, consequently amplifying 

the observed bias in model performance. 

Addressing these potential sources of bias necessitates 

careful consideration during the model development and 

evaluation process. Strategies for mitigating bias include 

ensuring balanced representation of instances from different 

regions in the training data, augmenting features to enhance 

their discriminative power across diverse regions and 

exploring alternative model architectures that are more 

agnostic to regional disparities. By adopting such 

approaches, the model's robustness and generalizability 

across varied geographical contexts can be enhanced, 

thereby fostering more equitable performance outcomes. 

Despite the impressive results achieved so far, there is still 

significant room for improvement and further development 

of KANs. One area of active research is the exploration of 

new network architectures that can better capture the 

intricate relationships within data. This includes the 

investigation of deeper and more complex network 

structures, as well as the incorporation of attention 

mechanisms and memory components. By designing more 

sophisticated architectures, researchers aim to unlock the 

full potential of KANs and push the boundaries of their 

performance. Another promising avenue for future 

development is the integration of KANs with other machine 

learning techniques. For instance, combining KANs with 

deep learning approaches, such as convolutional neural 

networks (CNNs) or recurrent neural networks (RNNs), 

could lead to powerful hybrid models that leverage the 

strengths of both paradigms. Additionally, the incorporation 

of transfer learning and multi-task learning strategies could 

enable KANs to efficiently learn from related tasks and 

domains, further enhancing their adaptability and 

generalization capabilities. Furthermore, the interpretability 

and explainability of KANs are crucial aspects that require 

further investigation. While these networks have shown 

remarkable performance, understanding the internal 

representations and decision-making processes of KANs 

remains a challenge. Developing techniques to visualize 

and interpret the learned features and decision boundaries 

of KANs will not only improve their trustworthiness but 

also facilitate their application in domains where 

transparency is essential, such as healthcare and finance.  

In conclusion, Kolmogorov-Arnold Networks have 

emerged as a promising state-of-the-art technology in the 

field of machine learning. The current results obtained 

using KANs are highly encouraging, showcasing their 

ability to learn and represent complex functions efficiently. 

However, there is still significant potential for further 

development and improvement. By exploring new network 

architectures, integrating KANs with other machine 

learning techniques, and addressing interpretability and 

explainability challenges, researchers can unlock the full 

potential of these networks. As the field of machine learning 

continues to evolve, it is expected that KANs will play an 

increasingly important role in shaping the future of artificial 

intelligence and its applications across various domains. 
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APPENDIX-A: Flowchart of motif generation and classification process 

                                               


