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ABSTRACT: In recent years, the global decline in fossil fuel reserves and the alarming rise in greenhouse 

gas emissions have significantly heightened the need for renewable energy sources. This urgent shift towards 

sustainability has made the development and optimization of efficient energy systems a top priority for 

countries and communities worldwide. This study focuses on the modeling and control of a DC-DC boost 

converter, a critical component widely utilized in renewable energy applications such as solar panels, battery 

systems, and fuel cells. The research explores three control strategies: conventional Proportional-Integral (PI) 

controller, State Feedback Controller with integral action, and Q Learning-based controller, which employs 

reinforcement learning principles. Comparative experiments were conducted in the Matlab/Simulink 

environment to evaluate the performance of each controller. Results have demonstrated that the Q Learning 

controller outperformed the traditional methods in terms of performance metrics, including Integral Squared 

Error (ISE), Integral Absolute Error (IAE), and settling time, showcasing its potential for enhancing the 

efficiency and stability of renewable energy systems 
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1. Introduction  

In recent decades, the escalating severity of climate change and environmental pollution 

has highlighted the urgent need for enhanced attention and decisive action. The progressive 

depletion of fossil fuel reserves has further intensified the global emphasis on the imperative 

of harnessing renewable and clean energy sources. This depletion, coupled with its 

significant contribution to climate change, has accelerated efforts toward the development 

and deployment of alternative energy technologies (Abdalla et al., 2022). Consequently, 

there has been a marked increase in interest and research focused on renewable energy 

sources as a pathway to a sustainable future (Abdalla and Önbilgin, 2024; Garip et al., 

2021). Renewable energy systems, such as those based on solar, wind, wave, and tidal 

sources, often require efficient energy storage solutions, given the intermittent nature of 

energy production. To address this need, power electronic circuits, particularly DC-DC 

converters, play a critical role. These converters are fundamental components in power 

electronics, enabling the conversion of electrical voltage levels through their switching 

capabilities (Çimen et al., 2021). Due to their functions, DC-DC converters are widely 

utilized across various applications, including power supplies, portable industrial devices, 

and electric vehicles (Farajdadian et al., 2024). A Boost converter, also known as a step-up 

converter, is a type of switched-mode DC-DC converter designed to produce a constant 

output voltage that exceeds the input voltage. To accurately model the behavior of DC-DC 

converters, averaging techniques, such as the small-signal model, are commonly employed 

(Alkrunz and Yazıcı, 2016). 

http://dergipark.gov.tr/gbad


ÇİMEN /GBAD, 2024, 13(3), 30-46                                                                                                              31 

  

 

Proportional-Integral (PI) and Proportional-Integral-Derivative (PID) controllers are 

traditional linear control methods commonly used across various applications due to their 

simplicity, reliability, and strong performance (Borase et al., 2021). PID controllers have 

historically been tuned through a combination of experience, trial-and-error, and methods 

such as Cohen–Coon and Ziegler–Nichols (Ibrahim et al., 2016). For example, Güngör and 

Yüksek (2020) modeled Boost and small DC-DC converters for photovoltaic (PV) panels, 

applying PID control for maximum power tracking. (Alkrunz and Yazıcı, 2016) used PI 

control with discrete-time, state feedback, and Linear Quadratic Regulator (LQR) methods 

to model a Boost converter. (Sezen and Keskin, 2021) compared PI and fuzzy logic 

controllers for DC-DC Boost converter control, while (Bououden et al., 2014) employed 

Model Predictive Control (MPC) for Boost converter regulation and compared it with fuzzy 

logic control. (Uçmaz and Yakut, 2024) controlled a Boost converter in Proton Exchange 

Membrane Fuel Cells (PEMFC) using PI and fractional PI controllers, optimizing 

parameters with Particle Swarm Optimization (PSO). In addition to linear controllers, 

nonlinear control strategies have been explored for DC-DC converters, such as Sliding 

Mode Control (SMC) (Güldemir, 2005) and backstepping control (El Fadil and Giri, 2007). 

Recently, (Palpandian et al., 2024) applied machine learning techniques to control DC-DC 

converters. Among these, Reinforcement Learning (RL) has gained significant attention 

due to its ability to learn and adapt to its environment, making it suitable for controlling 

nonlinear systems and industrial processes (Harmon and Harmon, 1996). RL operates by 

having an agent interact with its environment, learning to select actions that maximize 

cumulative rewards, which is particularly useful in dynamic environments (Angiuli et al., 

2022). RL is especially promising for controlling DC-DC converters in cases of model 

uncertainties or nonlinearities, where traditional control methods struggle. However, RL 

methods like Q Learning face scalability challenges, particularly with the size of the Q-

table (You et al., 2023). 

Advancements in computational power due to evolving technology have made 

reinforcement learning particularly applicable in power systems with low time constants, 

that is, systems operating at high speeds. In their study (Meng et al., 2024), they used 

reinforcement learning in the control of a microgrid to which wind, photovoltaic panels, 

battery systems, electric vehicles and residences are connected. They state that it provides 

adaptation to changing situations especially by performing online pre-programming. In 

their study (Rajamallaiah et al., 2024), they controlled the DC-DC converters used in the 

microgrid with the reinforcement method. In their study (Sun and Lue, 2024), they carried 

out a study on the distribution of distributed energy resources (DERs) with reinforcement 

learning. They evaluated their applications on the IEEE 33-node system. In contrast to this 

study, (Lui et al., 2024) implemented Volt-Var control using reinforcement learning in 

distributed networks. (Kang et al., 2024) achieved successful results by using reinforcement 

learning in the storage of battery systems fed by photovoltaic panels. Working on a similar 

topic, (Li et al., 2024) modified the reinforcement learning method and carried out studies 

on a different case study and achieved successful results. In terms of power converters 

(Alfred et al., 2024), a Linear Quadratic Regulator (LQR) controller for a buck converter, 

using RL to determine its parameters, achieved better results than traditional PID 

controllers. (Nishanthi and Kanakaraj, 2024) demonstrated the effectiveness of a Deep Q-

Network (DQN) controller for a buck-boost converter, showing high accuracy and 

improved transient response. (Muktiadji et al., 2024) compared Genetic Algorithms (GA), 

Particle Swarm Optimization (PSO), and Twin Delayed Deep Deterministic Policy 

Gradient (TD3) for determining PI controller parameters in a Boost converter, with TD3 

yielding the best results. Similarly, (Ahmed and Ahmad, 2024) explored wireless energy 



ÇİMEN /GBAD, 2024, 13(3), 30-46                                                                                                              32 

  

 

transfer in electric vehicles, using fuzzy logic and DQN to optimize power transfer, offering 

reduced communication overhead and improved scalability. 

In renewable energy, especially PV systems, reinforcement learning methods like Deep Q-

Network (DQN), Deep Deterministic Policy Gradient (DDPG), and Temporal Difference 

effectively enhance power transfer and address efficiency limitations (Panggabean et al., 

2023). (Xu et al., 2024) applied a Sliding Mode Observer to control DC voltage from 

PEMFC, outperforming traditional PI controllers. (Gheisarnejad and Khooban, 2023) 

integrated a full-bridge DC-DC converter with classical PI, Sliding Mode, and Quantum-

based DQN methods, finding DQN to be most effective in both simulations and real-time 

testing on the OPAL-RT platform. 

The main contribution of this study are as follows; 

• Adaptation of the machine learning method Q Learning Algorithm to the control of 

the power electronic circuit -DC-DC boost converter- which is widely used in renewable 

energy sources, 

• Obtaining the small signal model by linearizing the nonlinear power electronic circuit 

DC-DC boost converter and then designing PI and State Feedback Controller, 

• Controlling the DC-DC boost converter in the Matlab Simulink environment after the 

designs are realized and comparing the obtained results according to performance 

criteria such as Integral Squared Error (ISE) and Integral Absolute Error (IAE). 

In this study, PI and State Feedback Control designs with integral action were implemented 

for a boost converter. Subsequently, the Q Learning Algorithm, a method within 

reinforcement learning, was directly applied to the boost converter's control, effectively 

governing the system. Analysis of the results indicates that Q Learning Algorithm 

outperformed traditional controllers in terms of control performance. When it comes to the 

layout of the article, the first section consists of introduction that provides a review of the 

literature relevant to the study. The second section presents material and methods that 

includes the modeling of the boost converter and an introduction to the Q Learning 

Algorithm. Also, this section also includes the linearization of the boost converter, along 

with the design of PI and State Feedback Controller. The third section, results and 

discussion, provides and analyzes the simulation results for the PI, state feedback, and Q 

Learning controllers, as well as the overall performance of the boost converter. Finally, the 

fourth section offers a summary of the study, assesses the effectiveness of the proposed 

method, and discusses directions for future research. 

2. Material and Methods  

The materials and methods used in the study are divided into titles and explained. 

2.1 Boost Converter 

A boost converter is an electrical circuit designed to produce an output voltage higher than 

its input voltage. The voltage level adjustments are achieved through a control signal, which 

utilizes a fast-switching element, such as a transistor, MOSFET or IGBT, to regulate the 

charge and discharge cycles between the inductor and capacitor within the circuit. Boost 

converter is depicted at Figure 1 (Güngör and Yüksek, 2020). 
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Figure 1. Circuit of DC-DC boost converter 

 
Initially, state-space models are derived for both the "on" and "off" modes of operation. These 
two modes are then combined using the averaging method to produce an average state-space 
model. When the fast-switching element is in the "on" state, the current from the voltage source 
flows through the inductor. The switching element determines the operation between on mode 
and off mode through the pulse width modulation (PWM) method. The generated signal has a 
specific duty cycle (D) at the switching frequency. Based on this duty cycle, on mode and off mode 
models are activated (Saha et al., 2023). Consequently, an average model is derived by combining 
these two modes. The average system matrix (A) and the average control matrix (B)   are obtained 
in Equation 1. After rearranging the system states, Equation 1 is derived (Güngör and Yüksek, 2020; 
Saha et al., 2023). 

𝑥̇ = [
𝑥̇1
𝑥̇2
] = [

𝐼𝐿
𝑉̇𝐶
]

⏟
𝑥

= [
0 −

1 − 𝐷

𝐿
1 − 𝐷

𝐶
−
1

𝑅𝐶

]

⏟            
𝐴

[
𝐼𝐿
𝑉𝐶
]

⏟
𝑥

+ [
1

𝐿
0
]

⏟
𝐵

𝑉𝑖𝑛⏟
𝑢

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 

1 

The parameters of the boost converter used in this study are given in Table 1. 
 

Table 1. DC-DC Boost Converter Parameters and Values 

Component Definition Value 

𝑉𝑖𝑛 Supply Voltage 12 V 

𝑉𝑜𝑢𝑡 Output Voltage 24 V 

𝐿 Inductor 46mH 

𝑅 Resistor 15 Ω 

𝐶 Capacitor 1.360 mF 

𝑓 Switching Frequency 50 kHz 

 

2.2. Design of Controller 

The modeled system is required to operate at a certain performance. For this purpose, as 

mentioned before, many controllers have been proposed in the literature. In this study, the 

control of the system is realized with PI, state feedback and Q learning.  

2.2.1 Q learning  

RL is a technique used to solve sequential decision-making problems across various 

environment, including natural and social sciences, as well as engineering, by enabling an 

agent to interact with its environment and learn an optimal policy through trial and error 

(Smart and Kaelbling, 2000; Wang, H., Emmerich, M., and Plaat, 2018). In RL methods, 

learning is typically conducted via a Q-table (Wang, H., Emmerich, M., and Plaat, 2018). 

Various approaches exist for updating this table, such as dynamic programming, Monte 

Carlo methods, Q Learning, and State-Action-Reward-State-Action (SARSA)  (Akyurek 
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and Bucak, 2012). As illustrated in Figure 2, the system consists of a boost converter 

environment and an agent. The agent takes an action (αt) within the environment based on 

its current state (st) and action. This action results in a state transition (st+1) and generates a 

reward (rt+1) . Through continuous interaction with the environment, the agent learns by 

utilizing information such as (st,αt,rt,st+1). In this study, the Q Learning Algorithm will be 

applied to update the Q-table for learning. 
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Figure 2. Agent and environent for boost converter control 

 

Bellman equation used in updating the Q table used in Figure 2 is the formula expressed by  

Equation 2. In Equation 2, state at time t obtained from st environment, the action that αt 

agent lr learning factor, γ is the reduction factor. The expression (Qt(st+1, αt)) provides 

the highest value for any action in st+1 state. This approach, called on-policy, constantly 

updates the Q table in interaction with the environment. The psoudecode of Q Learning is 

given in Algorithm 1. 

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) = 𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝑙𝑟 (𝑟𝑡 + 𝛾 (
𝑚𝑎𝑥
𝛼
(𝑄𝑡(𝑠𝑡+1, 𝛼))) − 𝑄𝑡(𝑠𝑡, 𝛼𝑡)) 2 

As with every method, the Q learning method has its advantages and disadvantages. The 

advantages of Q learning method; 

• Its simplicity is that it can produce the control signal only according to the states, 

independent of the model, 

• It can be adapted to continuous-time systems, 

• It can adapt to the changing states of the system, 

• It has the potential to produce control signals that will maximize the reward 

function by continuously learning, 

• Q Learning controller demonstrates superior performance in the dynamic and 

uncertain environments characteristic of renewable energy systems. 

The disadvantages of  Q learning method; 

• It may not perform well when there are undiscovered states while controlling the 

DC-DC boost converter, 

• Learning may take a long time when the number of states in the Q table increases, 

• It may not discover new states in case of excessive learning, 
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• It may take time to find the best path if there is more than one result that maximizes 

the reward function. 

Algorithm 1. Q learning Algorithm 

1: Input: Learning Rate (lr) Discount factor (𝛾), 𝑄(𝑠, 𝑎) table  

2: Output: Updated Q(s,a) Table  

3: Determine initial Q table 

4: For 𝑖 = 1: 𝑖𝑡𝑒𝑟_𝑚𝑎𝑥 

5:     Initialize state 𝑠𝑡 

6:     𝑑𝑜𝑛𝑒 == 𝐹𝑎𝑙𝑠𝑒  

7:     𝑡 = 1  

8:     While 𝑑𝑜𝑛𝑒 == 𝐹𝑎𝑙𝑠𝑒 

9:           Choose 𝛼𝑡 with 𝜀 greedy probability 

10:         Apply action 𝛼𝑡 to environment and observe 𝑠𝑡+1, reward 𝑟𝑡+1 and 𝑑𝑜𝑛𝑒 

11:         Update table 𝑄𝑡+1(𝑠𝑡, 𝛼𝑡) 

12:         𝑡 = 𝑡 + 1  

 

In addition, states are presented as in Equation 3. Also, reward function obtained from the 

environment is specified as in Equation 4. When the denominators of the fractional 

expressions in the reward function are 0, the values will take the value of infinity. For this 

reason, the parameters µ1 and µ2 in the fractional expressions are chosen to be non-zero and 

are determined as µ1=0.025 and µ1=0.2. Nevertheless, it is useful to know that these states 

and reward functions could be changed as to designer. 

𝑠𝑡 = (𝑉𝑟𝑒𝑓(𝑡), 𝑉𝑜(𝑡)) 3 

𝑟𝑒𝑤𝑎𝑟𝑑 = −
1

𝑉𝑟𝑒𝑓(𝑡) − 𝑉𝑜(𝑡) + 𝜇1
+

1

𝑉𝑜(𝑡 + 1) − 𝑉𝑜(𝑡) + 𝜇2
− (𝑉𝑟𝑒𝑓(𝑡) − 𝑉𝑜(𝑡))

2 

4 

 

The Q learning parameters used to apply the Q algorithm to the boost converter are given 

in Table 2. The done function for the boost converter environment takes the value true when 

the simulation time is 1.5 seconds. Otherwise, it takes the value false. The learning 

parameters of the algorithm, iteration number and discounted factor, were selected similarly 

in the studies in the literature. However, when it comes to the learning rate, epsilon greedy 

parameters, the sampling time of the boost converter is very small, so it was selected 

specific to the problem compared to the parameters in the literature. 
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Table 2. Simulation parameters of Q learning for boost converter 

Paramater Value Paramater  
Iteration number 

(𝑖𝑡𝑒𝑟_𝑚𝑎𝑥) 
1,000 Epsilon Greedy threshold value 1x10-3 

Learning Rate (lr) 0.01 
Epsilon Greedy decreasing 

value 
2x10-4 

Discount factor (𝛾), 0.95 
Boost Converter Sampling 

Time 
1x10-6 second 

Reference Values 
20V, 24V, 

30V 

Q learning controller Sampling 

Time 
1x10-4 second 

Epsilon Greedy initial value 5x10-1 Simulation Duration 1.5 second 

 

Due to the controller running on the Q table, the Q table of the system was created according 

to the actions and states. x(t) state is composed of Vref(t) and Vo(t). The Vref(t) value only 

takes the discrete values 20V, 24V and 30V. But Vo(t) selected between 19 and 37 with a 

certain (0.5) step length. By using these discrete values, Q table is formed. A small part of 

the created Q table is presented in Table 3. 

Table 3. Q Table for Boost Converter 

State (𝑠𝑡) Action (𝛼𝑡) 
𝑉𝑟𝑒𝑓(𝑡), 𝑉𝑜(𝑡) 𝑑 

Real Discrete 0.00 0.05 0.1 0.15 … 0.7 0.02 
(20, 19) 1 3.951x102 2.527 x102 3.897x102 2.395x102 … -3.655 4.454x102 

(20, 19.5) 2 5.535x102 5.532x102 5.594 x102 5.585x102 … 6.656x10-2 5.285x102 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

(20, 36.5) 36 -3.681x1014 -3.675x102 -3.638x102 -3.645 x102 … -3.603x1014 
-

3.602x1014 

(20, 37) 37 -4.447x1014 
-

4.400x1014 

-

4.421x1014 
-4.411x1014 … -4.451x1014 

-

4.449x1014 

(24, 19) 38 -1.635x1014 
-

1.085x1014 

-

1.284x1014 
-1.075x1014 … -1.075x1014 

-

1.083x1014 

(24, 19.5) 39 -8.887x10-1 
-9.126x10-

3 

-

1.030x1014 
3.086x1014 … 1.063x1014 5.019x10-2 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

(24, 36.5) 73 -1.625x102 -1.628x102 -1.641x102 -1.625x102 … -1.625x102 -1.627x102 

(24, 37) 74 -2.107x102 -2.107x102 -2.089x102 -2.101x102 … -2.106x102 -2.105x102 

(30, 19) 75 -5.211x102 -3.700x102 -4.259x102 -3.703x102 … -3.713x102 -3.716x102 

(30, 19.5) 76 -3.696x102 -3.989x102 -3.7212 -4.001x102 … -3.636x102 -3.689x102 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

(30, 36.5) 110 -1.637x102 -1.675x102 -1.670x102 -1.664x102 … -1.624x102 -1.610x102 

(30, 37) 111 -3.769x102 -3.775x102 -3.790x102 -3.543x102 … -3.766x102 -3.771x102 

 

2.2.2 Feedback Controller Design 

A system is characterized by its inputs and outputs, and controllers modify its performance 

and response dynamics. For effective controller design, the system model should ideally be 

specified. This section addresses the linearization of the nonlinear Boost Converter, 

subsequently design PI and State Feedback Controller with integral action. 

2.2.2.1 Linearization of Boost Converter 

The boost converter model is presented in Equation 1. Due to the multiplication of the state 

variables (x1, x2) and the control signal (u), linearization is necessary. This is achieved by 

expressing the state variables as functions, as shown in Equation 5, and differentiating them 
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at the equilibrium point. Assuming negligible changes over a small time interval, the 

linearized dynamic model is represented in Equation 6. By calculating the derivatives of 

the state variables and the control signal at equilibrium, the system and control matrices are 

obtained. The final linearized model is presented in Equation 7. 

[
𝑓1
𝑓2
] = [

𝑥̇1
𝑥̇2
] = [

−(1 − 𝐷)

𝐿
𝑥2 +

1

𝐿
𝑢

(1 − 𝐷)

𝐶
𝑥1 −

1

𝑅𝐶
𝑥2

] 5 

[
∆𝑥̇1
∆𝑥̇2

] =

[
 
 
 
 
 
 
𝑑𝑓1(𝑥1, 𝑥2, 𝑢)

𝑑𝑥1
|𝑥1∗=𝑥1
𝑥2
∗=𝑥2
𝑢∗=𝑢

𝑑𝑓1(𝑥1, 𝑥2, 𝑢)

𝑑𝑥2
|𝑥1∗=𝑥1
𝑥2
∗=𝑥2
𝑑∗=𝑢

𝑑𝑓2(𝑥1, 𝑥2, 𝑢)

𝑑𝑥1
|𝑥1∗=𝑥1
𝑥2
∗=𝑥2
𝑑∗=𝑑

𝑑𝑓2(𝑥1, 𝑥2, 𝑢)

𝑑𝑥2
|𝑥1∗=𝑥1
𝑥2
∗=𝑥2
𝑑∗=𝑑 ]

 
 
 
 
 
 

[
∆𝑥1
∆𝑥2

] +

[
 
 
 
 
 
 
𝑑𝑓1(𝑥1, 𝑥2, 𝑢)

𝑑𝑢
|𝑥1∗=𝑥1
𝑥2
∗=𝑥2
𝑢∗=𝑢

𝑑𝑓2(𝑥1, 𝑥2, 𝑢)

𝑑𝑢
|𝑥1∗=𝑥1
𝑥2
∗=𝑥2
𝑢∗=𝑢 ]

 
 
 
 
 
 

∆𝑢 

[
𝑦1
𝑦2
] = 𝐶 [

𝑥1
𝑥2
] + 𝐶 [

∆𝑥1
∆𝑥2

] 

6 

[
∆𝑥̇1
∆𝑥̇2

] = [
0 −

(1 − 𝐷)

𝐿
(1 − 𝐷)

𝐶
−
1

𝑅𝐶

]

⏟              
𝐴

[
∆𝑥1
∆𝑥2

] + [
1

𝐿
0
]

⏟
𝐵

∆𝑢 7 

 

When sytem is executed for the system parameters and equilibrium values with 
D=0.5, the equilibrium values of the system are obtained as x1*=1.804, x2*=22.890. 
These values correspond to the circuit configuration illustrated in Figure 3. The time-
dependent graphs of the current and voltage values are shown in Figure 4 and Figure 
5, repectivelty. 
 

 

Figure 3. Boost converter circuit diagram 
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Figure 4. Voltage response (V_system) of Boost converter for D=0.5 

 

 
 

Figure 5. Current response (I_system) of Boost converter for D=0.5 

 

When the obtained values are substituted in matrix A and matrix B, equation 8 is obtained. 

[
∆𝑥̇1
∆𝑥̇2

] = [ 0 −1.087 × 104

367.647 −49.0196
]

⏟                
𝐴

[
∆𝑥1
∆𝑥2

] + [4.9761 × 10
5

−1.325 × 103
]

⏟          
𝐵

∆𝑢 8 

In order to derive the system's transfer function, the transformation from state space to the 

transfer function, as outlined in Equation 9, is applied. Substituting the values into this 

equation yields Equation 10. After performing the necessary operations, the system's 

transfer function is obtained, as shown in Equation 11. 

∆𝑥2
∆𝑢

= 𝐶[𝑠𝐼 − 𝐴]−1[𝐵] 9 

∆𝑥2
∆𝑢

= [0 1] [[
𝑠 0
0 𝑠

] − [ 0 −1.087 × 104

367.647 −49.0196
]]

−1

[4.9761 × 10
5

−1.325 × 103
] 

10 

𝐺𝑝 =
∆𝑥2
∆𝑢

=
−1.3265 × 103𝑠 + 1.8294 × 108

𝑠2 + 49.0196𝑠 + 3.996 × 106
 

11 

 

2.2.2.2 PI Control Design 

In many studies, PI controllers can be designed using classical methods such as Zeigler-

Nichols, Cohen, or pole assignment. The goal is to position the poles of the closed-loop 

system to achieve the desired performance. This desired pole location depends on the 
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designer’s experience and the root locus curve. Figure 3a shows that while the settling time 

is low, the overshoot is high. The system’s low time constant indicates a fast response, as 

seen in its step response. For tsettling=0.1sec, the desired pole location is determined using 

Equations 12. 

𝑡𝑠 = 0.1 =
4

𝜉𝑤𝑛
→ 𝜉𝑤𝑛 = 40.00 → 𝑠1 = −40 12 

The general form of the PI controller is given in Equation 13. 

𝐺𝐶 = 𝐾𝑝 +
𝐾𝑖
𝑠

 13 

 

The closed-loop structure of the system is illustrated in Figure 6. The closed-loop response 

is derived by substituting the values of the transfer function and the controller, as detailed 

in Equation 14. The characteristic equation (F(s)) of the system is given by Equation 15. 

After arranging this equation, the result is shown in Equation 16. 

Gp  Gc
u x2

 
Figure 6. Closed loop  system 

𝐺 =
𝐺𝑐𝐺𝑝

1 + 𝐺𝑐𝐺𝑝
 14 

𝐹(𝑠) = 1 + 𝐺𝑐𝐺𝑝 

𝐹(𝑠) = 1 + (𝐾𝑝 +
𝐾𝑖
𝑠
) (
−1.3265 × 103𝑠 + 1.8294 × 108

𝑠2 + 49.0196𝑠 + 3.996 × 106
) 

15 

𝐹(𝑠) = 𝑠(𝑠2 + 49.0196𝑠 + 3.996 × 106) 

+𝐾𝑝(𝑠 + 𝐾𝑖/𝐾𝑝)(−1.3265 × 10
3𝑠 + 1.8294 × 108) = 0 

16 

 

 

When Ki/Kp=1,000 is selected for the design, the rlocus curve that gives the root locus curve 

of the system is obtained as in Figure 7a and Figure 7b. Figure 7b is obtained, when Figure 

7a is zoomed in to see it in more detail. When the pole value seen in this graph reaches -40, 

the gain value Kp in the Rclous curve is found to be 0.00091. In this case, Ki=0.91 is 

calculated. 
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b)a)

 
Figure 7. Root locus of closed loop system 

 

In addition, the controller design for the boost converter was carried out with the Zeigler 

Nichols method, which is widely used in the literature, and Kp=0.00011, Ki=1.00 was 

obtained. 

2.2.2.3 State Feedback Design 

The development of modern control theory was significantly advanced through the 

application of matrix operations to control systems. State Feedback Control is a powerful 

method that facilitates controller design by representing the system in state-space form. A 

key requirement for this approach is the ability to measure all system states. If direct 

measurement of states is not possible, observers such as the Luenberger or Kalman 

observers must be designed to estimate the states. The closed-loop block diagram used for 

controlling the Boost Converter is shown in Figure 8. 

 

Boost 
Converter

r x2

K

K1
s I

u

x

 
Figure 8. State feedback control of boost converter 

 

In Figure 8, control system uses both an integrator and state feedback for control. Feedback 

is calculated using Equation 17, where xI  represents the integral of the output-input error. 

The integral of xI is expressed in Equaiton 18. System equations are provided in Equation 

19. Substituting Δu into the state-space equations leads to Equation 20. Subseqently 

Equation 20 is expressed in matrix form as Equation 21. Simplifying results in Equation 

22, where the closed-loop matrix Acl defines the system’s behavior. 
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∆𝑢 = −𝐾∆𝑥 − 𝐾𝐼𝑥𝐼 
17 

𝑥̇𝐼 = 𝑟 − 𝑦 = 𝑟 − 𝐶∆𝑥 18 

∆𝑥̇ = 𝐴∆𝑥 + 𝐵∆𝑢 

𝑥̇𝐼 = 𝑟 − 𝐶∆𝑥 
19 

∆𝑥̇ = (𝐴 − 𝐵𝐾)∆𝑥 − 𝐵𝐾𝐼𝑥𝐼 

𝑥̇𝐼 = 𝑟 − 𝐶∆𝑥 
20 

[
∆𝑥̇
𝑥̇𝐼
] = [

𝐴 − 𝐵𝐾 −𝐵𝐾𝐼
−𝐶 0

] [
∆𝑥
𝑥𝐼
] + [

0
1
] 𝑟 21 

[

∆𝑥̇1
∆𝑥̇2
𝑥̇𝐼

] = [
𝐴 −  𝐵[𝐾1 𝐾2] 𝐵𝐾𝐼

0 −1 0
]

⏟              
𝐴𝑐𝑙

[
∆𝑥1
∆𝑥2
𝑥𝐼

] + [
0
0
1
] 𝑟 22 

 

In Equation 22, unknown K1, K2 and KI values in Acl will be determined according to the 

performance criteria of the system. This criteria, namely the settling time, were determined 

as 0.2 sec. Therefore, the poles to be assigned are desired to be s1,2=-3.9±2040i  and s3=-40  

as in Figure 5b. Ackherman formula was used to determine the parameter values controlling 

the system by assigning these poles. The parameters obtained using this formula are 

obtained as K1=-2.3014x10-8, K2=9.1181x10-4 and KI=-0.9099. 

3. Results and Discussion  

Simulation studies were conducted using a computer with an Intel(R) Core(TM) i5-9400 

CPU @ 2.90GHz, 64-bit, and 8GB RAM, with Matlab as the primary tool. Q Learning 

Algorithm was integrated into Simulink to control the boost converter, alongside PI and 

State Feedback Controllers. This section presents and compares the results and system 

responses of the boost converter controlled by PI, state feedback, and Q Learning. Different 

reference signals (24V, 20V, and 36V) were applied to the boost converter over a 0-1.5 

second range. Due to the system's non-linearity and the discrete nature of Q Learning, no 

reference or control signals were applied during the first 100 ms, after which the signals 

were introduced. 

Q Learning Algorithm operated iteratively within Simulink over 1.5 seconds, learning with 

each of the 1,000 iterations (iter_max). In contrast, PI and State Feedback Controller require 

only a single run post-design. The system responses and calculated ISE and IAE values 

were presented graphically. These results were compared and analyzed, with a comparison 

table provided for clarity. 

Figure 9 is exhibitted the system responses when controlled using Zeigler-Nichols and 

Figure 10 is indicated system responses for pole assignment methods. The graph shows that 

while the system output exhibited minimal oscillation or chattering, the model displayed 

noticeable chattering and zigzags. This is attributed to the system having a zero in the right 

half plane in the closed loop. Despite this, the system generally achieved the desired 

reference signal within the expected settling time with no steady-state error. Furthernore, 

Figure 11 shows the response of the boost converter when controlled with state feedback 

including an integrator. The system have reached the reference signal within the designed 

settling time without overshoot and exhibited less chattering compared to the PI controller. 

Additionally, Figure 12 displays the system response of Q Learning control. Although the 

Q Learning Algorithm allowed the system to quickly reach the desired reference, it results 

in overshoot. 
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Figure 9. Model and system responses of boost converter controlled by PI using Zeigler-

Nichols 

 
Figure 10. Model and system responses of boost converter controlled by PI using pole 

placement  

 
Figure 11. Model and system responses of boost converter controlled by feedback control  

 

 
Figure 12. Model and system responses of boost converter controlled by Q learning 

controler  
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The display of all controller method results together was given in Figure 13. In particular, 

separate graphs were drawn for the 0-1.5 seconds and 0-0.5 seconds intervals to enable the 

results to be displayed in more detail. When Figure 13 is examined, it is seen that the Q 

learning algorithm reached the desired reference signal faster but it has overshoot. 

b)a)

 

Figure 13. PI control using pole placement, Zeigler Nichols, state feedback control with 

integral action and Q learning responses for (a) 0-1.5 sec and (b) 0-0.5 sec Boost 

Converter 

 

IAE and ISE values calculated according to the system responses are important and 

generally accepted performance indices in the design of controllers. The lower these values 

indicats that the performance of the controller is better. The performance of the designed 

controllers with respect to IAE and ISE is given in Figure 14. As can be seen, these values 

obtained with PI and State Feedback Control produced higher values than the Q learning 

algorithm. 

In addition, the simulation time of the Q learning algorithm is given in Figure 15, calculated 

using Equation 4. Especially in the 100ms when there was no control, the reward value was 

very low, but it began to decrease when the control process started. It also peaked when the 

reference signals changed, but it still started to decrease on average. 

B)A)

 

Figure 14. IAE and ISE values of Boost Converter Responses for PI, State feedback Control 

and Q Learning Control 
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Figure 15. Reward Values for Boost Converter for Q Learning Control 

 

ISE, IAE, tsettling and Overshoot values of the boost converter controlled by different 

controllers are given in Table 4. When the results are examined in terms of ISE, IAE and 

tsettling, the Q learning method showed the best performance. However, when examined in 

terms of overshoot, the PI and State Feedback Controllers gave results without overshoot. 

Note that, tsettling and Overshoot values were values calculated for the period between 0-0.5 

sec. ISE and IAE were values calculated for the period between 0-1.5 sec. The reason why 

the overshoot was especially high in the Q learning algorithm is that the Q learning 

algorithm run depending on the state. The control signal was generated in a way that would 

maximize the recommended reward function for the state. The overshoot can be reduced by  

 

Table 4. Performance results of Control Methods 

Control Method ISE IAE 𝑇𝑠𝑒𝑡𝑡𝑙𝑖𝑛𝑔 𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡% 

PI using pole 

placement 

5.825 0.895 0.08989 sec 0% 

PI using Zeigler 

Nichols 

5.413 0.815 0.08061 sec 0% 

State Feedback 

Control 

6.246 0.933 0.09195sec 0% 

Q learning Control 0.331 0.260 0.0062sec 27.08% 

 

revising reward function that using both adding different terms and constraints. 

Generally speaking, control methods such as PI, PID, and state feedback have been widely 

used in the industry for the control of real-time systems. However, in the coming years, 

machine learning-based experimenters that can learn and make decisions in the control of 

real-time systems will become more common, especially as the processing capabilities of 

computers improve, their computational speeds increase, and their accessibility decreases 

and production costs increase. This will enable the use of machine learning-based control 

methods for many equipment used in renewable energy sources. This means that in the 

coming years, the use of flexible controllers that can quickly adapt to changing dynamics 

will become widespread. Especially in renewable energy sources, the high ability of 
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controllers to adapt to changing dynamics will have an effect of reducing costs as well as 

increasing system performance. 

4. Conclusion  

This study investigates the design of controllers for a boost converter using PI control, State 

Feedback Control, and Q Learning Algorithm. The boost converter was modelled, 

linearized and simulated in MATLAB/Simulink, with the converter represented in state-

space form and an average model derived. For linear controller design, the average model 

was used in order to design PI controller using Ziegler-Nichols and pole placement 

methods. State Feedback Controller with integral action was then designed using pole 

placement. Q Learning Algorithm has been applied by configuring the states, reward 

function, and actions. Although Q Learning demonstrated superior performance in terms of 

ISE, IAE, and settling time, it has exhibited less favorable overshoot performance. In future 

studies, this deficiency will be addressed by making changes to the reward function for 

overshooting. Overall, Q Learning is advantageous for its simplicity, model-free 

implementation, and capacity for continuous learning and adaptation, making it suitable for 

applications in electrical energy systems, power systems, and electric vehicles, where boost 

converters play a crucial role in enhancing energy efficiency in the context of renewable 

energy. 
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