
Yuzuncu Yil University Journal of the Institute of Natural & Applied Sciences, Volume 29, Issue 3 (December), 927-938, 2024 

 

927 

 

Yuzuncu Yil University 

Journal of the Institute of Natural & Applied Sciences 
 

https://dergipark.org.tr/en/pub/yyufbed   

Research Article 

Enhancing Network Security: A Comprehensive Analysis of Intrusion Detection Systems 
 

  Murat KOCA*1, İsa AVCI2 
  

1Van Yuzuncu Yil University, Faculty of Engineering, Department of Computer Engineering, 65080, Van, 

Türkiye  
2Karabuk University, Faculty of Engineering, Department of Computer Engineering, 78000, Karabuk, Türkiye  

Murat KOCA, ORCID No: 0000-0002-6048-7645, İsa AVCI, ORCID No: 0000-0001-7032-8018  
*Corresponding author e-mail: muratkoca@yyu.edu.tr   

  
Article Info 

 

Received: 07.09.2024 

Accepted: 26.09.2024 

Online December 2024 

 

DOI:10.53433/yyufbed.1545033    

 

Keywords 

CBPNN, 

Cyber security,  

FBPNN, 

Intrusion detection systems 

(IDS),  

Logistic regression, 

Machine learning  

 

Abstract: Given the increasing complexity and progress of intrusion attacks, 

effective intrusion detection systems have become crucial to protecting networks. 

Machine learning methods have become a potential strategy for identifying and 

reducing such attacks.  This paper has conducted a comprehensive analysis of 

intrusion detection using machine learning methodologies. The aim is to 

thoroughly examine the current state of research, identify the barriers, and 

highlight potential solutions in this field.  The study begins by analyzing the 

importance of intrusion detection and the limitations of traditional rule-based 

systems.  Afterward, it explores the underlying principles and concepts of 

machine learning and how they are practically applied in the field of intrusion 

detection. This paper provides a comprehensive analysis of different machine 

learning algorithms, such as decision trees, neural networks, support vector 

machines, and ensemble methods. The primary objective of this study is to assess 

the effectiveness and limitations of employing these techniques for identifying 

various forms of intrusions. Three algorithms are used to classify the NSL-KDD 

dataset, namely Cascade Backpropagation Neural Networks (CBPNN), Layered 

Recurrent Neural Networks (LRNN), and Forward-Backward Propagation 

Neural Networks (FBPNN). Results have shown that CBPNN outperformed by 

achieving 95% accuracy. 

  

  

Ağ Güvenliğini Geliştirme: Saldırı Algılama Sistemlerinin Kapsamlı Analizi  

  
 

Makale Bilgileri 

 

Geliş: 07.09.2024 

Kabul: 26.09.2024 

Online December 2024 

 

DOI:10.53433/yyufbed.1545033    

 

Anahtar Kelimeler 

CBPNN, 

FBPNN, 

Lojistik regresyon, 

Makine öğrenmesi, 

Saldırı tespit sistemleri (IDS),  
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Öz: Siber saldırılarının artan karmaşıklığı ve ilerlemesi göz önüne alındığında, 

etkili saldırı tespit sistemlerinin varlığı ağ güvenliğinin önemli bir bileşeni haline 

gelmiştir. Makine öğrenimi yöntemleri, bu tür saldırıları belirlemek ve azaltmak 

için potansiyel bir strateji haline gelmiştir. Bu makale, makine öğrenimi 

tekniklerini kullanarak saldırı tespitinin kapsamlı bir incelemesini 

gerçekleştirmiştir. Amaç, mevcut araştırma durumunun kapsamlı bir analizini 

sunmak, engelleri belirlemek ve bu alandaki olası çözümleri vurgulamaktır. 

Makale, saldırı tespitinin önemini ve geleneksel kural tabanlı sistemlerin 

kısıtlamalarını inceleyerek başlamaktadır. Ardından, makine öğreniminin temel 

fikirleri ve kavramları ile saldırı tespiti alanındaki pratik uygulamalarına 

derinlemesine inmektedir. Bu çalışmada, karar ağaçları, sinir ağları, destek vektör 

makineleri ve topluluk yöntemleri dahil olmak üzere çeşitli makine öğrenimi 

algoritmalarının kapsamlı bir incelemesi sunulmaktadır. Bu çalışmanın temel 

amacı, farklı saldırı türlerini tespit etmek için bu yöntemleri kullanmanın 

etkinliğini ve kısıtlamalarını incelemektir. NSL-KDD veri setini sınıflandırmak 

için üç algoritma kullanılmıştır: Basamaklı Geri Yayılımlı Sinir Ağları (CBPNN), 

Katmanlı Tekrarlayan Sinir Ağı (LRNN) ve İleri-Geri Yayılımlı Sinir Ağları 

(FBPNN). Yapılan çalışma sonucunda, CBPNN'nin %95 doğruluk elde ederek 

daha iyi performans gösterdiğini göstermiştir. 
  

https://dergipark.org.tr/en/pub/yyufbed
https://orcid.org/0000-0002-6048-7645
https://orcid.org/0000-0001-7032-8018
mailto:muratkoca@yyu.edu.tr
https://doi.org/10.53433/yyufbed.1545033
https://doi.org/10.53433/yyufbed.1545033


YYU JINAS 29(3): 927-938 

Koca and Avcı / Enhancing Network Security: A Comprehensive Analysis of Intrusion Detection Systems 

928 

 

1. Introduction 

 

Network Systems have become indispensable in today's interconnected digital environment, 

serving as a vital component for both organizations and individuals. In order to ensure network security, 

especially in cloud environments, it is crucial to deploy efficient Intrusion Detection Systems (IDS) due 

to the growing intricacy and sophistication of intrusion attempts. Implementing intrusion detection is 

essential for protecting computer networks against unauthorized access, hostile behavior, and potential 

risks (Zhang et al., 2015; Khraisat et al., 2019; Koca et al., 2021). IDS uses advanced technology and 

methods to constantly watch and study network activities so that any strange behavior can be found and 

dealt with quickly (Biermann et al., 2001; Khraisat et al., 2019). This article explores the concept of IDS 

in computer networks, its significance, and the key methodologies employed in this field. The ever-

evolving landscape of cyber threats necessitates robust measures to protect computer networks from 

potential attacks. IDS serve as the initial barrier against potential threats by continuously monitoring the 

flow of network data and promptly detecting any abnormal or harmful actions (Ozalp & Albayrak, 

2022). IDS can be classified into two main types: Network-Based IDS (NIDS) and Host-Based IDS 

(HIDS). NIDS examines network traffic at critical junctures in the network, whereas HIDS concentrates 

on monitoring activities within individual hosts. This multifaceted strategy offers extensive 

safeguarding and facilitates swift action in the event of suspected security breaches (Rahul-Vigneswaran 

et al., 2020). 

IDS utilize a range of procedures and strategies to efficiently identify intrusions and potential 

threats. Signature-based detection, often referred to as misuse detection, is comparing network traffic or 

host activity with a pre-established collection of signatures or patterns linked to recognized threats 

(García-Teodoro et al., 2009). It is an anomaly-based method that specifically aims to find deviations 

from established baselines or usual behaviors inside the network or host. This methodology has the 

capability to identify newly emerged or previously undiscovered forms of attacks. In addition, hybrid 

detection methods integrate the advantages of both signature-based and anomaly-based approaches to 

offer a more accurate and full IDS (Zhang et al., 2015; Avcı & Koca, 2023). 

The first part of the study talks about why IDS are important and what problems traditional rule-

based systems have when used in cloud environments. Cloud networks, characterized by their dynamic 

nature and large-scale data processing, present unique challenges for intrusion detection. It can be hard 

for old systems to change to the size and complexity of cloud environments. This makes them less good 

at finding complex attacks (Çakmak et al., 2021). 

This paper explores the core principles and concepts of Machine Learning (ML) and their 

application in intrusion detection. ML algorithms possess the benefit of being adaptable and scalable, 

which makes them highly suitable for the ever-changing nature of cloud networks. Decision trees, neural 

networks, support vector machines, and ensemble methods are just some of the machine-learning 

techniques that are looked at in detail in this text. A comprehensive analysis is performed to assess the 

efficacy of several intrusion detection techniques in cloud systems, providing insights into their practical 

utility. 

Furthermore, the paper conducts an empirical analysis using three machine learning algorithms 

to classify the NSL-KDD dataset (Rai, 2019): Cascade Backpropagation Neural Networks (CBPNN), 

Layered Recurrent Neural Network (LRNN) and Forward-Backward Propagation Neural Networks 

(FBPNN). This analysis demonstrates the practical application of machine learning approaches in 

detecting intrusions in cloud networks. It evaluates the performance of these techniques using a 

standardized dataset. 

These works together enhance the existing knowledge on the subject of intrusion detection in 

computer networks. Researchers seek to optimize the accuracy and efficacy of intrusion detection 

systems by utilizing deep learning, machine learning, and tailored methodologies for various network 

configurations. This objective is to minimize potential risks and safeguard computer networks. This 

article emphasizes the significance of utilizing machine learning methods to improve intrusion detection 

in cloud networks. By adopting machine learning techniques, enterprises can enhance their capacity to 

efficiently identify and address attacks, thus fortifying the security of their cloud systems. The hybrid 

strategy described in this study yielded noteworthy outcomes. 
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2. Related Work  

 

Intrusion detection attacks in computer networks are a vital area of research in network security. 

Several works have been conducted to enhance the capabilities of IDS and improve their accuracy in 

identifying and responding to malicious activities. Gao et al. (2020) investigates the utilization of deep 

learning methods to improve intrusion detection. The authors showcase the efficacy of deep learning 

algorithms in enhancing detection accuracy by amalgamating deep neural networks and feature 

engineering (Gao et al., 2020). 

Alazab et al. (2011) provides an overview of ML algorithms used in NIDS. The paper evaluates 

both supervised and unsupervised learning methods, assessing their individual benefits and limitations 

in the context of IDS. This study explores the application of ML to enhance the efficiency of IDS. 

Can and Sahingoz (2015), offers an extensive examination of intrusion detection techniques. 

The authors discuss signature-based, anomaly-based, and hybrid approaches, providing insights into 

their respective strengths and challenges. This review serves as a valuable resource for understanding 

state-of-the-art intrusion detection. Mitchell & Chen (2014) delves into intrusion detection in this unique 

context. The survey categorizes various intrusion detection techniques and discusses open research 

issues in the domain of wireless sensor networks. This work provides specialized insights into intrusion 

detection in this specific setting. 

The study conducted by Zhang et al. (2015) investigates the application of deep learning 

techniques, particularly convolutional neural networks and recurrent neural networks, in the detection 

of network intrusions. The study encompasses datasets, performance evaluation measures, and issues 

related to deep learning-based Intrusion Detection System (IDS) models. These models, which utilize 

machine learning techniques, have garnered considerable interest for their ability to enhance the security 

of computer networks (Zhang et al., 2015). These models utilize the capabilities of machine learning 

algorithms to examine network traffic data and identify any intrusion activities. These algorithms 

acquire knowledge about the patterns and attributes linked to various sorts of intrusions by undergoing 

training using labeled datasets that consist of both normal and malicious network traffic. The process of 

creating a machine learning intrusion detection model involves several distinct stages. Initially, data is 

collected from several sources, such as network sensors or packet captures, to generate a dataset that 

encompasses details about network traffic. Preprocessing techniques such as data cleaning, feature 

extraction, and data normalization may be required for this dataset (McHugh, 2000).  

Our research has made a significant contribution by thoroughly investigating and assessing ML 

methods for IDS. By assessing various algorithms, including deep learning models like CBPNN, 

FBPNN, and LRNN, on datasets such as NSL-KDD and using performance metrics like accuracy, 

precision, recall, and F1-score, the research demonstrates promising results in improving the accuracy 

and efficiency of IDS. Additionally, it highlights the importance of feature selection techniques and 

dataset preprocessing in enhancing model performance, thereby providing valuable insights for 

practitioners aiming to develop effective intrusion detection models. Comparatively, the publications 

mentioned provide broader overviews of intrusion detection techniques, including deep learning 

methods, machine learning algorithms, and specialized contexts, but may not delve as deeply into 

performance evaluation metrics and practical implementation steps. 

 

3. Methodology 

 

This paper presents an efficient NIDS that relies on ML and feature selection approaches. Three 

different algorithms, namely CBPNN, LRNN, and FBPNN, are used to conduct performance 

assessments for intrusion detection. Moreover, feature selection approaches are employed to ascertain 

crucial traits. The process is succinctly outlined in Figure 1. 

Feature extraction plays a crucial role in selecting relevant attributes from the raw data that can 

effectively represent different types of network traffic and potential intrusion patterns. After the dataset 

has been prepared, ML algorithms can be utilized to train and construct the intrusion detection model. 

Multiple machine learning techniques can be employed, including decision trees, Support Vector 

Machines (SVM), Naive Bayes (NB), CBPNNs, and neural networks (Sommer & Paxson, 2010). The 

selection of an algorithm is contingent upon aspects such as the intricacy of the data, the need for 

interpretability, and the distinct attributes of the intrusion detection issue. The model is trained using a 
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dataset that has been tagged, enabling the algorithm to develop the capability to differentiate between 

regular and malicious patterns of network traffic. Assessing the performance and effectiveness of the 

intrusion detection model is essential for its evaluation. Metrics such as accuracy, precision, recall, and 

F1-score are frequently employed to evaluate the model's capacity to accurately classify both normal 

and hazardous data examples (Bahlali & Bachir, 2023). 

The generalizability of the model can be evaluated by utilizing cross-validation approaches, 

such as k-fold cross-validation. Validating the model with distinct test datasets is crucial to ensure an 

impartial review. Nevertheless, there are difficulties in creating intrusion detection models utilizing 

machine learning. An obstacle that arises is the problem of class imbalance, when the quantity of normal 

examples greatly exceeds the quantity of malevolent instances, resulting in models that are prejudiced. 

Furthermore, the constant evolution of intrusion techniques and the appearance of new attack routes 

necessitate the ongoing update and retraining of the models. Additionally, it is crucial to guarantee the 

resilience of the model against adversarial assaults, as malicious individuals may deliberately modify 

network traffic to avoid being detected (Ghosh & Schwartzbard, 1999). 

 

Data Collection 

• Relevant Sources 

• Diversity 

• Labelling 

• Volume 

• Privacy & Security 

• Regular Updates 

 

 

 

 

 

 

 

 

  

 

 

Figure 1. Summary of the research methodology used in the study. 

 

Through the utilization of machine learning methods, these models are able to efficiently 

examine network traffic data and detect possible instances of intrusion. To ensure the reliability and 

efficiency of these models in real-life scenarios, it is essential to address challenges, including class 

imbalance, model updating, and robustness against adversarial attacks (Eskin et al., 2002). 

 

3.1. Research design 

 

This section presents a brief overview of the ML algorithms employed in this work. Moreover, 

this section outlines the specific benchmarks used in ML methods. 
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3.1.1 Cascade backpropagation neural network (CBPNN) 

 

The CBPNN (Liu et al., 2016) is a variant of the backpropagation algorithm that has been 

utilized for classification tasks, including the classification of the NSL-KDD dataset (Yonan & Zahra, 

2023). The NSL-KDD dataset is a highly utilized standard dataset in the field of intrusion detection 

research. It consists of network traffic data that has been categorized into normal and attack instances. 

The CBPNN network architecture comprises many stages or levels, with each level being trained 

independently using the usual backpropagation technique. A cascade structure is formed when the output 

of one level is used as the input for the following level. The aim of this approach is to overcome the 

constraints of conventional backpropagation algorithms, including sluggish convergence and 

vulnerability to becoming trapped in local optima. 

The training procedure in CBPNN commences with the training of the first level, which 

typically comprises a smaller number of neurons and is trained to attain a specific degree of accuracy 

on the training set. Once the appropriate level of precision is attained, the weights of this stage are 

immobilized, and a new stage is included in the network. The next level is trained by including the 

outputs of the previous level as supplementary input features. This iterative process persists until the 

desired number of levels is reached or until the overall accuracy of the training set becomes stable. Each 

level inside the CBPNN can be seen as a separate classifier, and the final decision is made by combining 

the outputs of all levels. 

The CBPNN is a dynamic structure, but its overall process can be generalized into a single 

equation that captures its feedforward, backpropagation, and weight update dynamics. Here's how it can 

be expressed in a condensed form: For the hidden neurons show in Equation 1:            

              

                                               𝒘(𝒕+𝟏) =  𝒘(𝒕) +  𝛈 . 𝜹(𝒕) . 𝒙(𝒕)                                                           (1) 

 

where: 

• 𝒘(𝒕) represents the set of weights at iteration 𝒕, 

• 𝛈 is the learning rate, 

• 𝜹(𝒕) is the backpropagated error or delta at iteration 𝑡 (which includes the error calculated at 

each layer), 

• 𝒙(𝒕)represents the input values (which can be outputs from the previous layer), 

• The new weights 𝒘(𝒕+𝟏) are updated incrementally through cascading neurons, meaning new 

hidden neurons and their connections are added iteratively to minimize error further. 

 

In Equation 1 summarizes the core of the CBPNN, where weights are updated based on 

backpropagated errors and new neurons are added as necessary to improve network performance. The 

advantage of using CBPNN for classification tasks is that it allows for a hierarchical learning approach, 

where each level focuses on learning specific features or patterns. This can lead to improved 

classification accuracy compared to traditional backpropagation algorithms. Nevertheless, the selection 

of the number of levels and the structure of each level is essential and necessitates meticulous trial and 

adjustment in order to attain optimal performance. Researchers have investigated the application of 

CBPNN to improve the precision of intrusion detection in categorizing the NSL-KDD dataset. The 

researchers have achieved precise categorization of network data as either normal or instances of assault 

by utilizing the cascade structure and leveraging the hierarchical learning capabilities of CBPNN. 

It should be emphasized that the performance of CBPNN, particularly its classification accuracy 

on the NSL-KDD dataset, is subject to variation based on factors such as the particular implementation, 

the selection of network architecture, and the adjustment of hyperparameters. Therefore, it is 

recommended to refer to research papers and studies specifically focused on the application of CBPNN 

to the NSL-KDD dataset for more detailed and up-to-date information on its classification performance. 

 

3.1.2. Forward-Backward Propagation Neural Networks (FBPNN) 

 

One kind of artificial neural network that finds extensive application in many domains is the 

FBPNN, which is another name for feed-forward neural networks with backpropagation. These 
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networks consist of multiple layers of interconnected nodes, commonly referred to as neurons or units. 

The information is transmitted in a unidirectional manner through the network, starting with the input 

layer, passing through the hidden layers, and ultimately reaching the output layer. This is why it is 

referred to as "feedforward". During the forward propagation phase, the input data is transmitted across 

the network, and each neuron calculates a weighted sum of its inputs, which is then subjected to an 

activation function. The output of each layer serves as the input for the subsequent layer until it reaches 

the output layer, which generates the final predictions or outputs. The sigmoid, tanh, and ReLU 

(Rectified Linear Unit) functions are commonly employed as activation functions in forward-backwards 

propagation neural networks. 

FBPNN, the key operations include forward propagation (to compute the outputs) and backward 

propagation (to update weights based on the error). The process can be summarized in a single equation 

that combines both the forward and backward passes show in Equation 2: 

 

                                              𝒘(𝒕+𝟏) =  𝒘(𝒕) −  𝛈 . 𝛁𝒘 ℶ(𝒘(𝒕), 𝒙(𝒕), 𝒚(𝒕))                                        (2) 

 

where: 

• 𝒘(𝒕)is the set of weights at iteration 𝑡, 
• 𝛈 is the learning rate, 

• 𝛁𝒘 ℶ is the gradient of the loss function  ℶ with respect to the weights 𝒘(𝒕), 

• ℶ(𝒘(𝒕), 𝒙(𝒕), 𝒚(𝒕)) is the loss function (e.g., mean squared error or cross-entropy), which depends 

on the weights 𝒘(𝒕), input data 𝒙(𝒕) , and the actual target output 𝒚(𝒕) 

• The new weights 𝒘(𝒕+𝟏) , are updated by moving in the opposite direction of the gradient, 

minimizing the error. 

 

In the Equation 2 represents the overall process of weight updating in FBPNN, combining both 

forward and backward propagation in a single step. Forward propagation computes the network output, 

and backward propagation computes the gradient to adjust weights, reducing the error. 

Backpropagation, also known as backward propagation of mistakes, is the crucial process for 

training the network. It entails computing the gradient of the loss function with respect to the weights 

and biases of the network. Subsequently, this gradient is employed to modify the network parameters in 

the opposite direction of the gradient, with the objective of minimizing the loss function and enhancing 

the model's predictions. Backpropagation utilizes the chain rule of calculus to effectively calculate the 

gradients in a step-by-step manner, beginning with the output layer and progressing backwards through 

the network. The backpropagation algorithm iteratively modifies the weights and biases of the network 

using the computed gradients. This iterative process continues until convergence, which is the point at 

which the network achieves a state when making further adjustments to the parameters does not 

appreciably enhance the performance. The learning rate is a crucial hyperparameter that governs the 

magnitude of the parameter updates.  

 

3.1.3. Layered Recurrent Neural Network (LRNN) 

 

A LRNN is an extension of traditional Recurrent Neural Networks (RNNs), designed to handle 

complex, hierarchical, and multi-level dependencies in sequential data. By stacking multiple layers of 

recurrent networks, LRNNs can learn higher-order temporal dependencies across different layers, which 

allows them to capture both low-level and high-level patterns in sequential data. Bengio et al. (1994) 

discusses the challenges of learning long-term dependencies in RNNs and introduces deep architectures, 

which inspired LRNN development. 

LRNNs are composed of several layers where each layer passes its hidden state to the next layer. 

This structure allows different layers to learn different levels of temporal abstraction. The lowest layer 

focuses on immediate dependencies, while the higher layers capture more abstract, long-term patterns. 

This hierarchical nature of LRNNs makes them powerful for modeling complex sequences, like those 

found in natural language processing and time-series forecasting. 
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• Multi-Layered Structure: Multiple layers of recurrent units allow the network to learn features 

at different levels of abstraction. 

• Improved Learning of Temporal Dependencies: By having multiple layers, LRNNs can better 

capture both short- and long-term dependencies compared to shallow RNNs. 

• Depth-Enhanced Representation: The depth provided by stacking recurrent layers allows 

LRNNs to represent temporal data in a hierarchical manner. 

 

For a given layer, the hidden state ℎ𝑡
(𝑡)

 at time step 𝑡  can be described in Equation 3: 

 

                                                   𝒉𝒕
(𝒍)

= 𝒇 (𝑾(𝒍). 𝒉𝒕−𝟏
(𝒍)

+ 𝑼(𝒍). 𝒉𝒕
(𝒍−𝟏)

+  𝒃(𝒍)                                                 (3) 

 

• 𝒉𝒕
(𝒍)

 is the hidden state of layer  𝑙  at time step 𝑡, 

• 𝑾(𝒍)is the weight matrix for the hidden state of layer 𝒍, 

• 𝑼(𝒍) is the weight matrix connecting the hidden state from the previous layer 𝑙 – 1 to the current 

layer, 

• 𝒃(𝒍) is the bias for layer 𝑙, 
• 𝒇 is the activation function (typically Tanh or ReLU). 

• In the Equation 3 demonstrates the hierarchical nature of LRNNs, where each layer’s hidden 

state depends on both its previous hidden state and the hidden state of the layer below it. 

 

3.2. Dataset 

 

The NSL-KDD dataset serves as a prevalent benchmark dataset for assessing the effectiveness 

of intrusion detection systems. The dataset was created as an enhanced iteration of the original KDD 

Cup 1999 dataset in order to overcome certain constraints and offer a more authentic and demanding 

setting for intrusion detection research (Tavallaee et al., 2009). The primary purpose of developing the 

NSL-KDD dataset was to address the limitations of the KDD Cup 1999 dataset, which had problems 

such as an uneven distribution of classes, redundant and irrelevant characteristics, and an unrealistic 

testing configuration. The NSL-KDD dataset is characterized by several important aspects. 

 

3.2.1. Dataset composition 

 

The NSL-KDD dataset comprises network traffic data obtained from a simulated computer 

network environment. The dataset consists of a training set and a testing set, each of which is further 

separated into two categories: the original version and the modified version. 

 

3.2.2. Labeled instances 

 

The dataset contains tagged instances of diverse network traffic, encompassing both regular 

traffic and a range of attack kinds. The assaults are classified into four primary categories: Denial of 

Service (DoS), Probe, Remote to Local (R2L), and User to Root (U2R). 

 

3.2.3. Improved version 

 

The NSL-KDD dataset addresses some of the limitations of the original KDD Cup 1999 dataset. 

It removes duplicate and redundant records, balances the class distribution, and incorporates a new set 

of features. 

 

3.2.4. Feature selection  

 

The dataset comprises 41 distinct features derived from network packets and connections. These 

properties encompass several elements of network traffic, including protocol type, service type, source 

and destination addresses, and time-related factors. 
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3.2.5. Training and testing sets  

 

The NSL-KDD dataset provides separate training and testing sets to facilitate the development 

and evaluation of intrusion detection models. The training set comprises a substantial quantity of 

examples for the purpose of training, whereas the testing set enables researchers to assess the 

effectiveness of their models on unfamiliar data. Researchers have extensively utilized the NSL-KDD 

dataset to create and assess intrusion detection models, compare various methods, and investigate 

innovative techniques for enhancing network security. Its availability and consistent evaluation setting 

make it a valuable resource for the intrusion detection community. 

 

3.3. Preprocessing 

 

The preprocessing procedure for the NSL-KDD dataset involves several steps to handle missing 

values, normalize numeric features, and convert categorical variables into numerical representations.  

 

• Data Loading: Load the NSL-KDD dataset into your programming environment. Ensure that 

you have the necessary libraries or packages to manipulate the dataset. 

• Handling Missing Values: Check for missing values in the dataset. Missing values may appear 

as empty cells, NaN (Not a Number), or other placeholders. 

•  Determine a suitable approach for managing absent values. Possible strategies involve 

removing occurrences with missing values, replacing missing values with the mean, median, or 

mode, or using advanced imputation techniques like K-nearest neighbors or regression 

imputation. 

• Normalizing Numeric Features: Identify the numeric features in the dataset that require 

normalization. Numeric features typically have a wide range of values. 

• Converting Categorical Variables: Converting Categorical Variables by Identifying the 

categorical variables in the dataset. Categorical variables represent qualitative attributes and are 

typically in the form of text or discrete values.  

• Apply the Chosen Encoding Technique: Transform the category variables into numerical ones 

by using the selected encoding method. In contrast to label encoding, which uses a distinct 

numerical label for each category, one-hot encoding uses binary columns to symbolize each 

category. 

• Split the Dataset: Divide the dataset into two halves, one for training and one for testing; make 

sure that the ratio of attack to normal events is constant between the two. In most cases, a 70-

30 or 80-20 split between training and testing is ideal. 

 

4. Results and Discussion 

 

We have evaluated three algorithms, namely CBPNN, FBPNN, and LRNN for IDS.  Accuracy, 

recall, precision, and F1-score were among the many metrics used to assess each method's efficacy. The 

CBPNN approach achieved accuracy of 0.95, recall of 0.89, precision of 0.92 and  F1-score of 0.91. 

Figure 2 demonstrates a significant level of precision, with the ability to effectively recognize both 

normal and attack cases. 

Figure 3 shows that FBPNN exhibited a precision of 0.87, recall of 0.92, accuracy of 0.90, and 

F1-score of 0.89. Although slightly lower than the CBPNN algorithm, FBPNN still demonstrates robust 

performance in identifying intrusion instances.  

In Figure 4, LRNN yielded a recall of 0.88, precision of 0.85, F1-score of 0.86, and accuracy of 

0.87. While achieving lower metrics compared to the other two algorithms, LRNN still showcases 

reasonable performance in intrusion detection. 
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Figure 2. Accuracy of intrusion attack detection using CFBBNN. 

 

 

Figure 3. Accuracy of intrusion attack detection using FFNN. 

 

 

Figure 4. Accuracy of intrusion attack detection using LRNN. 

 

Table 1 shows that CBPNN surpasses the other two algorithms in terms of precision, accuracy, 

and F1 scores. FBPNN has also exhibited exceptional performance, especially in terms of recall. Despite 

having relatively poor metrics, LRNN can nevertheless be regarded as a feasible choice for intrusion 
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detection. The selection of the most appropriate method is contingent upon specific requirements, 

dataset features, and the intended trade-offs between various performance measures. Therefore, further 

analysis and experimentation may be necessary to determine the optimal algorithm for a particular 

intrusion detection task. 

 

Table 1. The feature importance of the NSL-KDD dataset 

Algorithm Accuracy Recall   Precision F1-Score 

CBPNN 0.95 0.89   0.92 0.91 

FBPNN 0.90 0.92   0.87 0.89 

LRNN 0.87 0.88   0.85 0.86 

 

Table 1 shows the significance of the features in the NSL-KDD dataset for the three algorithms, 

offering a further understanding of their behavior. This analysis aids in understanding which features 

contribute most significantly to the detection of intrusions, thus informing the design and improvement 

of IDS. 

The evaluation of three ML algorithms CBPNN, FBPNN, and LRNN for intrusion detection has 

provided valuable insights into their performance using various metrics, including precision, recall, 

accuracy, and F1-score. CBPNN achieved notable results with a precision of 0.92, recall of 0.89, 

accuracy of 0.95, and an F1-score of 0.91, indicating high accuracy and effectiveness in detecting both 

normal and attack instances. These metrics demonstrate CBPNN's robust performance in identifying 

intrusions in Figure 4. 

In contrast, FBPNN exhibited slightly lower precision at 0.87 but a higher recall of 0.92, 

resulting in an accuracy of 0.90 and an F1-score of 0.89, as shown in Figure 3. While its precision may 

be lower than CBPNN, FBPNN still showcases the strong performance, particularly in recall, indicating 

its ability to effectively capture instances of intrusion.  

LRNN demonstrated a precision of 0.85, recall of 0.88, accuracy of 0.87, and F1-score of 0.86 

in Figure 4. Although these metrics are relatively lower compared to CBPNN and FBPNN, LRNN still 

performs reasonably well in intrusion detection tasks.  

Based on these results, it is evident that CBPNN outperforms the other two algorithms in terms 

of accuracy, precision, and F1 score. FBPNN also demonstrates strong performance, particularly in the 

recall. LRNN, although trailing behind in metrics, still presents itself as a viable option for intrusion 

detection.  

However, it's important to note that the choice of the most suitable algorithm depends on specific 

requirements, dataset characteristics, and desired trade-offs between different performance metrics. 

Therefore, further analysis and experimentation may be necessary to determine the optimal algorithm 

for a particular intrusion detection task. 

 

4. Conclusions 

 

This study investigated the ways in which intrusion detection systems improved the use of 

machine learning methods. The objective was to develop efficient models with the ability to accurately 

identify and classify different types of network intrusions. The evaluation of each algorithm was 

conducted by considering its strengths, shortcomings, and appropriateness for intrusion detection tasks. 

The study used many datasets, including the NSL-KDD dataset, to evaluate the effectiveness of the 

machine learning models. Various performance metrics, including accuracy, precision, recall, and F1-

score, were used to assess the effectiveness of the models. The findings indicate that machine learning 

approaches have shown encouraging outcomes in the field of intrusion detection. The study used 

machine learning models, namely CBPNN, FBPNN, and LRNN, to detect complex and sophisticated 

assaults. Among these models, CBPNN showed exceptional accuracy and performed well in identifying 

such attacks. Ensemble techniques, such as CBPNN and FBPNN, shown robust performance by 

harnessing the capabilities of several models to enhance detection accuracy. Furthermore, the use of 

feature selection approaches and dataset preparation significantly contributed to improving the 

performance of the models. The process of identifying and choosing pertinent characteristics enhanced 

the effectiveness and precision of detecting network breaches. 
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