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Abstract: Accurate and non-destructive methods for measuring leaf area are crucial for understanding the growth and 

physiological variations of plants under stress conditions. This investigation aimed to develop and assess the effectiveness of 

various regression models for predicting the leaf area of curly lettuce cultivated under different irrigation water salinities (IWS: 

0.30, 4.15, 8.0 dS m-1) and salicylic acid doses (SA: 0, 1, 2 mM). The coefficient of determination (R2) values for the models 

ranged from 0.505 to 0.968, with Root Mean Square Error (RMSE) values between 4.59 and 17.79 cm² and Mean Absolute 

Error (MAE) values of 3.44 to 13.05 cm². Using only leaf length (LL) and leaf width (LW) can effectively estimate the leaf area 

of curly lettuce plants (Model 3, R²: 0.962, RMSE: 7.58 cm², MAE: 5.34 cm²). Incorporating IWS and SA into prediction models 

enhanced their accuracy and reliability. The best model for estimating the leaf area of curly lettuce was found from Model 13, 

which integrated all four parameters—SA, IWS, LL, and LW—achieving the highest R² (0.968) and the lowest RMSE (4.59 

cm²) and MAE (3.44 cm²). Finally, using leaf area prediction models that consider stress conditions can enhance crop 

management by allowing accurate monitoring of plant health and growth in agriculture. 

 

Keywords: Lactuca sativa, leaf dimensions, non-destructive methods, precision agriculture, regression models. 

 

Tuzluluk Stresi Koşullarında Yetiştirilen ve Yapraktan Salisilik Asit Uygulanan Kıvırcık 

Marul İçin Yaprak Alanı Tahmin Modelinin Geliştirilmesi 

 
Öz: Stres koşulları altında bitkilerin büyümesini ve fizyolojik değişimlerini anlamak için yaprak alanının doğru ve bitkiye zarar 

vermeyen yöntemlerle ölçülmesi büyük önem taşımaktadır. Bu çalışmada farklı sulama suyu tuzlulukları (IWS: 0.30, 4.15, 8.0 

dS m-1) ve salisilik asit dozları (SA: 0, 1, 2 mM) altında yetiştirilen kıvırcık marulun yaprak alanını tahmin etmek için çeşitli 

regresyon modellerinin geliştirilmesi ve etkinliğinin değerlendirilmesini amaçlanmıştır. Modeller için R2 değerleri 0.505 ile 

0.968 arasında, RMSE değerleri 4.59 ile 17.79 cm² ve MAE değerleri 3.44 ile 13.05 cm² arasında bulunmuştur. Sadece yaprak 

uzunluğu (LL) ve yaprak genişliği (LW) kullanılarak kıvırcık marul bitkilerinin yaprak alanı etkili bir şekilde tahmin 

edilebileceği anlaşılmıştır (Model 3, R²: 0.962, RMSE: 7.58 cm², MAE: 5.34 cm²). IWS ve SA' nın tahmin modellerine dahil 

edilmesi elde edilen regresyon eşitliklerinin doğruluk ve güvenilirliklerini artırmıştır. Kıvırcık marulun yaprak alanını tahmin 

etmek için en iyi model, en yüksek R² (0.968) ve en düşük RMSE (4.59 cm²) ve MAE (3.44 cm²) değerlerinin elde edildiği dört 

parametreyi (SA, IWS, LL ve LW) entegre eden Model 13 olduğu belirlenmiştir. Sonuç olarak, stres koşullarını dikkate alan 

yaprak alanı tahmin modellerinin kullanılması, tarımda bitki sağlığı ve büyümesinin doğru bir şekilde izlenmesine olanak 

sağlayarak ürün yönetimini iyileştirebilir. 

 

Anahtar Kelimeler: Lactuca sativa, yaprak boyutları, tahribatsız yöntemler, hassas tarım, regresyon modelleri. 

 

1. Introduction 

Leaf area (LA) plays a crucial role in studies related 

to plant growth and physiology, aiding researchers in 

comprehending the intricate relationships between 

plants and their surroundings (Rahimikhoob et al., 

2023). It offers valuable information on processes such 

as photosynthesis functions, stomatal behavior, and the 

distribution of nutrients within leaves (Huang et al., 

2022). The size of the leaf is directly connected to a 

plant's capacity to absorb solar energy, produce energy, 

and facilitate essential photosynthetic processes crucial 

for its growth. (Tanaka et al., 2022; Ribeiro et al., 2024). 

Furthermore, analyzing LA can reveal how plants adapt 

to various environmental stressors, including water-salt 

stress, light, and diagnosing nutrient deficiencies 

(Soheili et al., 2023; Kiremit et al., 2024). 

Leaf area can be measured using destructive or non-

destructive, direct or indirect methods (Patrício & 

Rieder, 2018). Destructive methods, which require 

removing leaves for measurement, can impact plant 

health and quality even though they yield accurate data 

(Pandey & Singh, 2011). Non-destructive methods, such 
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as laser scanning and digital imaging, allow for precise 

LA assessment without damaging the plant throughout 

its life cycle (Ribeiro et al., 2024; Tunca et al., 2024). 

Indirect methods, which estimate LA based on 

dimensions like length and width, are cost-effective and 

simplify the measurement process. The key difference 

between direct and indirect methods is that direct 

methods measure LA outright, while indirect methods 

rely on observable parameters (Ribeiro et al., 2022). 

Regression models for predicting LA offer a 

practical, non-invasive measurement approach (Cemek 

et al., 2020; Ribeiro et al., 2022). These models relate 

measurable parameters (like leaf length and width) to 

actual LA, reducing the need for invasive techniques 

and minimizing harm to plants (Pandey & Singh, 2011; 

Ribeiro et al., 2024). Nevertheless, the performance of 

these models was significantly affected by plant variety, 

stress conditions, and data handling (Amorim et al., 

2024). Therefore, it is essential to carefully choose and 

rigorously validate models to guarantee that the 

forecasts regarding LA are not only trustworthy but also 

meaningful. This rigorous process is vital for achieving 

accurate results that can be trusted, as the quality of the 

models used directly impacts the validity of the 

predictions made regarding LA. With this perspective, 

many previous researchers have developed various 

empirical models to predict LA for different plants, 

including green pepper (Cemek et al., 2011), bell pepper 

(Cemek et al., 2020), basil cultivars (Ribeiro et al., 

2022), chokeberry (Akyüz & Cemek, 2024), lettuce 

(Rahimikhoob et al., 2023), sweet potato (Ribeiro et al., 

2024).  

Lettuce (Lactuca sativa L.) is a worldwide famous 

leafy vegetable, particularly significant in Türkiye for its 

nutritional benefits and economic contribution to 

agriculture. (Şalk et al., 2008). Rich in vitamins, 

minerals, and antioxidants, lettuce is widely consumed 

fresh and in salads (Şalk et al., 2008). Its cultivation 

thrives in Türkiye's favorable climate, making it a key 

component of the country's horticultural sector. 

Therefore, measuring LA is essential for assessing plant 

health and growth. Thus, determining the best method 

for calculating LA is crucial, given lettuce's agricultural 

and economic relevance. 

As far as we know, there is a deficiency of studies 

evaluating and comparing different methods for 

forecasting LA in lettuce cultivated under different 

stress conditions. Therefore, the present work aims to 

evaluate the effectiveness of different regression models 

for estimating the LA of curly lettuce through non-

destructive techniques and compares predictive models 

using statistical criteria. Finally, for researchers and 

agronomists, using prediction models for LA can 

improve decision-making in agriculture, such as 

optimizing irrigation and other management practices to 

improve crop yields. 

 

2. Material and Method 

2.1. Experimental site  

The pot trial was conducted at the Faculty of 

Agriculture, Ondokuz Mayıs University, Samsun, 

Türkiye, from 5 February to 11 May 2020. A plastic 

sheet was used to cover the top of the research area to 

protect the experiment against rainfall. During the entire 

growing season, a data logger recorded daily 

temperature and relative humidity. The relative 

humidity ranged from 28.1% to 100%, while the 

temperature varied between 0.2°C and 29.2°C. The 

experimental soil used was classified as loam, 

consisting of 31.0% silt, 23.4% clay, and 45.6% sand. 

The experimental soil contained 0.78 mg of nitrogen, 

69.5 mg of phosphorus, and 148.4 mg of potassium per 

kg. Additionally, the soil had a saturated electrical 

conductivity of 0.22 dS m-1 and a pH value of 6.81. 

Seeds of curly lettuce (Lactuca sativa L., cv. Couster) 

from Intfa Seed Company were utilized in this research. 

They were sown in trays and grown in a greenhouse 

until ready for transplantation. Healthy and uniform 

lettuce seedlings were chosen and transferred to 4.83 

dm³ circular plastic pots, measuring 22 cm in height, 

with top and bottom diameters of 18.4 cm and 15 cm, 

respectively. Each pot was planted with a single 

seedling. Before planting, the soil was naturally air-

dried and sifted through a 4 mm mesh sieve. Each pot 

was then filled with 4.5 kg of air-dried soil. Base 

fertilizers consisting of phosphate and potassium were 

added at rates of 0.58 g and 0.88 g per pot, respectively. 

Nitrogen fertilizer was applied at 0.35 g per pot, with 

half added during seedling transplantation and the other 

half after one month. Diammonium phosphate, 

potassium sulfate, and urea chemical fertilizers were 

utilized to provide phosphate, potassium, and nitrogen 

fertilization, respectively. The fertilization procedure for 

growing lettuce adhered to the recommendations 

outlined by (Şalk et al., 2008) 

 

2.2. Experimental design 

The research was laid out following a randomized 

complete block design involving two factors: three 

doses of salicylic acid (SA) (SA0: 0, SA1: 1, and SA2: 2 

mM) and three levels of water salinity (S1: 0.30, S2: 

4.15, and S3: 8.0 dS m-1), leading to a total of 9 
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treatments (3×3) with three replicates for each treatment 

(totaling 27 pots). Before transplanting, each pot's field 

capacity was determined by saturating the soil with tap 

water and covering the tops with a plastic sheet to 

prevent evaporation. After 48 hours, when drainage 

ceased, each pot was weighed, and this weight was 

recorded as the field capacity (Ünlükara et al., 2008; 

Kiremit and Arslan, 2018). Soil water depletion was 

monitored by weighing each pot throughout the growth 

cycles, and irrigation was applied when 30% of the 

available soil water was used by evapotranspiration 

during the growing season. Saline water treatments were 

applied 10 days post-transplanting, along with 15% 

leaching water during each irrigation to prevent 

excessive salt buildup in the pots. Two saline irrigation 

waters (4.15 and 8.0 dS m–1) were prepared by mixing 

NaCl and CaCl2 in a 1:1 ratio with tap water (0.30 dS m–

1). Prior to saline water applications, all pots received 

equal irrigation using 0.30 dS m-1 to ensure seedling 

adaptability to pot conditions. Foliar solutions of 0, 1, 

and 2 mM SA were prepared with 0.01% Tween 20 and 

deionized water, and foliar applications were made 

using a manual hand sprayer. The 0 mM SA treatment 

served as a control, consisting only of deionized water. 

Foliar applications began 12 days post-transplantation 

and continued every two weeks until harvest. 

 

2.3. Leaf area analysis 

The lettuce plants were harvested 76 days after being 

transplanted from each pot. Subsequently, all lettuce 

leaves were detached from the stem. The leaf area, 

width, and length measurements for each treatment were 

evaluated through image analysis. All lettuce leaves 

from each plant were photographed and analyzed using 

Adobe Photoshop CS6 imaging software. The positions 

of leaf length and leaf width for calculating leaf area are 

illustrated in Figure 1. 
 

 
Figure 1. Position for measuring the width (LW) and 

length (LL) of lettuce leaves. 

Şekil 1. Marul yapraklarının genişliği (LW) ve 
uzunluğunu (LL) ölçme konumları. 

2.4. Multi-linear regression analysis 

Multiple linear regression analysis was applied to 

forecast LA using several variables, including leaf 

length, leaf width, salicylic acid, and irrigation water 

salinity. Thirteen different models were created with 

different input parameters to identify the best model for 

predicting the LA of curly lettuce plants. The model 

input parameters can be found in Table 1.  

 

Table 1. The input parameters for models. 

Çizelge 1. Modeller için girdi parametreleri 
Model No Model input 

M1 LL 

M2 LW 

M3 LL, LW 

M4 SA, IWS 

M5 SA, LL 

M6 SA, LW 

M7 SA, LL, LW 

M8 IWS, LL 

M9 IWS, LW 

M10 IWS, LL, LW 

M11 SA, IWS, LW 

M12 SA, IWS, LL 

M13 SA, IWS, LL, LW 

#LL: Leaf length; LW: leaf width; SA: Salicylic acid; IWS: 

Irrigation water salinity. 

 

The regression models were developed using the 

stepwise regression method principle (Fahrmeir et al., 

2022) and analyzed using IBM SPSS 25.0 statistical 

software. Model variables were considered significant if 

their significance level was P ≤ 0.05. Variables with a 

significance level greater than P > 0.05 were not 

included in the model equation. All variables in the 

regression models obtained had a significance level of P 

≤ 0.05. The regression model's general equation is as 

follows: 

1
2

0
1 1 1 1

k k k k

i i ij i j ii i
i i j i i

Y X X X X    
−

= = = + =

= + + + +               (1) 

Where Y depicts the estimated leaf area; Xi and Xj 

stand for independent variables (LL: leaf length; LW: 

Leaf width; IWS: Irrigation water salinity, SA: Salicylic 

acid), and β, βi, and βii represent the intercept, linear 

coefficients, and quadratic coefficients respectively. Βij 

denotes the interaction coefficients between variables; k 

is the number of variables examined; and ε represents 

the error term. 

 

2.6. Statistical evaluation of the developed models 

The developed models' accuracy was assessed using 

three common metrics: the coefficient of determination 

(R²), root mean square error (RMSE), and mean 

absolute error (MAE), as defined in Equations 2-4 by 
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Willmott and Matsuura (2005). These metrics provide a 

comprehensive evaluation of the models' effectiveness. 

( )
n 2

M - P
i i

2 i=1R  = 1 - 
n

2(M - P )
i avg

i=1




          (2) 

( )
n

2

i i
i=1

M - P

RMSE = 
n


       (3) 

n

i i

i=1

1
MAE = M - P

n
         (4) 

Where, Mi: measured values of LA; Pi: predicted 

values of LA; Pavg: average of the measured value of 

LA; n: number of observations; i: th observations of the 

variables measured and predicted. 

3. Results and Discussion 

3.1. Description of the sampled data 

The average values of leaf parameters (LL, LW, and LA) 

for the different treatments are depicted in Table 2. The 

collected data showed that leaf length varied between 

7.2 and 10.0 cm for SA0, 7.9 and 12.5 cm for SA1, and 

8.5-12.5 cm for SA2 (Table 2). Leaf width ranged from 

6.8-12.1 cm for SA0, 7.3 and 11.8 cm for SA1, and 7.3-

9.6 cm for SA2 (Table 2). Moreover, the actual LA of 

curly lettuce plants varied from 31.9 to 75.6 cm2 (SA0), 

37.5 and 92.0 cm2 (SA1), and 40.2 and 72.6 cm2 (SA2) 

(Table 2). The leaf width and length of the lettuce 

decreased linearly as salinity stress increased. The 

smallest values for these characteristics were noted at 

8.0 dS m-1 under all foliar application conditions. 

However, lettuce plants treated with 1 and 2 mM SA via 

foliar application exhibited greater leaf length values 

compared to those treated with 0 mM SA (Table 2).  

 

Table 2. Some statistical values of lettuce grown under different water salinity and foliar applied salicylic acid. 

Çizelge 2. Farklı tuzlu su ve yapraktan salisilik asit uygulanan koşullarda yetiştirilen marul bitkisinin bazı 

istatistiksel değerleri. 
Treatments Leaf length (LL, cm) Leaf width (LW, cm) Leaf length (LA, cm2) 

 Mean ± SD Min Max Mean ± SD Min Max Mean ± SD Min Max 

SA0×S1 10.0 ± 2.5 5.6 16.0 12.1 ± 1.7 8.9 16.1 75.6 ± 31.1 38.5 159.9 

SA0×S2 8.1 ± 1.9 5.2 12.9 10.8 ± 1.3 6.0 13.3 52.5 ± 15.1 24.6 91.2 

SA0×S3 7.2 ± 0.7 5.5 8.4 6.8 ± 1.0 5.0 8.5 31.9 ± 6.8 16.0 44.8 

SA1×S1 12.5 ± 1.5 9.8 15.4 11.8 ± 1.7 8.6 15.2 92.0 ± 22.2 56.8 139.5 

SA1×S2 10.5 ± 1.2 8.9 13.8 8.7 ± 1.8 5.4 13.3 56.6 ± 15.5 36.6 111.0 

SA1×S3 7.9 ± 0.7 6.1 9.7 7.3 ± 0.9 5.3 8.9 37.5 ± 5.2 25.2 49.3 

SA2×S1 12.5 ± 1.3 9.8 15.0 9.6 ± 1.9 6.4 13.1 72.6 ± 19.9 45.7 110.9 

SA2×S2 9.3 ± 1.1 7.2 11.5 7.7 ± 1.8 3.9 10.7 45.8 ± 12.6 18.9 67.6 

SA2×S3 8.5 ± 1.0 6.4 10.8 7.3 ± 1.8 3.4 10.2 40.2 ± 12.6 17.1 59.5 

#SA0, SA1, and SA2 denote 0, 1, and 2 mM SA doses, respectively. S1, S2, and S3 indicate 0.30, 4.15, and 8.0 dS m-1 saline waters, 

respectively. 

 

Table 3. Developed regression equations for the prediction of lettuce leaf area by using various input parameters. 

Çizelge 3. Farklı girdi parametreleri kullanılarak marul yaprağı alanının tahmini için geliştirilen regresyon 
denklemleri. 

Model 

No 
Regression equation 

M1 LA = -34.23 + 9.40×LL 

M2 LA = -23.50 + 8.69×LW 

M3 LA = 10.36 + 0.85×LW - 1.68×LL + 0.66×LW×LL - 0.12×LW² + 0.01×LW×LL²  

M4 LA = 87.74 - 10.11×IWS - 2.8×SA² + 0.44×IWS² + 0.49×SA²×IWS 

M5 LA = 20.33 + 9.59×SA - 2.47×LL - 1.84×SA×LL + 0.7×LL² 

M6 LA = 64.64 - 13.61×SA – 12.54×LW + 5.74×SA×LW - 5.7×SA² + 1.08×LW² - 0.21×SA×LW²  

M7 LA = -11.92 + 4.68×LW + 0.3×LL + 0.81×SA×LL + 0.19×LW×LL - 0.18×LW² - 0.08×SA×LL² + 0.02×LW×LL²  

M8 LA = 80.7 - 2.59×IWS -10.78×LL + 0.89×LL² + 0.01×IWS×LL²  

M9 LA = 31.64 - 2.96×IWS - 0.69×LW + 0.23×IWS² + 0.45×LW² - 0.01×IWS×LW²  

M10 LA = 27.54 - 1.04×IWS - 1.3×LW -2.72×LL + 0.85×LW×LL - 0.02×IWS² - 0.09×LW² + 0.01×IWS²×LW  

M11 
LA = 27.1 + 20.55×SA + 2.23×IWS - 6.14×LW - 4.03×SA×IWS + 3.48×SA×LW - 10.59×SA² + 0.83×LW² + 

0.44×SA²×IWS - 0.2×SA×LW² - 0.03×IWS×LW² + 0.06×SA²×IWS² + 0.02×SA×IWS×LW² 

M12 
LA = 60.98 + 13.52×SA - 2.54×IWS - 7.36×LL - 3.07×SA × IWS - 2.36×SA×LL - 0.3×SA² + 0.86×LL² + 

0.27×SA×IWS×LL + 0.19×SA×IWS² + 0.01×SA²×LL² 

M13 
LA = 4.37 - 0.09×IWS + 1.93×LW - 2.51×LL + 1.03×SA×LW + 0.01×SA×LL + 0.29×LW×LL + 0.05×IWS² + 0.35×LL² 

- 0.01×IWS×LW×LL - 0.09×SA×LL²  

# LA: Leaf area, LL: leaf length; LW: Leaf width; IWS: Irrigation water salinity, SA: Salicylic acid. 
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The maximum leaf width was observed in the SA0×S1 

treatment. In particular, applying 1 and 2 mM SA to the 

leaves improved the leaf length of lettuce plants under 

S1 conditions in comparison to 0 mM SA. In terms of 

LA values, the SA1×S1 treatment showed a higher LA 

value than the other treatments. As shown in Table 2, the 

foliar application of SA had a positive impact on the LA 

of lettuce plants under salt-stress conditions. Exogenous 

salicylic acid significantly reduced lipid damage and 

maintained membrane integrity, thereby preventing 

oxidative damage from salt stress (Peng et al., 2021). 

Additionally, Nigam et al. (2022) concluded that foliar 

spray of SA enhanced spinach LA by increasing 

photosynthesis and improving water and nutrient 

uptake. Ghassemi-Golezani and Farhadi (2022) reported 

that endogenous salicylic acid reduced the translocation 

of toxic ions (Na+ and Cl-) to the shoots, enhanced the 

uptake of essential cations, and improved the LA of 

pennyroyal plants under salinity stress. Our results align 

with Kusvuran and Yilmaz (2023) and Yavuz et al. 

(2023), who reported that exogenous SA increased the 

LA of lettuce plants under saline conditions. 

 

Table 4. Statistical evaluation of the developed models. 

Çizelge 4. Regresyon modellerinin istatistiksel 

değerlendirmesi 
Model No R2 RMSE (cm2) MAE (cm2) 

M1 0.728 13.18 9.70 

M2 0.719 13.40 10.29 

M3 0.962 7.58 5.34 

M4 0.505 17.79 13.05 

M5 0.837 10.22 8.10 

M6 0.853 9.71 7.07 

M7 0.965 5.58 4.09 

M8 0.794 11.47 8.90 

M9 0.787 11.70 8.23 

M10 0.966 4.95 3.72 

M11 0.844 10.94 8.36 

M12 0.866 9.29 7.25 

M13 0.968        4.59      3.44 

 

Figure 2. Relation between actual leaf area and predicted leaf area with different regression models. 

Şekil 2. Gerçek yaprak alanı ile tahmin edilen yaprak alanı arasındaki ilişki. 
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3.2. Comparison of developed regression models 

In the present investigation, 13 models were 

developed to forecast the LA of curly lettuce under 

varying salinity stress and SA doses. The regression 

equations are detailed in Table 3, with determination 

coefficients (R²) ranging from 0.505 to 0.968 (Table 4). 

The RMSE values varied between 4.59 and 17.79 cm², 

while the MAE ranged from 3.44 to 13.05 cm². The 

scatter plots for the actual LA and predicted LA for each 

model are depicted in Fig. 2. Notably, Models 1 and 2, 

which used only one leaf dimension (LL or LW), 

explained 72% of the total variation in LA (Table 4). 

However, combining both dimensions in Model 3 

significantly enhanced estimation accuracy, achieving a 

high R² of 0.962 and low RMSE (7.58 cm²) and MAE 

(5.34 cm²). Model 4 showed the poorest accuracy in 

predicting the LA, with the highest RMSE (17.79 cm2) 

and MAE (13.05 cm2). This suggests that creating a 

regression equation using SA and IWS inputs is not 

appropriate for accurately predicting the LA of curly 

lettuce. When IWS or SA parameters were included 

either individually or together in LL and LW models, the 

predictability of the regression models significantly 

increased. This suggests that incorporating IWS or SA 

in LA regression models is crucial for achieving highly 

accurate models. When comparing Model 7 and Model 

10, they both exhibit high R2 values (0.965 and 0.966) 

that are very close. However, Model 7 has RMSE and 

MAE values of 5.58 and 4.09 cm2, respectively, while 

Model 10 has values of 4.95 and 3.72 cm2, respectively. 

These results suggest that incorporating IWS along with 

LL and LW parameters significantly enhanced the 

accuracy of the model's predictive capability. However, 

in Model 11 and Model 12, incorporating SA and IWS 

with only LL or LW parameters significantly reduced 

the predictive capability of the models, suggesting that 

the use of LL and LW parameters enhanced the accuracy 

of the developed models. Among all the models, Model 

13 exhibited the highest accuracy in predicting the LA 

of curly lettuce, with R2, RMSE, and MAE values of 

0.968, 4.59 cm2, and 3.44 cm2, respectively. By 

including IWS, SA, LL, and LW parameters in the 

development of prediction models, the accuracy of the 

regression equation was improved. Therefore, 

incorporating stress conditions into LL and LW 

prediction models will lead to more accurate predictions 

of the LA for curly lettuce cultivation. This additional 

information provides a more detailed insight into the 

predictive capabilities of the models when stress 

conditions are considered. Considering all of these 

factors, the use of Model 13 resulted in the highest 

accuracy in estimating LA, improving prediction 

accuracy by reducing RMSE by 7.84% and 21.57% 

compared to models M10 and M7, respectively. 

Leaf area is a vital variable in studies of plant growth 

and development, affecting light absorption, 

photosynthesis, and the efficiency of water loss. It 

directly influences how plants respond to fertilizers and 

irrigation methods (Soheili et al., 2023). For instance, in 

lettuce, a larger LA enhances light capture and 

photosynthesis, improving growth, yield, and nutritional 

quality. Understanding LA is essential for optimizing 

productivity and maintaining the quality of lettuce 

crops. Numerous studies have focused on estimating LA 

by measuring leaf dimensions, typically using the 

combination of LL and LW as parameters in LA models. 

For instance, Peksen (2007) proposed LA = 0.919 + 

6.82×LL×LW equation for faba pean leaf estimation. 

Cemek et al. (2011) utilized leaf measurements (LL and 

LW) to create regression models for estimating the LA 

of green pepper. They suggested that incorporating these 

measurements significantly enhanced the predictive 

accuracy of the models. Kandiannan et al. (2009) 

introduced a model to estimate the LA of ginger as LA 

= 0.0146 + 0.6621*LW, with an R2 value of 0.997. This 

model is considered a dependable method for non-

destructively estimating the LA of ginger plants. Ribeiro 

et al. (2020) proposed the equation LA = 0.6740*LW, 

which effectively estimates the LA of E. pauferrense 

using a linear model without intercept.  

As mentioned above, using leaf length and width 

parameters effectively predicts LA across different 

plants. Our findings show that incorporating stress-

related variables, such as IWS and SA, enhances the 

model's ability to account for variations in LA due to 

these stressors. This results in more accurate 

predictions, as the model is better suited to address the 

complexities of real-world scenarios where stress 

conditions are prevalent. Consequently, the model 

closely aligns with the actual observed LA in plants 

under diverse environmental conditions. For instance, 

integrating water deficit rates and irrigation water 

salinity parameters with LL and LW models enhanced 

predictability for bell pepper (Cemek et al., 2020) and 

chokeberry (Akyüz and Cemek, 2024) compared to 

using LL and LW alone. Kiremit (2024) suggested that 

melatonin doses and soil salinity parameters can 

effectively predict the LA of sweet corn seedlings. 

Finally, it can be confidently recommended that Model 

13 is highly suitable for providing efficient and precise 

predictions regarding the area of curly lettuce leaves. 

This model effectively eliminates the necessity for 
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expensive and potentially cumbersome methods, 

making it a practical choice for those seeking to enhance 

their prediction accuracy without incurring high costs. 

 

4. Conclusion 

The study presents a model for estimating LA in 

curly lettuce based on leaf width and length, enabling 

non-invasive and straightforward predictions without 

requiring specialized staff or costly equipment. In this 

context, Model 3 can accurately predict LA using only 

leaf width and length as inputs. Moreover, Model 13 is 

suitable for predicting LA in curly lettuce under varying 

irrigation water salinity and salicylic acid levels. By 

incorporating these factors into the prediction models, 

the accuracy and reliability of the models are improved, 

making them valuable tools for understanding and 

managing plant growth in different conditions. The 

regression equations developed can help researchers in 

future studies on the growth, physiology, and 

propagation of curly lettuce, providing a precise and 

non-destructive method. 
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