
BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025 45

Advanced Android Malware Detection: Merging Deep

Learning and XGBoost Techniques
Araştırma Makalesi/Research Article

Esra KAVALCI YILMAZ
 1

*, Rezan BAKIR
1

1Department of Computer Engineering, Sivas University of Science and Technology, Sivas, Türkiye.

esra.kavalci@sivas.edu.tr, rezan.bakir@sivas.edu.tr

(Geliş/Received:20.09.2024; Kabul/Accepted:15.11.2024)
DOI: 10.17671/gazibtd.1553548

Abstract— The increasing importance of Android devices in our lives brings with it the need to secure personal

information stored on these devices, such as contact details, documents, location data, and browser data. These devices

are often targeted by attacks and malware designed to steal this data. In response, this work takes a novel approach to

Android malware detection by integrating deep learning with traditional machine learning algorithms. An extensive

experimental study was conducted using the DroidCollector network traffic analysis dataset. Eight different deep learning

methods are analysed for malware classification. In the first phase, experiments were conducted on both original and

stabilised datasets and the most effective methods were identified. In the second phase, the best performing deep learning

methods were combined with XGBoost for classification. This hybrid approach increased classification success by 3-4%.

The highest F1 and accuracy values obtained after 150 epochs of training with BiLSTM+XGBoost were 95.12% and

99.33% respectively. These results highlight the superiority of combining deep learning and traditional machine learning

techniques over individual models and significantly improve classification accuracy. This integrated method provides a

very important strategy for developing high-performance models for various applications.

Keywords— malware detection, machine learning, deep learning, XGBoost

Gelişmiş Android Kötü Amaçlı Yazılım Tespiti: Derin

Öğrenme ve XGBoost Tekniklerinin Birleştirilmesi

Özet— Android cihazların hayatımızdaki artan önemi, bu cihazlarda depolanan kişisel bilgileri (iletişim bilgileri, belgeler,

konum verileri ve tarayıcı verileri gibi) güvence altına alma ihtiyacını beraberinde getirir. Bu cihazlar genellikle bu

verileri çalmak için tasarlanmış saldırılar ve kötü amaçlı yazılımların hedefi olur. Bu duruma önlem olarak, bu çalışma

derin öğrenmeyi geleneksel makine öğrenimi algoritmalarıyla entegre ederek Android kötü amaçlı yazılım tespitine yeni

bir yaklaşım sunmaktadır. DroidCollector ağ trafiği analizi veri kümesi kullanılarak kapsamlı bir deneysel çalışma

yürütülmüştür. Kötü amaçlı yazılım sınıflandırması için sekiz farklı derin öğrenme yöntemi analiz edilmiştir. İlk aşamada,

hem orijinal hem de önişlemden geçirilmiş (SMOTE, SMOTETomek, ClusterCentroids) veri kümeleri üzerinde deneyler

yürütülmüş ve en etkili yöntemler belirlenmiştir. İkinci aşamada, en iyi performans gösteren derin öğrenme yöntemleri

sınıflandırma için XGBoost ile birleştirilmiştir. Bu hibrit yaklaşım, sınıflandırma başarısını %3-4 oranında artırmıştır.

BiLSTM + XGBoost modelinin 150 epoch ile eğitilmesiyle elde edilen en yüksek F1-score ve doğruluk değerleri sırasıyla

%95,12 ve %99,33 olmuştur. Bu sonuçlar, derin öğrenme ve geleneksel makine öğrenimi tekniklerinin bireysel modellere

göre birleştirilmesinin üstünlüğünü vurgular ve sınıflandırma doğruluğunu önemli ölçüde iyileştirir. Bu hibrit yöntem,

çeşitli uygulamalar için yüksek performanslı modeller geliştirmek amacıyla önemli bir strateji sunmaktadır.

Anahtar Kelimeler— kötü amaçlı yazılım tespiti, makine öğrenmesi, derin öğrenme, XGBoost

https://orcid.org/0000-0003-1314-4495
mailto:esra.kavalci@sivas.edu.tr
mailto:rezan.bakir@sivas.edu.tr
https://orcid.org/0000-0002-4373-2231

46 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025

1. INTRODUCTION

In today's digital landscape, mobile devices, especially

smartphones and tablets based on the Android operating

system, have become seamlessly integrated into our daily

lives. They serve as versatile tools for communication,

entertainment, business, and managing daily activities.

However, this ubiquitous reliance on mobile devices also

presents a significant challenge: the ever-present risk of

security vulnerabilities and malicious software threats [1].

Indeed, the central role of Android devices in our daily

lives is underlined by the vast trove of data they hold. From

cherished personal photos to vital contact details, from

sensitive financial records to indispensable calendar

entries, these devices store a wealth of intimate and

confidential information. Through sophisticated

application and service integration, Android devices have

become central tools for organizing and customizing users'

lives. However, this wealth of data also presents significant

security risks. The sensitive information stored on Android

devices is a prime target for cybercriminals and malware.

Unauthorized access to this data can have dire

consequences, including financial loss, identity theft, and

other serious disruptions. As a result, ensuring the security

of Android devices is not only important but essential for

user protection and peace of mind [2].

The Android ecosystem offers a wide range of applications

and customization possibilities, but it also presents

significant security vulnerabilities that malicious software

can exploit to infiltrate devices. These vulnerabilities can

pose serious threats to individual users, as well as

companies and organizations [3]. To detect such threats,

various analysis methods are employed in malware

detection, which can be broadly classified as static,

dynamic, and hybrid analysis approaches. Static analysis

involves examining the file structure or code patterns of

malware without executing it, making it fast and efficient

but often ineffective against malware with advanced

encryption and compression techniques. On the other hand,

dynamic analysis examines the behavior of malware by

running it in a controlled environment, which is more

effective for detecting advanced threats but requires more

resources. Hybrid analysis aims to overcome the

limitations of both static and dynamic methods by

combining the strengths of each, providing a more

comprehensive and powerful solution for detecting

complex malware. This hybrid approach ensures a more

accurate assessment of potential threats, which is crucial in

securing the Android ecosystem from malicious attacks.

The use of advanced technologies such as deep learning

offers a promising solution to detect malware on Android

devices. This paper scrutinizes novel methodologies aimed

at enhancing the security of Android devices, with a

particular emphasis on research integrating deep learning

and machine learning techniques. To the best of our

knowledge, the proposed approach represents an

unprecedented endeavor within the literature, promising

innovative strides toward fortifying Android device

security.

1.1.Motivation

The open source architecture of Android devices makes it

easier for attackers to analyze and target these devices.

Moreover, the diversity of devices in the Android

ecosystem and the irregularity in update processes make it

difficult to patch vulnerabilities quickly. For these reasons,

effective and rapid detection of malware on Android

devices has become a critical requirement for user security.

In the face of increasingly sophisticated malware attacks,

traditional security methods are insufficient. In the

literature, machine learning and deep learning methods

have been successfully applied for Android malware

detection, but the hybrid combination of these two

techniques and the integrated utilization of their

advantages is very limited. This study aims to investigate

how the hybrid use of machine learning and deep learning

methods can improve classification success by examining

the effects of unbalanced data distribution on malware

detection on Android devices.

1.2.Novelties and Contributions

In this work, the impact of balanced data distribution and

the hybrid use of deep learning and machine learning

(XGBoost) algorithms is studied to enhance accurate

classification performance within the critical security

domain of malware detection on Android systems. Android

devices, due to their large user base and open-source

nature, have become prime targets for malware attacks,

making the accurate detection of these threats essential.

Although various machine learning and deep learning

techniques have been proposed in the literature for Android

malware classification, the combined strengths of both

methods remain underexplored. Deep learning models

demonstrate superior performance in extracting

discriminative features from high-dimensional and

complex data structures, while the XGBoost algorithm

achieves high accuracy in tree-based ensemble methods

(boosting) due to its advanced optimization, regularization,

and parallel processing capabilities. Through this hybrid

approach, the study seeks to combine the adaptability of

deep learning with the robust classification ability of

XGBoost to reveal its impact on classification

performance.The contributions of the study are listed

below:

1-Elimination of Imbalanced Data Distribution: In

malware classification processes, the number of data

mislabeled as harmless (False Positive) is critical, as this

can allow malware to infiltrate the system. In order to avoid

such security risks, the data set should have a balanced

distribution. In this study, to investigate the impact of

balanced data distribution on classification performance,

"imbalanced data sampling" methods are applied, enabling

a comparative analysis of performance differences

between balanced and imbalanced data distributions.

2-Hybrid Use of Deep Learning and Machine Learning

Methods: The hybrid use of deep learning and machine

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025 47

learning (XGBoost) methods is crucial for complex

problems such as malware classification. While deep

learning models exhibit strong performance in learning

complex patterns and extracting discriminative features in

high-dimensional data, the XGBoost algorithm provides

more accurate classification results thanks to its

regularization, error rate optimization and parallel

processing capabilities. In this study, the potential for

improving classification performance is analyzed by

combining the strengths of both methods, demonstrating

the hybrid approach’s ability to deliver both flexibility and

accuracy.

2. RELATED WORKS

 Research in the field of Android malware detection has

witnessed notable progress, as scholars have delved into a

range of machine learning and deep learning

methodologies to enhance detection accuracy. In this

section, notable studies are reviewed, contributing to the

comprehension and advancement of efficient malware

detection systems.

2.1. Deep Learning Studies

Given the rise in malware targeting Android systems,

recent research has increasingly focused on deep learning

approaches to enhance detection accuracy. This section

reviews notable studies that leverage deep learning

architectures for malware detection, highlighting their

methodologies and performance outcomes in comparison

to traditional techniques.

Elayan and Mustafa conducted a study introducing a Gated

Recurrent Unit (GRU)-based Recurrent Neural Network

(RNN) as an innovative approach for detecting malware on

the Android operating system. Trained using static features

extracted from Android applications, such as API calls and

permissions, their model demonstrated significantly higher

performance than traditional methods, achieving an

accuracy rate of 98.2% on the CICAndMal2017 dataset.

[4]. In the work of Bakour and Ünver [5], a hybrid model

called DeepVisDroid was proposed for Android malware

detection, combining deep learning techniques with image-

based features. This model transforms the source code of

Android applications into four different grayscale image

datasets, from which local and global features are extracted

and analyzed. The proposed DeepVisDroid model

achieved high success, reaching an accuracy of 98.96%.

Yadav et al. presented an approach that utilizes images

derived from bytecode files for malware detection and

proposed an EfficientNet-B4 CNN based model. The

EfficientNet-B4 architecture was chosen as the feature

extractor for this process and worked with 226x226

images. In the study, 5986 samples were collected,

converted to color images, and mapped to binary files.

These images derived from Android bytecode

representations were evaluated with their proposed model.

They showed that their method was effective by achieving

95.7% accuracy [6]. Yumlembam et al. investigated the

effectiveness of graph neural networks in detecting attacks.

In the study, unique global descriptors were created using

local and global graphs obtained from API features. The

importance weight of each feature was calculated using

linear regression, and graph embedding and model training

were performed using graph neural networks. The

experiments were conducted on two datasets, one with

15,848 and the other with 56,461 samples. In this study, the

proposed model was evaluated in terms of accuracy,

precision, recall and F-score, and successful results up to

99.18% were obtained. In addition, a hostile malware

generation model called VGAE-MalGAN was developed

and 98.43% accuracy was achieved with this model [7].

Furthermore, In their study, Bakır and Bakır [3]

emphasized the importance of feature extraction methods

for malware detection in Android systems. Therefore, they

proposed a new feature extraction method, autoencoder-

based DroidEncoder. In the study, an image-based dataset

was created from Drebin and Malgenome datasets and

studies were carried out using this dataset. The authors

proposed three different autoencoders based on ANN,

CNN and VGG19. At the end of the study, it was observed

that the proposed method gave successful results in terms

of different metrics. Mohammed et al. investigated deep

learning techniques for Android application categorization.

In this context, they proposed a deep belief neural network

(DBN)-based application categorization method. Using the

CIC-AAGM2017 dataset of 1900 instances, the proposed

model was compared with four traditional feed-forward

neural networks and seven machine learning models. The

results show that the DBN-based model is effective in

classifying Android apps as benign or malicious with

98.7% accuracy [8]. Moreover, Tang et al. in their [9]

research study propose a new classification method for

detecting Android malware by addressing the weaknesses

of traditional static analysis methods. The proposed

method utilized a deep neural network that combines

hashed bytecode image and attention mechanism. The

method (ResNet-CBAM) processes the bytecode sequence

of executable files into grayscale and Markov images and

fuses these features to generate a feature space that can

characterize Android malware. Experiments showed that

the proposed ResNet-CBAM method can effectively

represent bytecode sequence files, extract, and classify

features. Based on the mixed image features, the malware

detection accuracy reaches 98.67% and outperforms other

similar methods [9]. Fu et al. stated that traditional methods

cannot detect malware accurately and effectively due to

their limitations. Therefore, they proposed a hybrid

approach that combines multi-scale convolutional neural

network (MSCNN) and ResNet networks. The approach

was able to detect Android malware with high accuracy

and precision by creating an advanced feature extraction

network with MSCNN and a detection network with

ResNet. At the end of the study, the authors confirmed that

the results of the experiments show that the use of MSCNN

as a multilevel feature extraction network significantly

improves the performance of the hybrid models [10]. Liu

et al. pointed out that semantic behavior feature extraction

is critical for training a robust malware detection model.

Therefore, they proposed SeGDroid, a novel Android

malware detection method that focuses on learning

48 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025

semantic information from sensitive function call graphs

(FCGs). SeGDroid preserves sensitive API call context and

removes irrelevant FCG nodes using graph pruning

methods. Attributes of graph nodes are extracted by

proposing a node representation method based on

word2vec and social network-based centrality. This

representation aimed to extract semantic information and

graph structure of function calls. Experimental results

showed that SeGDroid achieved 98.37% accuracy in the

case of malware detection on the CICMal2020 dataset [11].

2.2. Machine Learning Studies

In recent years, machine learning (ML) techniques have

played a crucial role in Android malware detection,

offering effective solutions through algorithms capable of

identifying patterns and anomalies in application behavior.

This section explores key studies that apply machine

learning models to classify malware, highlighting

approaches such as decision trees, support vector

machines, and ensemble methods. These studies

underscore the adaptability and efficiency of machine

learning in tackling the challenges posed by Android

malware, setting a foundation for further advancements

and hybrid approaches in the field.

For instance, Raman et al., in their work, proposed an ML-

based method for detecting Android malware. The

proposed method is optimized to detect Android malware

with a KNN classification system using data stream-based

API calls. Based on 1,050 malicious materials and 1,160

benign samples, the study [12] showed that the dataflow-

based API-level features are successful (97.66%) in

effectively detecting Android malware [12]. Similarily,

Alani and Awad presented an ML-based system called

AdStop for detecting Android adware by analyzing

features in network traffic flow. While developing AdStop,

they targeted design features such as high accuracy, speed,

and generalizability. To improve the accuracy of adware

detection and reduce the time burden, a feature reduction

phase was applied, thus reducing the number of features

used from 79 to 13. In the experiments, AdStop was found

to be successful with 98.02% accuracy, 2% false positive

rate, and 1.9% false negative rate [13]. In their study,

Duran and Bakir [14] used machine learning algorithms for

static analysis-based malicious application detection for

the Android operating system. The imbalance of the class

distribution in the dataset was eliminated by generating

artificial data with the SMOTE algorithm. They also

performed hyperparameter optimization to increase the

accuracy of machine learning algorithms. This

optimization determined the most appropriate

hyperparameters with the Grid Search method. With the

increasing threat of Android malware, it has become

important to develop effective detection techniques. In the

[15] study, the performance of various machine learning

algorithms was evaluated. The study reveals that the

LightGBM algorithm has the highest accuracy (91%),

precision (89%), and F1 score (89%) for Android malware

detection. Evaluations on a 5-class dataset containing both

benign and malicious applications suggest that these

findings can contribute to the development of effective

Android malware detection systems. In another study [16],

AlOmari et al. addressed the challenges faced by

cybersecurity researchers focusing on developing new

detection systems with the rapid increase in Android

mobile malware threats. They examined the performance

of various machine learning algorithms and then focused

on achieving maximum accuracy by normalizing

numerical features with the Synthetic Minority

Oversampling Technique (SMOTE). 11,598 APKs were

used on a large dataset and the highest accuracy value was

95.49% with the light gradient boosting model.

Furthermore, In order to secure Android mobile

applications used in industrial platforms and smart cities,

the authors of [17] present a machine learning-based

approach called as the Hybrid Multimodal Machine

Learning-Driven Android Malware Recognition and

Classification (HM3-AMRC) model. HM3-AMRC

accurately identifies and classifies Android malware using

a new technique for feature selection and analysis that is

according to authors more efficient than previous methods.

A comprehensive benchmark analysis highlights that the

HM3-AMRC method outperforms existing techniques

with an accuracy of 99.01 [17].Furthermore, Jundi and

Alyasiri in their study developed a hybrid system for

malware detection on Android smartphones. They used

Extreme Gradient Boosting (XGBoost) and Grammatical

Evaluation (GE) to determine the optimal parameters for

this detection model. The experimental results of the study

showed that the proposed model outperforms conventional

parameter tuning. As a result of the study, the proposed

model achieved 98% accuracy for CICMalDroid-2020,

99.02% accuracy for Drebin, and 99.28% accuracy for

Malgenome [18]. On the other hand, Seyfari and Meimandi

conducted a study in order to take precautions against

malicious software that has increased with the widespread

use of smartphones with Android operating system. In their

study, they developed a method using simulated annealing

algorithm and fuzzy logic to detect Android malware with

machine learning algorithms. The study concluded that the

proposed method achieved optimal results with a 99.02%

accuracy rate using the KNN classifier in combination with

a permission-based feature set. [19].

Table 1 includes some of the recently published studies in

the domain of Malware detection.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025 49

Table 1. Some of the related studies

Paper #Data #Class Method Accuracy (%)

Elayan & Mustafa,

2021
712 2 GRU 98.20

Bakour & Unver,

2021
9700 2 DeepVisDroid 98.96

Raman et al., 2022 2210 2 KNN 97.66

Alani & Awad, 2022 86228 2
AdStop with

RF
98.14

Yadav et al., 2022 5986 2
EfficientNet-B4

CNN
95.70

Yumlembam et al.,

2023

15848 2 VGAE-

MalGAN

98.33

56461 2 98.68

Baghirov, 2023 11598 5 LightGBM 91

AlOmari vd., 2023 11598 2 LightGBM 95.49

A vd., 2023 2000 2 HM3-AMRC 99.01

 3799 2 99.2

Jundi & Alyasiri,

2023
15036 2 GE-XGBoost 99.0

11598 5 97.9

Bakır & Bakır, 2023 6000 2 DroidEncoder 98.56

Mohammed et al.,

2023
1900 2

DBN-Based

Model
98.70

Tang vd., 2024 22901 2 ResNet-CBAM 98.67

Seyfari &

Meimandi, 2024

15036

2

Proposed

Method with KNN

99.02

Fu vd, 2024 11598 5
MSCNN+ResN

et18
99.20

Liu vd, 2024 11598 5 SeGDroid 98.37

Examining Table 1 reveals that previous studies on

malware detection primarily employ either deep learning

methods or traditional machine learning algorithms. Our

proposed model, however, integrates deep learning models

with the XGBoost algorithm in a hybrid approach,

leveraging the strengths of both. Deep learning models are

adept at extracting distinctive features from high-

dimensional and complex data, capturing intricate patterns

that are essential for effective malware detection. These

extracted features are then fed into XGBoost, a robust

classifier known for its high accuracy and generalization

capabilities. By combining the feature extraction power of

deep learning with the strong classification performance of

XGBoost, this hybrid approach achieves a more accurate

and resilient malware detection system.

3. MATERIALS AND METHODS

This section provides a comprehensive overview of the

dataset used in the study, describing its key characteristics

and relevance for malware detection. To address the

imbalance in the dataset, three data distribution

techniques—SMOTE, SMOTETomek, and

ClusterCentroids—are presented, each explained in detail

to demonstrate their roles in rebalancing the data. Finally,

this section describes the eight different deep learning

models and the XGBoost algorithm used in the study,

highlighting their specific functionalities and how they

contribute to the hybrid approach for improved malware

detection accuracy.

50 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025

3.1. Used Dataset

This study analyzes the DroidCollector network traffic

analysis dataset [17], [18]. Comprising 7844 data samples

and spanning 17 attributes, this dataset serves as a

foundational resource for our investigation. It is

specifically designed for detecting malicious activity in

Android applications based on network traffic analysis.

The dataset was obtained through dynamic analysis,

allowing for the capture of real-time network traffic

behavior during the execution of Android applications in a

controlled environment. This dynamic approach helps in

identifying subtle differences in the network patterns of

malicious and benign applications. The details of the

dataset, including its attributes and sample sizes, are

presented in Table 2.

3.2. Preparing Dataset

Preparing a dataset is crucial for the success of machine

learning tasks like Android malware detection. It directly

impacts the quality, generalization, and fairness of the

model. A well-prepared dataset reduces bias, enhances

interpretability, and ensures compliance with ethical

considerations. It also facilitates reproducibility, saves

computational resources, and increases the real-world

applicability of the model. Overall, proper dataset

preparation is essential for building reliable, accurate, and

ethical machine learning models that contribute to the

security of mobile devices and the digital ecosystem.

A meticulous preliminary analysis brought to light the

presence of missing values (NaN) within certain attributes.

Recognizing the potential impact of these missing values

on the accuracy of our analysis, a strategic approach was

formulated. Specifically, the attributes 'duracion,'

'avg_local_pkt_rate,' and 'avg_remote_pkt_rate' were

identified as containing NaN values and subsequently

removed from the dataset. This meticulous curation of the

dataset serves a dual purpose: it not only ensures precision

and coherence in our analytical processes but also elevates

the dataset's reliability by adeptly addressing the challenge

posed by missing values. Consequently, this methodical

handling contributes to the robustness of our findings and

enhances the overall quality of the dataset employed in our

study.

The final attributes and descriptions of the dataset are

presented in Table 2.

Following these procedures, it was observed that the 'name'

and 'type' attributes of the dataset consisted of object

expressions. To facilitate further analysis, the Label

Encoder method was implemented, converting these

attributes into numeric values. Subsequently, adjustments

were made to the 'type' column, rendering it suitable for

classification purposes. The resultant 'Benign' and

'Malicious' class distributions of the dataset are detailed in

Table 3.

Table 2. Features and description of dataset

Feature Description

name

‘AntiVirus' 'Browser' 'chess' 'Communication' 'DailyLife' 'Education' 'Finance' 'HealthAndFitness' 'Input'

'MediaAndVideo' 'NewsAndMagazines' 'Personalization' 'Photography' 'Productivity' 'Reading' 'Shopping'

'Social' 'Sport' 'Tools' 'TravelAndLocal' 'Ackposts' 'Acnetdoor' 'Adrd' 'Adsms' 'Aks' 'Antares' 'Anudow'
'BaseBridge' 'Boxer' 'DroidDream' 'DroidKungFu' 'DroidRooter' 'DroidSheep' 'EICAR-Test-File' 'EWalls'

'ExploitLinuxLotoor' 'FaceNiff' 'FakeDoc' 'FakeFlash' 'FakeInstaller' 'Fakelogo' 'Fakengry' 'FakeRun'

'FakeTimer' 'FinSpy' 'Fjcon' 'FoCobers' 'Fujacks' 'Gamex' 'Gapev' 'Gappusin' 'GGtrack' 'GinMaster'
'Glodream' 'Gmuse' 'Gonca' 'Hamob' 'Hispo' 'Iconosys' 'Imlog' 'JSExploit-DynSrc' 'JSmsHider' 'Kmin'

'Ksapp' 'Loozfon' 'Luckycat' 'Maxit' 'MMarketPay' 'Mobilespy' 'Mobsquz' 'Moghava' 'Nandrobox'

'Nickspy' 'NickyRCP' 'Nyleaker' 'Opfake' 'Pirater' 'Pirates' 'PJApps' 'Placms' 'Plankton' 'Raden'
'RootSmart' 'SafeKidZone' 'Saiva' 'Sakezon' 'Sdisp' 'SeaWeth' 'SendPay' 'SerBG' 'Smspacem' 'SMSreg'

'Spy.GoneSixty' 'Spy.ImLog' 'SpyHasb' 'SpyMob' 'SpyPhone' 'Spyset' 'Stealer' 'Stealthcell' 'Steek' 'Tesbo'

'TheftAware' 'Trackplus' 'TrojanSMS.Denofow' 'TrojanSMS.Hippo' 'Updtbot' 'Vdloader' 'Vidro' 'Xsider'
'YcChar' 'Yzhc' 'Zitmo' 'Zsone'

tcp_packets it has the number of packets TCP sent and got during communication.

dist_port_tcp it is the total number of packets different from TCP

external_ips
represents the number the external addresses (IPs) where the application tried to communicated

vulume_bytes it is the number of bytes that was sent from the application to the external sites

udp_packets the total number of packets UDP transmitted in a communication

tcp_urg_packet
represents a special type of TCP packet expressing an emergency situation, where the "URG" flag in the

TCP header is used

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025 51

source_app_packets it is the number of packets that were sent from the application to a remote server

remote_app_packets number of packages received from external sources

source_app_bytes
this is the volume (in Bytes) of the communication between the application and server

remote_app_bytes this is the volume (in Bytes) of the data from the server to the emulator

Table 3. Dataset distributions

Type Number of Data

Benign 4704

Malicious 3141

3.3. Addressing the Imbalanced Data Sampling Challenge

When dealing with imbalanced class distributions in a

dataset, conventional classification algorithms may exhibit

a bias towards the majority class, diminishing the

effectiveness of detecting minority class instances. This

imbalance poses a significant challenge in achieving

optimal performance with deep learning algorithms.

Therefore, it becomes imperative to rectify this issue by

employing techniques that balance the dataset, enhancing

reliability and efficiency. Two commonly used methods

are oversampling (introducing additional data) and

undersampling (removing data), as highlighted by [19].

3.3.1. SMOTE (Synthetic Minority Over-Sampling

Technique)

SMOTE is a powerful technique designed to fortify the

minority class in datasets exhibiting class imbalance,

thereby promoting a more balanced learning model. This

method generates synthetic examples by interpolating

instances from the minority class, enabling the learning

model to better discern minority class examples and

improve overall performance. SMOTE effectively

mitigates overfitting issues associated with random

oversampling and addresses information loss resulting

from random undersampling. This ensures that the model

possesses a more robust and generalizable structure [20].

3.3.2. SMOTETomek

SMOTETomek is a rebalancing strategy that creates a

balanced dataset by over-sampling the minority class while

simultaneously under-sampling the majority class. This

strategy aims to obtain the examples used to achieve

balance between classes in a more balanced and effective

manner, as well as improve the model's capacity to obtain

information from both categories more effectively. In this

way, the learning model gains a more generalizing

structure and reduces the possibility of misclassification,

allowing more reliable results to be obtained.

SMOTETomek improves the performance of learning

algorithms by providing an effective solution to balance

between classes with few and many examples [21].

3.3.3. ClusterCentroids

ClusterCentroids is a technique that generates synthetic

samples by clustering minority class instances within the

dataset using clustering algorithms and leveraging the

centers of these clusters. This method aims to alleviate the

challenges posed by class imbalance by improving the

representation of minority class instances. By creating

synthetic samples based on clustered representations,

ClusterCentroids contributes to a more balanced and

representative dataset, thereby enhancing the performance

of learning models, especially in scenarios with

imbalanced class distributions [22]. The results obtained

from this phase of the study are presented in Table 4.

Table 4. Dataset distribution after preprocessing

Data Type #Benigndata #Maliciousdata

Original 4704 3141

SMOTE 4704 4704

SMOTETomek 4485 4485

ClusterCentroids 3141 3141

3.4. Deep Learning Methods

In recent years, deep learning has rapidly solved complex

problems in various scientific fields and gained importance

as a subfield of artificial intelligence. This development

has revealed deep learning methods that are used

effectively in applications such as pattern recognition and

data analysis. Deep learning involves deep neural networks

consisting of hierarchical layers that are capable of

automatic learning, often on large and complex datasets.

These methodologies have demonstrated remarkable

success, notably in fields such as image and voice

recognition, natural language processing, malware

detection, and other cognitively demanding tasks [23],

[24], [25], [26]. Deep learning contributes to the

acceleration of scientific and technological developments

with its ability to reveal complex relationships within data

[27].

52 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025

3.4.1. CNN

Convolutional Neural Networks (CNN) are one of the deep

learning models that are effective in tasks such as computer

vision [28] recognition [29] and classification [30]. CNN

provides the ability to learn and generalize patterns and

features more effectively, especially by being used in areas

such as image and video analysis. Thanks to their filtering

and pattern recognition capabilities, CNN models are used

in many application areas to achieve high performance on

complex visual data [31].

3.4.2. RNN

Traditional Neural Networks typically do not retain their

final results for subsequent phases, whereas Recurrent

Neural Networks (RNNs) are specifically engineered to

address this constraint. RNNs offer a unique capability for

data persistence through internal feedback loops, enabling

them to retain memory of previous information using

interconnected components. Thanks to these features, they

can successfully process sequential datasets such as

language modeling, text generation, and time series

forecasting. In order to learn long-term dependencies more

effectively, models such as GRU and LSTM, which are

advanced variants of RNNs, are also used [32].

3.4.3. GRU

Gated Recurrent Unit (GRU) is an RNN variant that aims

to learn long-term dependencies more effectively. GRU is

a deep learning model that is particularly successful when

applied to sequential data processing tasks such as

language modeling, text generation, and time series

analysis. GRUs are specifically designed to solve the

vanishing gradient problem in traditional RNNs, providing

an effective solution to prevent gradients from shrinking

excessively over time and to prevent long-term

dependencies. Thanks to their lightweight structure, GRUs

offer faster training processes and less computational

complexity, providing effective performance, especially on

large datasets [33].

3.4.4. BiGRU

Different from unidirectional GRU models, the

Bidirectional Gated Recurrent Unit (BiGRU) model

includes information in both forward and reverse time

directions. Forward GRU captures prior information and

reverse GRU captures subsequent information, obtaining a

wide range of context information in the network intrusion

traffic prediction task and effectively extracting deep

features of the traffic. These two GRUs with opposite

directions jointly determine the output of the current

location, thus providing a more comprehensive

prediction/classification capability [34].

3.4.5. LSTM

Long Short-Term Memory (LSTM) networks consist of

three main gates: input, output, and forget gates. These

gates include a sigmoid neural network layer and a point

multiplication process, which processes the input vector to

determine the rate at which each component is allowed to

pass. LSTM is a type of RNN and is particularly successful

in time series analysis, language modeling, and natural

language processing tasks. Its ability to effectively learn

long-term dependencies and its capacity to store

information make LSTM an effective tool in complex

intra-temporal relationship and pattern recognition tasks

[35], [36].

3.4.6. BiLSTM

Bidirectional Long Short-Term Memory (Bi-LSTM) is a

type of RNN that combines memory cells and a gate

mechanism, enabling efficient modeling of sequential data.

Bi-LSTM has a bi-directional structure, consisting of two

LSTM layers, with the input sequence being processed in

the forward direction and used in the backward direction.

The outputs of the two layers are combined to produce the

final output, and the output of the hidden layers is passed

through a linear layer that calculates probability scores. Bi-

LSTM, with its ability to capture both prior and subsequent

contextual information in the input sequence, provides a

more comprehensive contextual understanding by

simultaneously evaluating information before and after the

current time step using forward and backward LSTM

layers [37].

3.4.7. CNN+BiGRU

Compared to traditional neural networks, CNN offers

advantages in weight sharing between the receiver field

view and the hidden layer, especially given the non-

linearity and randomness of network traffic data. Thanks to

the weight-sharing mechanism, CNN can reduce network

complexity and facilitate feature extraction with the same

convolution kernel. The CNN-BiGRU model combines

CNN and Bidirectional Gated Recurrent Unit (BiGRU)

architectures, which are effective in image and sequential

data analysis, capturing spatial and temporal context and

offering a wide range of applications. This model can be

successfully used in areas such as visual data and time

series analysis. [38].

3.4.8. CNN+BiLSTM

Compared to traditional techniques, CNN-based feature

learning enables an end-to-end information processing

process from input to output, bypassing the feature

extraction phase. However, considering that a single model

may not provide ideal results in predicting time series data,

more effective results can be achieved by successfully

combining the local feature extraction capabilities of CNN

with the nonlinear temporal processing capabilities of

BiLSTM. In this context, the CNN-BiLSTM model is a

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025 53

deep learning model that can be effectively used in visual

data analysis and sequential data processing. The CNN part

is used for feature extraction and the BiLSTM part is used

for sequential data analysis, capturing spatial and temporal

context simultaneously, providing a wide range of

applications [39].

3.4. Machine Learning Methods

Machine learning is a branch of artificial intelligence that

can make accurate predictions by providing applications

with the capacity to learn from experience and data rather

than predetermined rules. Machine learning algorithms

work by using input data as features to predict new output

values. This discipline focuses on pattern recognition and

learning, improving the ability of computer systems to

learn from experience and data [40].

3.5.1. XGBoost

XGBoost, or eXtreme Gradient Boosting, is a standout

Gradient Boosting algorithm renowned for its exceptional

scalability. Boasting high speed and performance,

XGBoost is known to be ten times faster than alternative

methods. Its superiority lies in swift model tuning,

facilitated by a distinctive regularization technique that

mitigates overfitting. This algorithm is a formidable asset

for tackling regression and classification challenges,

demonstrating efficacy across a myriad of applications.

Leveraging optimization techniques such as parallel

processing, tree regularization, and feature selection,

XGBoost emerges as a powerful and versatile tool in data

analysis.[41], [42]. In this study, XGBoost was employed

due to its remarkable scalability, high speed, and

performance, making it well-suited for handling large

datasets efficiently. Its unique regularization technique

helps prevent overfitting, ensuring the robustness of the

models developed in the study. Additionally, XGBoost's

effectiveness in regression and classification tasks, coupled

with its proven track record in various applications, made

it a compelling choice for enhancing the accuracy of the

malware detection system being investigated.

4. EXPERİMENTAL RESULTS AND DISCUSSION

4.1. Experimental setup and evaluation metrics

The computer used in the experiments is equipped with

features that offer high performance and processing

capacity. The main component of the system is a powerful

48-core Xeon processor, which is capable of handling

intensive processing loads. The system is also equipped

with 256 GB of RAM for efficient data processing and

memory management. This combination of hardware

allows us to perform our experiments efficiently and

effectively. Python programming language was employed

for the execution of the experiments.

Standard evaluation metrics were employed in this study to

assess the results obtained from the experiments such as

accuracy, precision, recall, and F1-score.

The model used in the study is presented in Figure 1.As

seen in the Figure 1. the study consists of two phases. In

the first phase of the study, classification tasks were

conducted using eight different deep learning methods,

including CNN, RNN, GRU, Bi-GRU, LSTM, Bi-LSTM,

CNN+BiGRU, and CNN+BiLSTM, on both the original

dataset and the dataset enhanced with imbalanced data

sampling techniques. Furthermore, to achieve optimal

results in the classification process, hyperparameter

optimization was performed using Optuna in conjunction

with a genetic algorithm. The hyperparameter ranges used

for optimization are provided in Table 5. Throughout this

phase, the epoch value was kept constant at 50.

Additionally, experiments were conducted on three

different distributions of 70/30, 80/20, and 90/10 as train

and test. The same training and test sets were used

throughout both phases of the experiment. Specifically,

after the deep learning model was trained, features were

extracted and passed as input to the XGBoost classifier.

Consistency was maintained across both stages by keeping

the same validation and test sets during feature extraction

and classification, thereby preventing data leakage or bias

in model evaluation. This approach ensured a fair

comparison of performance between the standalone deep

learning models and the hybrid model with XGBoost. The

accuracy, precision, recall, and F1-score results of these

studies are presented in detail in Tables 6, 7, 8, and 9. Table

6 contains the results of the study conducted with the

original dataset, while Tables 7, 8, and 9 present the results

of the studies conducted with the datasets obtained after the

Smote, SmoteTomek, and ClusterCentroid processes,

respectively.The methods that yielded the best results were

determined during this phase. In the second phase, the

classification process was carried out using the deep

learning structures identified as the most effective in the

first phase, combined with the XGBoost ML classifier.

This approach involved training the deep learning models

and subsequently feeding their outputs into the XGBoost

ML model. The f1-score was used as the evaluation metric,

as it provides a balanced assessment of model performance

by considering both precision and recall. The f1-score

results for this phase are presented in Table 10.

54 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025

Figure 1. The proposed method

Table 5. Hyperparameter ranges
According by Range

Optimization alg.

Mini-batchGD,

MomentumGD, Adam,

Adadelta, Adagrad,

Adamax, Nadam

Conv_layer_number 1, 2, 3

Filter_size 32, 64, 96, 128

Kernel_size 3,5

Activation
relu, tanh, gelu, swish, selu,
LeakyReLU

Kernel_initializer

uniform, lecun_uniform, normal,

zero, glorot_normal, he_normal,
he_uniform

Dense_layers_number 1, 2, 3, 4, 5, 6

Dense_neuron_number 32, 64, 96, 128

Dense_activation
relu, tanh, gelu, swish, selu,
LeakyReLU

Dense_kernel_initializer

uniform, lecun_uniform, normal,
zero, glorot_normal, he_normal,

he_uniform

Table 6. Results of the Original Dataset

Model Train (%) Accuracy Precision Recall F1-Score

CNN

70 75.83 89.11 75.06 81.48

80 85.53 82.99 91.94 87.24

90 79.11 87.30 80.68 83.86

RNN

70 88.91 93.88 88.29 91.00

80 81.26 89.63 80.97 85.08

90 74.39 83.40 77.23 80.20

GRU

70 85.00 88.61 86.58 87.58

80 80.05 84.60 82.40 83.48

90 83.95 88.73 85.91 87.30

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025 55

Bi-GRU

70 91.08 89.25 95.51 92.27

80 91.84 92.94 93.34 93.14

90 87.90 90.57 90.02 90.30

LSTM

70 78.08 95.23 74.87 83.83

80 87.25 91.76 87.46 89.56

90 86.88 90.37 88.73 89.54

Bi-LSTM

70 82.33 88.26 83.17 85.64

80 88.59 90.48 90.38 90.43

90 91.85 93.65 93.27 93.46

CNN+BiGRU

70 86.79 87.62 89.99 88.78

80 72.72 87.70 72.37 79.30

90 88.15 92.62 88.80 90.67

CNN+BiLSTM

70 87.51 88.26 90.58 89.40

80 88.34 89.73 90.60 90.17

90 78.98 89.55 79.31 84.12

Table 7. Results of the Smote Dataset

Model Train (%) Accuracy Precision Recall F1-Score

CNN

70 83.21 86.71 81.49 84.02

80 88.95 85.94 91.23 88.51

90 80.13 84.00 78.24 81.02

RNN

70 87.42 88.24 87.21 87.72

80 86.82 83.48 89.22 86.25

90 76.51 80.63 74.80 77.61

GRU

70 88.66 88.31 89.30 88.80

80 87.83 85.09 89.81 87.38

90 87.35 84.00 90.27 87.02

Bi-GRU

70 61.60 98.05 57.16 72.22

80 77.52 67.38 84.07 74.81

90 90.33 88.63 91.92 90.25

LSTM

70 81.44 86.78 78.87 82.64

80 83.85 84.55 83.12 83.83

90 83.74 79.16 87.44 83.09

Bi-LSTM

70 83.60 90.26 80.06 84.85

80 90.38 90.67 89.99 90.33

90 76.83 81.05 75.05 77.94

CNN+BiGRU

70 81.72 85.87 79.77 82.71

80 90.06 87.88 91.71 89.75

90 90.33 91.16 89.83 90.49

CNN+BiLSTM

70 88.81 87.06 90.59 88.79

80 88.10 89.27 87.03 88.14

90 87.04 85.89 88.12 86.99

56 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025

Table 8. Results of the SmoteTomek Dataset

Model Train (%) Accuracy Precision Recall F1-Score

CNN

70 87.70 82.59 91.41 86.78

80 87.79 83.99 91.94 87.79

90 85.68 84.97 86.67 85.81

RNN

70 86.59 85.55 86.81 86.17

80 90.13 90.72 90.43 90.57

90 75.03 92.81 68.93 79.11

GRU

70 81.05 82.21 79.66 80.91

80 75.64 85.91 72.52 78.65

90 86.68 92.37 83.30 87.60

Bi-GRU

70 87.11 86.77 86.83 86.80

80 84.34 91.89 80.77 85.97

90 74.81 97.60 67.47 79.79

LSTM

70 83.62 80.30 85.30 82.73

80 85.95 85.17 87.60 86.36

90 74.03 77.56 73.10 75.26

Bi-LSTM

70 91.05 93.16 89.03 91.04

80 94.87 96.16 94.15 95.14

90 88.35 89.54 87.82 88.67

CNN+BiGRU

70 88.78 86.31 90.29 88.26

80 88.91 89.43 89.34 89.39

90 76.47 86.71 72.50 78.97

CNN+BiLSTM

70 89.64 87.83 90.66 89.22

80 86.23 88.15 85.86 86.99

90 88.46 86.06 90.80 88.37

Table 9. Results of the ClusterCentroid Dataset

Model Train (%) Accuracy Precision Recall F1-Score

CNN

70 82.02 84.89 81.14 82.97

80 77.65 77.16 77.78 77.47

90 89.67 91.02 89.68 90.34

RNN

70 70.93 96.51 64.62 77.41

80 85.12 89.94 81.95 85.76

90 76.47 78.14 77.68 77.91

GRU

70 81.17 71.53 89.92 79.68

80 78.84 79.87 78.13 78.99

90 87.12 84.73 90.42 87.48

Bi-GRU

70 68.22 93.73 62.90 75.28

80 80.51 68.05 90.45 77.67

90 71.22 56.89 83.70 67.74

LSTM
70 84.14 84.28 84.89 84.58

80 83.93 84.19 83.65 83.92

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025 57

90 77.74 78.44 79.39 78.92

Bi-LSTM

70 88.70 94.35 85.32 89.60

80 80.51 83.87 78.48 81.08

90 89.98 91.92 89.50 90.69

CNN+BiGRU

70 85.36 82.63 88.25 85.35

80 88.46 88.02 88.73 88.37

90 88.55 87.13 90.94 88.99

CNN+BiLSTM

70 87.48 87.67 88.03 87.85

80 78.04 73.96 80.38 77.04

90 88.39 88.32 89.67 88.99

Tables 6, 7, 8, and 9 show that the optimal training/testing

distribution, which yields the best results for each data

type, occurs when 80% of the dataset is allocated to

training and 20% to testing. The analysis of deep learning

methods reveals that the RNN model consistently produces

the lowest performance results. Furthermore, bidirectional

models appear to achieve higher success rates compared to

other deep learning methods. Notably, when the dataset

obtained after the SmoteTomek process is used, the most

successful results are achieved.

Considering these findings, an optimal f1-score of 95.14%

was achieved using the Bi-LSTM deep learning method

with an 80/20 training/test distribution on the dataset

obtained after the SmoteTomek process. Based on the

results from the first phase, it was decided to use the

SmoteTomek dataset in the second phase, with 80%

allocated for training and 20% for testing. The first-phase

results also revealed that the lowest performance was

observed in studies conducted with the dataset obtained

after applying the ClusterCentroid method. This may be

attributed to the data loss resulting from the data reduction

process of the ClusterCentroid method, which likely

negatively impacted the results.

In the second stage of the study, different epoch values,

such as 50, 100, and 150, were evaluated to assess their

impact on model performance. The models were created

using the hyperparameter values shared in Table 11, and

the results were then compared. The variation in epoch

values was chosen to investigate how training duration

affects the performance of the deep learning models. The

models were re-run both with and without the XGBoost

algorithm, allowing for the evaluation of the impact of

different epochs on the classification results and enabling

a comparative analysis to identify the optimal

configuration for each scenario. The results of the Bi-

LSTM, Bi-GRU, and CNN models, which achieved the

three highest success rates in the second phase of the study,

are presented in Table 10.

Table 10. F1-Score and Accuracy (Acc) results for the top 3 results in the second phase of the study

Epoch Score BiLSTM BiLSTM +XGB BiGRU BiGRU+XGB CNN CNN +XGB

50
F1- Score

95.04 95.79 85.97 90.42 87.79 92.03

Acc 94.77 97.44 84.34 92.00 87.79 93.72

100
F1- Score

92.88 95.72 94.18 94.42 91.60 92.21

Acc 92.36 97.97 93.98 98.24 91.36 96.41

150

F1- Score
95.12 95.12 93.50 94.25 91.68 92.75

Acc 94.93 99.33 93.26 98.85 92.92 99.13

Table 11. Hyperparameter Values for Each Model
Model Hyperparameter Vlaue

CNN

Optimization alg Adamax

Conv_layer_number 3

Conv_Filters (96, 96, 32)

Conv_kernel_size (3, 3, 5)

Conv_activation ('tanh', 'tanh', 'tanh')

Conv_kernel_initializer ('glorot_normal', 'lecun_uniform', 'he_uniform')

Dense_layers_number 3

Neuron_number in Dense layers (96, 96, 64)

Dense_activation ('tanh', 'tanh', 'relu')

58 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025

Dense_kernel_initializer ('lecun_uniform', 'lecun_uniform', 'uniform')

RNN

Optimization alg Adamax

Rnn_layer_number 3

Rnn_units (32, 96, 32)

Rnn_activation ('relu', 'tanh', 'selu')

Rnn_kernel_initializer ('normal', 'glorot_normal', 'uniform')

Dense_layers_number 2

Dense_neuron_number (128, 128)

Dense_activation ('tanh', 'tanh')

Dense_kernel_initializer ('glorot_normal', 'uniform')

LSTM

Optimization alg Adamax

Lstm_layer_number 2

Lstm_units (32, 128)

Lstm_activation ('swish', 'tanh')

Lstm_kernel_initializer ('lecun_uniform', 'glorot_normal')

Dense_layers_number 4

Dense_neuron_number (64, 32, 96, 64)

Dense_activation ('swish', 'gelu', 'swish', 'swish')

Dense_kernel_initializer ('glorot_normal', 'glorot_normal', 'normal', 'normal')

BiLSTM

Optimization alg Nadam

Lstm_layer_number 2

Lstm_units (128, 64)

Lstm_activation ('tanh', 'LeakyReLU')

Lstm_kernel_initializer ('normal', 'he_uniform')

Dense_layers_number 5

Dense_neuron_number (32, 128, 64, 128, 96)

Dense_activation ('relu', 'swish', 'relu', 'tanh', 'gelu')

Dense_kernel_initializer
('lecun_uniform', 'glorot_normal', 'lecun_uniform', 'lecun_uniform',

'glorot_normal')

GRU

Optimization alg Nadam

Gru_layer_number 2

Gru_units (128, 128)

Gru_activation ('swish', 'tanh')

Gru_kernel_initializer ('he_normal', 'he_uniform')

Dense_layers_number 1

Dense_neuron_number (64)

Dense_activation ('relu')

Dense_kernel_initializer ('glorot_normal')

BiGRU

Optimization alg Nadam

BiGru_layer_number 1

BiGru_units (64)

BiGru_activation ('tanh')

BiGru_kernel_initializer ('glorot_normal')

Dense_layers_number 3

Dense_neuron_number (64, 32, 32)

Dense_activation ('tanh', 'relu', 'selu')

Dense_kernel_initializer ('he_uniform', 'lecun_uniform', 'normal')

CNN+BiGRU

Optimization alg Adam

Conv_layer_number 1

Conv_Filters (32)

Conv_kernel_size (3)

Conv_activation ('tanh')

Conv_kernel_initializer ('he_normal')

BiGru_layer_number 3

BiGru_units (128, 128, 96)

BiGru_activation ('gelu', 'LeakyReLU')

BiGru_kernel_initializer ('normal', 'he_normal', 'uniform')

Dense_layers_number 4

Dense_neuron_number (64, 96, 96,96)

Dense_activation ('relu', 'relu', 'tanh', 'tanh')

Dense_kernel_initializer ('lecun_uniform', 'he_uniform', 'normal', 'he_uniform')

CNN+BiLSTM

Optimization alg Adamax

Conv_layer_number 3

Conv_Filters (32, 96, 128)

Conv_kernel_size (3, 5, 5)

Conv_activation ('tanh', 'swish', 'swish')

Conv_kernel_initializer ('he_normal', 'uniform', 'he_normal')

BiLstm_layer_number 3

BiLstm_units (32, 96, 64)

BiLstm_kernel_initializer ('he_uniform', 'he_normal', 'he_uniform')

Dense_layers_number 3

Dense_neuron_number (32, 32, 64)

Dense_activation ('relu', 'tanh', 'tanh')

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025 59

Dense_kernel_initializer ('lecun_uniform', 'normal', 'he_uniform')

According to the results of Table 10, it can be concluded

that the results obtained by the hyperdization of deep

learning with XGBoost outperform the results of deep

learning models alone. This finding underscores the

significance of adopting a combined approach,

demonstrating that machine learning models achieve more

effective results when leveraged together.

Furthermore, it was observed that model performance

improved as the number of epochs increased. This

indicates that additional learning phases allowed the model

to better capture patterns within the dataset, resulting in a

more generalizable representation. The increase in epochs

positively impacted classification performance by

improving the model’s ability to capture complex patterns

in the data. However, to prevent overfitting—where the

model memorizes rather than generalizes—the number of

epochs was capped at 150. The BiLSTM+XGBoost

method achieved a remarkable 99.33% accuracy and

97.30% F1-score after 150 epochs, demonstrating the

hybrid model's strong performance. Additionally,

comparisons in Table 1 show that these results surpass the

benchmarks of other state-of-the-art studies. The

integration of deep learning and machine learning

algorithms effectively complements each method’s

limitations, resulting in enhanced classification accuracy.

These results suggest that combining the strengths of deep

learning and traditional machine learning approaches can

yield more robust and generalizable models for complex

datasets. This hybrid methodology demonstrates

considerable promise for advanced classification tasks,

offering valuable applications in both academic research

and industry.

5. CONCLUSION

This paper presents a novel approach to Android malware

detection by integrating machine learning and deep

learning methods, validated through an extensive

experimental study. In malicious application detection, a

critical risk lies in misclassifying malicious applications as

benign, potentially allowing harmful software to infiltrate

the system. This integrated approach aims to mitigate such

risks by enhancing detection accuracy and robustness. One

of the most important steps to solve this problem is to

ensure a balanced distribution of the dataset. For this

reason, this study first uses unbalanced data sampling

techniques to balance the dataset. Then, eight different

deep learning methods were used to classify the original

dataset, and the data organized using unbalanced data

sampling techniques. At this stage, a rigorous examination

of the different training and test set distributions was

performed while maintaining a constant epoch value to

identify the methods that gave the most favourable results.

These initial findings demonstrated the effectiveness of

deep learning models on different datasets, especially

when supported by unbalanced data sampling techniques.

In the next phase, the deep learning methods that showed

the most promising results from the first phase were

selected and the hybrid approach combining deep learning

with XGBoost was applied. The analysis of the results

showed that this hybrid approach improved the

classification performance by 3-4%, with a significant

increase especially as the epoch value increased.

The proposed hybrid model achieved an impressive

accuracy of 99.33%. When compared to results from other

benchmark studies, our approach consistently outperforms

existing methods, showcasing its superior effectiveness in

detecting Android malware. This highlights the potential of

the hybrid model in delivering more accurate and reliable

outcomes in malware detection.

A limitation of the proposed method is the potential

increase in computational complexity resulting from the

integration of deep learning with traditional machine

learning algorithms. This integration may require

significant computational resources and time, especially in

the training phase. Furthermore, the performance of the

combined model may be sensitive to hyperparameter

settings and may require extensive tuning to achieve

optimal results.

In addition, it is essential that such systems prevent privacy

violations when processing and storing users' personal

data. Therefore, the development of transparent and

accountable AI systems should not only enhance security

but also protect users' rights and privacy.

To address these limitations, future work will include the

evaluation of different machine learning algorithms

withdifferent deep learning constructs. Furthermore, an

ablation study will be conducted to investigate the impact

of hyperparameter tuning on both machine learning and

deep learning models to improve overall performance. In

addition, the use of automated hyperparameter tuning

techniques such as grid search, random search or Bayesian

optimisation will be investigated to efficiently search the

hyperparameter space and identify optimal configurations,

thus minimising the computational overhead.

Acknowledgements

In this study, we thank you for using the servers in "LÜTFİ

ABAY ARTIFICIAL INTELLIGENCE AND

ROBOTICS LABORATORY" in the application of

machine learning and deep learning methods.

60 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025

REFERENCES

[1] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, and Y. Xiang, “A

Survey of Android Malware Detection with Deep Neural Models”,

ACM Comput. Surv., c. 53, sy 6, s. 126:1-126:36, 2020.

[2] H. Zhu, Y. Li, L. Wang, and V. S. Sheng, “A multi-model ensemble

learning framework for imbalanced android malware detection”,

Expert Systems with Applications, c. 234, s. 120952, 2023.

[3] H. Bakır and R. Bakır, “DroidEncoder: Malware detection using

auto-encoder based feature extractor and machine learning

algorithms”, Computers and Electrical Engineering, c. 110, s.

108804, 2023.

[4] O. N. Elayan and A. M. Mustafa, “Android Malware Detection

Using Deep Learning”, Procedia Computer Science, c. 184, ss.

847-852, 2021.

[5] K. Bakour and H. M. Ünver, “DeepVisDroid: android malware

detection by hybridizing image-based features with deep learning

techniques”, Neural Comput & Applic, c. 33, sy 18, ss. 11499-

11516, 2021.

[6] H. AlOmari, Q. M. Yaseen, and M. A. Al-Betar, “A Comparative

Analysis of Machine Learning Algorithms for Android Malware

Detection”, Procedia Computer Science, c. 220, ss. 763-768, 2023

[7] A. Arthi., K. Aggarwal, R. Karthikeyan, S. Kayalvili, S. S, and A.

Srivastava, “Hybrid Multimodal Machine Learning Driven

Android Malware Recognition and Classification Model”, 2023

7th International Conference on Electronics, Communication and

Aerospace Technology (ICECA), Coimbatore, India: IEEE, ss.

1555-1560, 2023.

[8] P. Yadav, N. Menon, V. Ravi, S. Vishvanathan, and T. D. Pham,

“EfficientNet convolutional neural networks-based Android

malware detection”, Computers & Security, c. 115, s. 102622,

2022.

[9] R. Yumlembam, B. Issac, S. M. Jacob, and L. Yang, “IoT-Based

Android Malware Detection Using Graph Neural Network With

Adversarial Defense”, IEEE Internet of Things Journal, c. 10, sy

10, ss. 8432-8444, 2023.

[10] Z. Z. Jundi and H. Alyasiri, “Android Malware Detection Based on

Grammatical Evaluation Algorithm and XGBoost”, 2023 Al-Sadiq

International Conference on Communication and Information

Technology (AICCIT), Al-Muthana, Iraq: IEEE, ss. 70-75, 2023.

[11] M. A. Mohammed, M. Asante, S. Alornyo, and B. O. Essah,

“Android applications classification with deep neural networks”,

Iran J Comput Sci, c. 6, sy 3, ss. 221-232, 2023.

[12] J. Tang et al., “Android malware detection based on a novel mixed

bytecode image combined with attention mechanism”, Journal of

Information Security and Applications, c. 82, s. 103721, 2024

[13] Y. Seyfari and A. Meimandi, “A new approach to android malware

detection using fuzzy logic-based simulated annealing and feature

selection”, Multimed Tools Appl, c. 83, sy 4, ss. 10525-10549,

2024

[14] X. Fu, C. Jiang, C. Li, J. Li, X. Zhu, and F. Li, “A hybrid approach

for Android malware detection using improved multi- scale

convolutional neural networks and residual networks”, Expert

Systems with Applications, c. 249, s. 123675, 2024.

[15] Z. Liu, R. Wang, N. Japkowicz, H. M. Gomes, B. Peng, and W.

Zhang, “SeGDroid: An Android malware detection method based

on sensitive function call graph learning”, Expert Systems with

Applications, c. 235, s. 121125, 2024.

[16] R. Raman, K. R. Nirmal, A. Gehlot, S. Trivedi, D. Sain, and R.

Ponnusamy, “Detecting Android Malware and Sensitive Data

Flows Using Machine Learning Techniques”, 2022 5th

International Conference on Contemporary Computing and

Informatics (IC3I), Uttar Pradesh, India: IEEE, ss. 1694-1698,

2022.

[17] M. M. Alani and A. I. Awad, “AdStop: Efficient flow-based mobile

adware detection using machine learning”, Computers & Security,

c. 117, s. 102718, 2022.

[18] A. Duran and H. Bakır, “Hiperparametreleri Ayarlanmış Makine

Öğrenimi Algoritmalarını Kullanarak Android Sistemlerde Kötü

Amaçlı Yazılım Tespiti”, Uluslararası Sivas Bilim ve Teknoloji

Üniversitesi Dergisi, c. 2, sy 1, Art. sy 1, 2023.

[19] E. Baghirov, “Evaluating the Performance of Different Machine

Learning Algorithms for Android Malware Detection”, 2023 5th

International Conference on Problems of Cybernetics and

Informatics (PCI), Baku, Azerbaijan: IEEE, ss. 1-4, 2023.

[20] A. Zhang, H. Yu, S. Zhou, Z. Huan, and X. Yang, “Instance

weighted SMOTE by indirectly exploring the data distribution”,

Knowledge-Based Systems, c. 249, s. 108919, 2022.

[21] M. G. Lanjewar, K. G. Panchbhai, and L. B. Patle, “Fusion of

transfer learning models with LSTM for detection of breast cancer

using ultrasound images”, Computers in Biology and Medicine, c.

169, s. 107914, 2024.

[22] W.-C. Lin, C.-F. Tsai, Y.-H. Hu, and J.-S. Jhang, “Clustering-

based undersampling in class-imbalanced data”, Information

Sciences, c. 409-410, ss. 17-26, 2017.

[23] R. Ghanem and H. Erbay, “Spam detection on social networks

using deep contextualized word representation”, Multimed Tools

Appl, c. 82, sy 3, ss. 3697-3712, 2023.

[24] H. Bakir and R. Bakir, “Evaluating The Robustness of Yolo Object

Detection Algorithm in Terms Of Detecting Objects in Noisy

Environment”, Journal of Scientific Reports-A, sy 054, ss. 1-25,

2023.

[25] J. B. Lee and H. G. Lee, “Quantitative analysis of automatic voice

disorder detection studies for hybrid feature and classifier

selection”, Biomedical Signal Processing and Control, c. 91, s.

106014, 2024.

[26] Y. Alaca and Y. Çelik, “Cyber attack detection with QR code

images using lightweight deep learning models”, Computers &

Security, c. 126, s. 103065, 2023.

[27] J. Zhang, W. Gong, L. Ye, F. Wang, Z. Shangguan, and Y. Cheng,

“A Review of deep learning methods for denoising of medical low-

dose CT images”, Computers in Biology and Medicine, s. 108112,

2024.

[28] S. Kaushal, D. K. Tammineni, P. Rana, M. Sharma, K. Sridhar, and

H.-H. Chen, “Computer vision and deep learning-based approaches

for detection of food nutrients/nutrition: New insights and

advances”, Trends in Food Science & Technology, c. 146, s.

104408, 2024.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 18, SAYI: 1, OCAK 2025 61

[29] S. Raziani and M. Azimbagirad, “Deep CNN hyperparameter

optimization algorithms for sensor-based human activity

recognition”, Neuroscience Informatics, c. 2, sy 3, s. 100078, 2022.

[30] S. Bhardwaj and M. Dave, “Enhanced neural network-based attack

investigation framework for network forensics: Identification,

detection, and analysis of the attack”, Computers& Security, c.

135, s. 103521, 2023.

[31] E. K. Yılmaz, K. Adem, S. Kılıçarslan, and H. A. Aydın,

“Classification of lemon quality using hybrid model based on

Stacked AutoEncoder and convolutional neural network”, Eur

Food Res Technol, c. 249, sy 6, ss. 1655-1667, 2023.

[32] N. Raj, “Prediction of Stock Market Using LSTM-RNN Model”,

içinde 2023 International Conference on Self Sustainable Artificial

Intelligence Systems (ICSSAS), Erode, India: IEEE, ss. 623-628,

2023.

[33] Y. Yang, Chaoluomeng, and N. Razmjooy, “Early detection of

brain tumors: Harnessing the power of GRU networks and hybrid

dwarf mongoose optimization algorithm”, Biomedical Signal

Processing and Control, c. 91, s. 106093, 2024.

[34] W. Zheng, P. Cheng, Z. Cai, and Y. Xiao, “Research on Network

Attack Detection Model Based on BiGRU-Attention”, içinde 2022

4th International Conference on Frontiers Technology of

Information and Computer (ICFTIC), Qingdao, China: IEEE, ss.

979-982, 2022.

[35] E. K. Yılmaz and M. A. Akcayol, “SUST-DDD: A Real-Drive

Dataset for Driver Drowsiness Detection”, Proceeding of the 31st

Conference of Fruct Associatıon, 2022.

[36] R. Ghanem, H. Erbay, and K. Bakour, “Contents-Based Spam

Detection on Social Networks Using RoBERTa Embedding and

Stacked BLSTM”, SN COMPUT. SCI., c. 4, sy 4, s. 380, 2023.

[37] R. Wang, X. Ji, S. Xu, Y. Tian, S. Jiang, and R. Huang, “An

empirical assessment of different word embedding and deep

learning models for bug assignment”, Journal of Systems and

Software, c. 210, s. 111961, 2024.

[38] T. Wang, L. Fu, Y. Zhou, and S. Gao, “Service price forecasting of

urban charging infrastructure by using deep stacked CNN- BiGRU

network”, Engineering Applications of Artificial Intelligence, c.

116, s. 105445, Kas. 2022.

[39] B. Song, Y. Liu, J. Fang, W. Liu, M. Zhong, and X. Liu, “An

optimized CNN-BiLSTM network for bearing fault diagnosis

under multiple working conditions with limited training samples”,

Neurocomputing, c. 574, s. 127284, 2024.

[40] B. Samia, Z. Soraya, and M. Malika, “Fashion Images

Classification using Machine Learning, Deep Learning and

Transfer Learning Models”, içinde 2022 7th International

Conference on Image and Signal Processing and their Applications

(ISPA, ss. 1-5), 2022.

[41] W. Cao, Y. Liu, H. Mei, H. Shang, and Y. Yu, “Short-term district

power load self-prediction based on improved XGBoost model”,

Engineering Applications of Artificial Intelligence, c. 126, s.

106826, 2023.

[42] A. Maleki, M. Raahemi, and H. Nasiri, “Breast cancer diagnosis

from histopathology images using deep neural network and

XGBoost”, Biomedical Signal Processing and Control, c. 86, s.

105152, 2023.

.

