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Abstract 

 

In the paper, we introduced a generalization of Bernstein-Stancu-Kantorovich operators 

that reproduces exponential functions. For appropriate function spaces, both the uniform 

and 𝐿𝑝 convergence have been established. We proved that the new operators satisfy the 

Korovkin tests with the exponential functions and calculated the operators’ analytical 

expressions evaluated on various powers of 𝑒 μ𝑥which is necessary to get the uniform 

convergence conclusion using the well-known Korovkin Theorem. Consequently, the 

convergence theorem for the new operators, which transfer the weighted space  𝐿μ
𝑝 ([0,1]) 

to itself, has been established. Additionally, using the usual modulus of continuity of the 

estimated function in the continuous case, we provide quantitative estimates for the 

approximation error.  

 

Keywords: Bernstein-Kantorovich operators, Exponential polynomials, Modulus of 

continuity. 

 

 

Üstel tip Bernstein-Stancu Operatörlerinin yaklaşım özellikleri 

üzerine 
 

 

Öz 

 

Bu çalışmada üstel fonksiyonları yeniden üreten Bernstein-Stancu-Kantorovich 

operatörlerinin bir genellemesi sunulmuştur. Uygun fonksiyon uzayları için hem düzgün 

hem de 𝐿𝑝 yakınsaması kurulmuştur. Yeni operatörlerin üstel fonksiyonu sağladığını 

kanıtladık ve iyi bilinen Korovkin Teoremini kullanarak düzgün yakınsaklık sonucunu 

elde etmek için gerekli olan 𝑒 μ𝑥in çeşitli kuvvetlerine göre değerlendirilen operatörlerin 

analitik ifadelerini hesapladık. Sonuç olarak 𝐿μ
𝑝([0,1]) ağırlıklı uzayını kendisine aktaran 

yeni operatörler için yakınsama teoremi kurulmuştur. Ek olarak, sürekli durumda tahmin 
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edilen fonksiyonun olağan süreklilik modülünü kullanarak, yaklaşık hatası için niceliksel 

tahminler verilmiştir. 

 

Anahtar kelimeler: Bernstein-Kantorovich operatörleri, Üstel polinomlar, Süreklilik 

modülü. 

 

 

 

1.  Preliminaries  

 

The well-known polynomials developed by Bernstein, described as 

B𝑣(f; x) = ∑ p𝑣,l(x)f ( 
l

𝑣
)

𝑣

l=0

,   x ∈ [0,1],  𝑣 ∈ ℕ. 

Here, 𝑝𝑣,𝑙(𝑥) = (𝑣
𝑙
)𝑥𝑙(1 − 𝑥)𝑣−𝑙, and 𝑓 be a continuous function on the interval [0,1] 

were presented to demonstrate the fundamental theorem of Weierstrass (see [1]). The 

following are the Kantorovich operators that are constructed from the traditional 

Bernstein operators 

𝐾𝑣(𝑓; 𝑥) = ∑ 𝑝𝑣,𝑙(𝑥)(𝑣 + 1) ∫ 𝑓(𝑡)𝑑𝑡

𝑙+1
𝑣+1

𝑙
𝑣+1

𝑣

𝑙=0

, 𝑥 ∈ [0,1],  𝑣 ∈ ℕ. 

In [2], D. D. Stancu introduced the following polynomials for each real α,  β such that 

0 ≤ α ≤ β 

𝐵𝑣,α,β(𝑓; 𝑥) = ∑ 𝑝𝑣,𝑙(𝑥)𝑓 (
𝑙 + α

𝑣 + β
)

𝑣

𝑙=0

. 

In [6], 𝐾𝑣
α,β

(𝑓; 𝑥): 𝐿1([0,1]) → 𝐶([0,1])defined for any 𝑓 ∈ 𝐿1([0,1]) Kantorovich-

Stancu type operators were described as follows 

𝐾𝑣
α,β(𝑓; 𝑥) = (𝑣 + β + 1) ∑ (

𝑣

𝑙
) 𝑥𝑙(1 − 𝑥)𝑣−𝑙 ∫ 𝑓(𝑠)𝑑𝑠

𝑙+𝛼+1
𝑣+𝛽+1

𝑙+𝛼
𝑣+𝛽+1

𝑣

𝑙=0

. 

In [3], an exponential variation of Bernstein polynomials was presented for continuous 

functions on the interval [0,1], demonstrating uniform convergence. Recent research has 

focused on using exponential-type polynomials in the approximation theory. In [4], the 

exponential forms of Bernstein operators are presented as: 

𝐺𝑣(𝑓; 𝑥) = ∑ 𝑒−μ𝑙/𝑣

𝑣

𝑙=0

𝑒μ𝑥𝑝𝑣,𝑙(𝑧𝑣(𝑥))𝑓(𝑙/𝑣),  𝑥 ∈ [0,1], μ > 0,  𝑣 ∈ ℕ, 

here 𝑝𝑣,𝑙(𝑧𝑣(𝑥)) = (𝑣
𝑙
)(𝑧𝑣(𝑥))

𝑙
(1 − 𝑧𝑣(𝑥))

𝑣−𝑙
, and 𝑧𝑣(𝑥) =

𝑒𝜇𝑥/𝑣−1

𝑒𝜇/𝑣−1
.  Here, 𝑧𝑣(𝑥) is 

defined as increasing, continuous and convex functions in [0,1] with 𝑧𝑣(0) = 0 and 

𝑧𝑣(1) = 1.  The connection between their operators and the traditional Bernstein 

operators was defined as 

𝐺𝑣(𝑓; 𝑥) = 𝑒𝑥𝑝μ(𝑥)𝐵𝑣 (
𝑓

𝑒𝑥𝑝μ
; 𝑧𝑣(𝑥)). 

The exponential function with a real parameter μ >  0 is denoted as 𝑒𝑥𝑝μ(𝑥) = 𝑒μ𝑥. 

 In [5], the authors introduced an exponential polynomial with Kantorovich type as 

follows 
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𝐾𝑣(𝑓; 𝑥) ≔ ∑ 𝑒μ𝑥

𝑣

𝑙=0

𝑝𝑣,𝑙(𝑧𝑣+1(𝑥))(𝑣 + 1) ∫ 𝑓(𝑡)𝑒−μ𝑡
(𝑙+1)/(𝑣+1)

𝑙/(𝑣+1)

𝑑𝑡,  𝑥 ∈ [0,1],  

here 𝑝𝑣,𝑙(𝑥) and 𝑧𝑣(𝑥) be described as shown above. Approximation results using these 

families of operators have been extensively investigated and also the nonlinear positive 

operators have been introduced in place of linear positive operators (see [9]-[16]). 

 

2. Convergence results 

 

Firstly, we introduce the exponential type of Bernstein-Stancu Kantrovich polynomials 

as  

𝒦𝓋(𝑓; 𝑥) ≔ 𝐾𝑣
α,γ(𝑓; 𝑥) = (𝑣 + γ + 1)𝑒μ𝑥 ∑ 𝑝𝑛,𝑙(𝑧𝑣+1(𝑥)) ∫ 𝑓(𝑠)𝑒−𝜇𝑠

𝑙+𝛼+1
𝑣+𝛾+1

𝑙+𝛼
𝑣+𝛾+1

𝑣

𝑙=0

𝑑𝑠, 

where 𝑣 ∈ ℕ, and 𝑠 ∈ [0,1], and 𝑧𝑣(𝑥) =
𝑒μ𝑥/(𝑣+γ)−1

𝑒μ/(𝑣+γ)−1
, 0 ≤ α ≤ γ. 

 

By taking into account that ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥))𝑣
𝑙=0 = 1,for every 𝑥 ∈ [0,1], we obtain  

𝒦𝓋𝑒𝑥𝑝μ(𝑥) = (𝑣 + γ + 1)𝑒μ𝑥 ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥)) ∫ 𝑑𝑠

𝑙+𝛼+1
𝑣+𝛾+1

𝑙+𝛼
𝑣+𝛾+1

𝑣

𝑙=0

 

                    =𝑒μ𝑥 ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥))𝑣
𝑙=0 = 𝑒μ𝑥 

 

Therefore, our operators fix the exponential function 𝑒𝑥𝑝μ(𝑥) ≔ 𝑒μ𝑥. 

 

Lemma 2.1. There exist the following equalities: 

𝒦𝓋𝑒0(𝑥) =
𝑣 + γ + 1

μ
𝑒μ𝑥. (𝑒

−μ
α+𝑣

𝑣+γ+1 − 𝑒
−μ

α+𝑣+1
𝑣+γ+1) (𝑒μ/(𝑣+γ+1) + 1 − 𝑒−μ𝑥/(𝑣+γ+1))

𝑣
(1) 

 
𝒦𝓋𝑒𝑥𝑝μ(𝑥) = 𝑒𝑥𝑝μ(𝑥) (2) 

𝒦𝓋𝑒𝑥𝑝μ
2(𝑥) =

𝑣 + γ + 1

μ
(𝑒μ(α+1)/(𝑣+γ+1) − 𝑒μα/(𝑣+γ+1))𝑒μ𝑥+μ𝑥𝑣/(𝑣+γ+1) (3) 

 

𝒦𝓋𝑒𝑥𝑝μ
3(𝑥)=

𝑣+𝛾+1

2𝜇
𝑒μ𝑥(𝑒2μ(α+1)/(𝑣+γ+1) − 𝑒μα/(𝑣+γ+1)) 

⋅ (𝑒2μ(𝑥+1)/(𝑣+γ+1) + 𝑒μ𝑥/(𝑣+γ+1) − 𝑒μ/(𝑣+γ+1))
𝑣

(4) 

 

 

Proof. As we have already noted, (2) is immediate. Now, we establish (1) and (3).  

𝒦𝓋𝑒0(𝑥) = (𝑣 + γ + 1)𝑒μ𝑥 ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥)) ∫ 𝑒−𝜇𝑠

(𝑙+𝛼+1)
𝑣+𝛾+1

(𝑙+𝛼)
𝑣+𝛾+1

𝑣

𝑙=0

𝑑𝑠 

        =
𝑣 + 𝛾 + 1

𝜇
𝑒μ𝑥 ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥))(𝑒−𝜇((𝑙+𝛼)/(𝑣+𝛾+1)) − 𝑒−𝜇((𝑙+𝛼+1)/(𝑣+𝛾+1)))

𝑣

𝑙=0

 

=
𝑣 + 𝛾 + 1

𝜇
𝑒𝜇𝑥𝑒

−μ 
α

𝑣+γ +1( 1 − 𝑒−μ /(𝑣+γ +1)) ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥))𝑒−μ𝑙/(𝑣+γ +1)

𝑣

𝑙=0

. 

 

We can write the following by some computations 
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∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥))𝑒−μ𝑙/(𝑣+γ+1)

𝑣

𝑙=0

= 𝑒−μ𝑣/(𝑣+γ+1)(𝑒μ/(𝑣+γ+1) + 1 − 𝑒−μ𝑥/(𝑣+γ+1))
𝑣

, 

 and then we have the equality (1). Now, 

𝒦𝓋𝑒𝑥𝑝μ
2(𝑥) = (𝑣 + γ + 1)𝑒μ𝑥 ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥)) ∫ 𝑒𝜇𝑠

𝑙+𝛼+1
𝑣+𝛾+1

𝑙+𝛼
𝑣+𝛾+1

𝑣

𝑙=0

𝑑𝑠 

=
𝑣 + 𝛾 + 1

𝜇
𝑒μ𝑥(𝑒μ(α+1)/(𝑣+γ+1) − 𝑒μα/(𝑣+γ+1)) ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥))𝑒−μ𝑙/(𝑣+γ+1)

𝑣

𝑙=0

. 

Here, ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥))𝑒−μ𝑙/(𝑣+γ+1)𝑣
𝑙=0 = 𝑒μ𝑥𝑣/(𝑣+γ+1), we obtain the equality (3). 

Using analogous reasons, it is easy to demonstrate the equality (4). 

 

Theorem 2.2 If 𝑓 ∈ 𝐶([0,1]), then 𝒦𝓋𝑓 converges to 𝑓 uniformly on [0,1]. 
 

Proof. According to the well-known Korovkin Theorem (see in [7],[8]), since 𝒦𝓋are 

positive linear operators, it must be verified to confirm uniform convergence on a 

Korovkin subset of 𝐶([0,1]) to obtain uniform convergence for every 𝑓 ∈
𝐶([0,1]).  Simply confirming the uniform convergence for the Korovkin subset 

{1, 𝑒𝑥𝑝μ, 𝑒𝑥𝑝μ
2} is sufficient  (see in [8]). Using Lemma 2.1, and the recognizing that 

𝒦𝓋𝑒1(𝑥) = 𝑒1(𝑥)for any 𝑥 ∈ [0,1], we can quickly see that 𝒦𝓋𝑒𝑖 converges uniformly 

to 𝑒𝑖, 𝑖 =  0, 2, and the conclusion is thus verified. 

 

The convergence of our operators in 𝐿𝑝 will be examined. In accordance with its 

definition, it is inherent to derive a consequence of convergence in 𝐿μ
𝑝([0,1]), which is a 

weighted 𝐿𝑝 -space defined as the set of the measurable functions 𝑓: [0,1] → ℝ such that  

∥ 𝑓 ∥𝑝,μ≔ {∫ ∣ 𝑒−𝜇𝑥𝑓(𝑥) ∣𝑝 𝑑
1

0

𝑥}

1/𝑝

< +∞. 

 

Theorem 2.3 Let 𝑓 ∈ 𝐿μ
𝑝([0,1]), then we obtain 

∥ 𝒦𝓋𝑓 ∥𝑝,μ≤
𝑣 + γ + 1

𝑣 + 1

𝑒μ − 1

μ
∥ 𝑓 ∥𝑝,μ, (5) 

 

for every 𝑣 ∈ ℕ. Furthermore, ∥ 𝒦𝓋𝑓 − 𝑓 ∥𝑝,μ→ 0  as 𝑣 → +∞. 

 

Proof. Consider the function 𝑓 ∈ 𝐿μ
𝑝 ([0,1]), and then apply Jensen's inequality 

∥ 𝒦𝓋𝑓 ∥𝑝,μ
𝑝 = ∫ |∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥))(𝑣 + γ + 1) ∫ 𝑒−μ𝑠

𝑙+α+1
𝑣+γ+1

𝑙+α
𝑣+γ+1

𝑛

𝑙=0

𝑓(𝑠)𝑑𝑠|

𝑝
1

0

𝑑𝑥 

≤ ∫ ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥)) |(𝑣 + γ + 1) ∫ 𝑒−μ𝑠

𝑙+α+1
𝑣+γ+1

𝑙+α
𝑣+γ+1

𝑓(𝑠)𝑑𝑠|

𝑝
𝑣

𝑙=0

1

0

𝑑𝑥. 

If we apply again Jensen’s inequality in [
𝑙+α

𝑣+γ+1
,

𝑙+α+1

𝑣+γ+1
] , then  

∥ 𝒦𝓋𝑓 ∥𝑝,μ
𝑝 ≤ ∑ ∫ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥))𝑑𝑥(𝑣 + γ + 1) ∫ 𝑒−μ𝑝𝑠

(𝑙+α+1)/(𝑣+γ+1)

(𝑙+α)/(𝑣+γ+1)

1

0

𝑣

𝑙=0

∣ 𝑓(𝑠) ∣𝑝 𝑑𝑠. 

We now estimate the terms 𝐼𝑣,𝑙 = (𝑣 + γ + 1) ∫ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥))𝑑𝑥
1

0
. If we put  
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𝑠 = 𝑧𝑣+1(𝑥) =
𝑒μ𝑥/(𝑣+γ+1)−1

𝑒μ/(𝑣+γ+1)−1
, so that 𝑥 =

𝑣+γ+1

μ
𝑙𝑛(𝑠(𝑒μ/(𝑣+γ+1) − 1) + 1) and  

𝑑𝑥 =
𝑣+γ+1

μ

𝑒μ/(𝑣+γ+1)−1

(𝑒μ/(𝑣+γ+1)−1)𝑠+1
𝑑𝑠, the integral becomes 

𝐼𝑣,𝑙 = (𝑣 + γ + 1) ∫ 𝑝𝑣,𝑙(𝑠)
𝑣 + γ + 1

μ

𝑒μ/(𝑣+γ+1) − 1

(𝑒μ/(𝑣+γ+1) − 1)𝑠 + 1
𝑑𝑠

1

0

≤
𝑒μ/(𝑣+γ+1) − 1

μ/(𝑣 + γ + 1)
(𝑣 + γ + 1) ∫ 𝑝𝑣,𝑙(𝑠)𝑑𝑠

1

0

. 

Since  

(𝑣 + γ + 1) ∫ 𝑝𝑣,𝑙(𝑠)𝑑𝑠
1

0

= (𝑣 + γ + 1) ∫ (
𝑣

𝑙
) 𝑠𝑙(1 − 𝑠)𝑣−𝑙

1

0

𝑑𝑠 = 1 +
γ

𝑣 + 1
, 

we get  

𝐼𝑣,𝑙 ≤ (𝑒μ/(𝑣+γ+1) − 1)
(𝑣+γ+1)2

μ(𝑣+1)
, and 

∥ 𝒦𝓋𝑓 ∥𝑝,μ
𝑝 ≤

𝑒μ/(𝑣+γ+1) − 1

(𝑣 + 1)μ/(𝑣 + γ + 1)2
∑ ∫ 𝑒−μ𝑝𝑠

(𝑙+α+1)/(𝑣+γ+1)

(𝑙+α)/(𝑣+γ+1)

𝑣

𝑙=0

∣ 𝑓(𝑠) ∣𝑝 𝑑𝑠 

≤
𝑒μ/(𝑣+γ+1) − 1

μ/(𝑣 + γ + 1)

𝑣 + γ + 1

𝑣 + 1
∫ 𝑒−μ𝑝𝑠

1

0

∣ 𝑓(𝑠) ∣𝑝 𝑑𝑠 ≤ 2
𝑒μ/(𝑣+γ+1) − 1

μ/(𝑣 + γ + 1)
∥ 𝑓 ∥𝑝,μ

𝑝
. 

Considering that 
μ

𝑣+γ+1
≤ μ, for every 𝑣, γ ≥ 0, and the function ℎ(𝑡) =

𝑒𝑡−1

𝑡
 is 

increasing, we get ∥ 𝒦𝓋𝑓 ∥𝑝,μ
𝑝 ≤

𝑣+γ+1

𝑣+1

𝑒μ−1

μ
∥ 𝑓 ∥𝑝,μ

𝑝
, that is the proof of the inequality 

given in ([5].) 

 

Define ϵ >  0 as fixed. If 𝑓 ∈ 𝐿μ
𝑝([0,1]) then by the density of 𝐶([0,1]) in 𝐿μ

𝑝 ([0,1]), there 

exists ℎ ∈ 𝐶([0,1]) such that ∥ 𝑓 − ℎ ∥𝑝<
ϵ

2(𝐾μ+1)
,where 𝐾μ =

𝑣+γ+1

𝑣+1

𝑒μ−1

μ
. Additionally,  

∥ 𝑓 − ℎ ∥𝑝,μ= {∫ (𝑒−𝜇𝑥(𝑓(𝑥) − ℎ(𝑥))
𝑝

𝑑𝑥
1

0

}

1
𝑝

≤ {∫ (𝑓(𝑥) − ℎ(𝑥))
𝑝

1

0

𝑑𝑥}

1
𝑝

 

                      =∥ 𝑓 − ℎ ∥𝑝<
ϵ

2(𝐾μ+1)
.                                                                          (6) 

Then  

∥ 𝒦𝓋𝑓 − 𝑓 ∥𝑝,μ≤∥ 𝒦𝓋𝑓 − 𝒦𝓋ℎ ∥𝑝,μ +∥ 𝒦𝓋ℎ − ℎ ∥𝑝,μ +∥ ℎ − 𝑓 ∥𝑝,μ. 

Now,  

∥ 𝒦𝓋ℎ − ℎ ∥𝑝,μ≤ {∫ ∣ 𝒦𝓋ℎ(𝑥) − ℎ(𝑥) ∣𝑝 𝑑𝑥
1

0

}

1
𝑝

≤∥ 𝒦𝓋ℎ − ℎ ∥∞ 

and so, there is �̃� ∈  ℕ such that, for each 𝑣 ≥ �̃�, ∥ 𝒦𝓋ℎ − ℎ ∥𝑝,μ≤
ϵ

2
 from Theorem 2.2. 

Furthermore, by (5), ∥ 𝒦𝓋𝑓 − 𝒦𝓋ℎ ∥𝑝,μ≤ 𝐾μ ∥ ℎ − 𝑓 ∥𝑝,μ and thus, by inequality (6), 

∥ 𝒦𝓋𝑓 − 𝑓 ∥𝑝,μ≤ (𝐾μ + 1) ∥ 𝑓 − ℎ ∥𝑝,μ+
ϵ

2
= ϵ, for each 𝑣 ≥ �̃�. It is immediately 

apparent that all of the conclusions of Theorem 2.3 can be reformulated using the standard 

𝐿𝑝-norm ∥. ∥𝑝  instead of its weighted version ∥. ∥𝑝,𝜇, 1 ≤ 𝑝 < +∞, by applying the 

following simple inequalities: 𝑒−μ ∥ 𝑓 ∥𝑝≤∥ 𝑓 ∥𝑝,μ≤∥ 𝑓 ∥𝑝. 

 

Theorem 2.4 Let 𝑓 ∈ 𝐶([0,1]), for every 𝑣 ∈ ℕ,  𝑛 > 1 the following inequality holds 

∥ 𝒦𝓋𝑓 − 𝑓 ∥∞≤ ω (𝑒𝑥𝑝μ
−1𝑓,

1

√𝑣 + γ + 1
) 𝑒μ (1 +

1

√𝑣 + 𝛾 + 1√γ + 1
+ √γ + 1) 
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+𝑒μω(𝑒𝑥𝑝𝜇
−1𝑓, 𝑚𝑎𝑥𝑥∈[0,1]|𝑧𝑣+1(𝑥) − 𝑥|). 

 

Proof. For every fixed 𝑥 ∈ [0,1], we have  

𝒦𝓋𝑓(𝑥) − 𝑓(𝑥) = 𝒦𝓋𝑓(𝑥) − 𝑓(𝑥) ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥))

𝑣

𝑙=0

 

                              = 𝒦𝓋𝑓(𝑥) − (𝑣 + γ + 1)𝑒μ𝑥 ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥)) ∫ 𝑒−𝜇𝑥

𝑙+𝛼+1
𝑣+𝛾+1

𝑙+𝛼
𝑣+𝛾+1

𝑣

𝑙=0

𝑓(𝑥)𝑑𝑠 

                             = (𝑣 + γ + 1)𝑒μ𝑥 ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥)) ∫ (𝑒−𝜇𝑠𝑓(𝑠) − 𝑒−𝜇𝑥𝑓(𝑥))𝑑𝑠

𝑙+𝛼+1
𝑣+𝛾+1

𝑙+𝛼
𝑣+𝛾+1

𝑣

𝑙=0

. 

By using properties of the modulus of continuity, we get 

∣ 𝒦𝓋𝑓(𝑥) − 𝑓(𝑥) ∣

≤ (𝑣 + γ + 1)𝑒μ ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥)) ∫ |𝑒−𝜇𝑠𝑓(𝑠) − 𝑒−𝜇𝑥𝑓(𝑥)|𝑑𝑠

𝑙+𝛼+1
𝑣+𝛾+1

𝑙+𝛼
𝑣+𝛾+1

𝑣

𝑙=0

 

                 ≤ (𝑣 + γ + 1)𝑒μ ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥)) ∫ 𝜔(𝑒𝑥𝑝𝜇
−1𝑓, |𝑠 − 𝑥|)𝑑𝑠

𝑙+𝛼+1
𝑣+𝛾+1

𝑙+𝛼
𝑣+𝛾+1

𝑣

𝑙=0

. 

Additionaly, we can easily see that  

lim
𝑣→∞

max
𝑥∈[0,1]

∣ 𝑧𝑣+1(𝑥) − 𝑥 ∣ = 0, 

and the following inequality exists 
|𝑠 − 𝑥| ≤ |𝑠 − 𝑧𝑣+1(𝑥)| + |𝑧𝑣+1(𝑥) − 𝑥| ≤ |𝑠 − 𝑧𝑣+1(𝑥)| + max

𝑥∈[0,1]
∣ 𝑧𝑣+1(𝑥) − 𝑥 ∣. 

By using the above inequality, we obtain 

∣ 𝒦𝓋𝑓(𝑥) − 𝑓(𝑥) ∣

≤ (𝑣 + γ + 1)𝑒μ ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥)) ∫ 𝜔(𝑒𝑥𝑝𝜇
−1𝑓, |𝑠 − 𝑧𝑣+1(𝑥)|)𝑑𝑠

𝑙+𝛼+1
𝑣+𝛾+1

𝑙+𝛼
𝑣+𝛾+1

𝑣

𝑙=0

 

+(𝑣 + γ + 1)𝑒μ ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥)) ∫ 𝜔( 𝑒𝑥𝑝𝜇
−1𝑓, max

                          𝑥∈[0,1]

∣ 𝑧𝑣+1(𝑥) − 𝑥 ∣)𝑑𝑠

𝑙+𝛼+1
𝑣+𝛾+1

𝑙+𝛼
𝑣+𝛾+1

𝑣

𝑙=0

 

: = 𝐸1 + 𝐸2. 
Firstly, by means of the Cauchy-Schwarz inequality, we need to estimate the following; 

∑ |𝑥 −
𝑙 + α

𝑣 + γ + 1
| 𝑝𝑣,𝑙(𝑥)

𝑣

𝑙=0

≤ (∑ |𝑥 −
𝑙 + α

𝑣 + γ + 1
|
1/2𝑣

𝑙=0

𝑝𝑣,𝑙(𝑥))

1/2

(∑ 𝑝𝑣,𝑙(𝑥)

𝑣

𝑙=0

)

1/2

 

             = (∑ (𝑥 −
𝑙 + α

𝑣 + γ + 1
)

2𝑣

𝑙=0

𝑝𝑣,𝑙(𝑥))

1/2

. 

By applying some equalities associated with classical Bernstein-Stancu polynomials we 

have  
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∑ (𝑥 −
𝑙 + α

𝑣 + γ + 1
)

2

𝑝𝑣,𝑙(𝑥)

𝑣

𝑙=0

= 𝑥2 + ∑
(𝑙 + α)2

(𝑣 + γ + 1)2
𝑝𝑣,𝑙(𝑥)

𝑣

𝑙=0

− 2𝑥 ∑
𝑙 + α

𝑣 + γ + 1
𝑝𝑣,𝑙(𝑥)

𝑣

𝑙=0

 

= 𝑥2 +
𝑣(𝑣 − 1)

(𝑣 + γ + 1)2
𝑥2 +

(1 + 2α)𝑣

(𝑣 + γ + 1)2
𝑥 +

α2

(𝑣 + γ + 1)2

− 2𝑥 (
𝑣𝑥

𝑣 + γ + 1
+

α

𝑣 + γ + 1
) , 

additionally taking into consideration that the above inequality holds its maximum at 𝑥 =
1 for every 𝑛 > 1, we obtain  

∑ |𝑥 −
𝑙 + α

𝑣 + γ + 1
| 𝑝𝑣,𝑙(𝑥)

𝑣

𝑙=0

≤
√γ + 1

√𝑣 + γ + 1
. 

Now, let us calculate the following integral to estimate 𝐸1: 

∫ |𝑠 − 𝑧𝑣+1(𝑥)|𝑑𝑠

𝑙+α+1
𝑣+γ+1

𝑙+α
𝑣+γ+1

≤ ∫ |𝑠 −
𝑙 + α

𝑣 + γ + 1
| 𝑑𝑠

𝑙+α+1
𝑣+γ+1

𝑙+α
𝑣+γ+1

+ ∫ |
𝑙 + α

𝑣 + γ + 1
− 𝑧𝑣+1(𝑥)| 𝑑𝑠

𝑙+α+1
𝑣+γ+1

𝑙+α
𝑣+γ+1

 

=
1

2(𝑣 + γ + 1)2
+

1

𝑣 + γ + 1
|

𝑙 + α

𝑣 + γ + 1
− 𝑧𝑣+1(𝑥)| . 

Considering the following inequality, for λ, δ > 0, 
ω(𝑓, λδ) ≤ (1 + λ)ω(𝑓, δ), 

we can estimate 𝐸1as  follows 

𝐸1 ≤ ω(𝑒𝑥𝑝μ
−1𝑓, 1/√𝑣 + γ + 1)(𝑣 + γ + 1)𝑒μ ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥))

𝑣

𝑙=0

 

× ∫ (1 + √𝑣 + 𝛾 + 1|𝑠 − 𝑎𝑣+1(𝑥)|)𝑑𝑠

𝑙+𝛼+1
𝑣+𝛾+1

𝑙+𝛼
𝑣+𝛾+1

 

    ≤ ω(𝑒𝑥𝑝μ
−1𝑓, 1/√𝑣 + γ + 1) 

× 𝑒μ (∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥))

𝑣

𝑙=0

+ √𝑣 + γ + 1(𝑣 + γ + 1) ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥)) ∫ |𝑠 − 𝑎𝑣+1(𝑥)|𝑑𝑠

𝑙+α+1
𝑣+γ+1

𝑙+α
𝑣+γ+1

𝑣

𝑙=0

) 

≤ ω(𝑒𝑥𝑝μ
−1𝑓, 1/√𝑣 + γ + 1)𝑒μ (1 +

√𝑣 + γ + 1

(𝑣 + γ + 1)√γ + 1
∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥))

𝑣

𝑙=0

 

+√𝑣 + γ + 1 ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥)) |
𝑙 + α

𝑣 + γ + 1
− 𝑧𝑣+1(𝑥)|

𝑣

𝑙=0

) 

≤ ω(𝑒𝑥𝑝μ
−1𝑓, 1/√𝑣 + γ + 1)𝑒μ (1 +

1

√𝑣 + 𝛾 + 1√γ + 1
+ √γ + 1) . 

On the other side, regarding the estimation of 𝐸2, we have  
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𝐸2 ≤ ω(𝑒𝑥𝑝𝜇
−1𝑓, max

𝑥∈[0,1]
|𝑧𝑣+1(𝑥) − 𝑥|)𝑒μ ∑ 𝑝𝑣,𝑙(𝑧𝑣+1(𝑥))

𝑣

𝑙=0

= ω(𝑒𝑥𝑝𝜇
−1𝑓, max

𝑥∈[0,1]
|𝑧𝑣+1(𝑥) − 𝑥|)𝑒μ. 

Therefore, we obtain the proof of the theorem. 

 

 

3. Conclusion 

For over a century, researchers have been interested in approaching functions because of 

their structure and the wide variety of fields that make use of them. Furthermore, there 

has been significant investigation into the method of continuous functions via sequences 

of linear positive operators, a subject with several non-mathematical applications in fields 

like engineering and physics. Bernstein provided the definition for the proof of the 

Weierstrass approximation theorem in 1912; it was subsequently cited by him (see in [1]). 

The literature has many articles with studies of various generalizations and modifications 

of Bernstein operators. Reproducing exponential functions, we presented a generalization 

of Bernstein-Stancu-Kantorovich operators in the article. The uniform and 𝐿𝑝 

convergences have been proven for appropriate function spaces. The positive 

approximation processes identified by Korovkin are significant and emerge naturally in 

various mathematical fields. In order to obtain the uniform convergence conclusion using 

the famous Korovkin Theorem, we demonstrated that the new operators are exponentially 

compatible and computed their analytical expressions evaluated on different powers of 

𝑒μ𝑥. So, the convergence theorem for the new operators has been proven. These operators 

move the weighted space 𝐿μ
𝑝([0,1]) to itself. Consequently, we describe a generalization 

of Bernstein-Stancu-Kantorovich operators and give some important approximation 

results so that we can get a better estimate. 

 

 

References 

 

[1]   Bernstein, S. N., Demonstration du theoreme de weierstrass fondee sur le calcul 

de probabilities, Commun. Soc. Math. Kharkow, 2, 1–2, (1912– 1913).  

[2]   Stancu, D. D., Approximation of function by a new class of polynomial operators, 

Rev. Roum. Math. Pures et Appl., 13, 8, 1173–1194, (1968).  

[3]   Morigi, S., Neamtu, M., Some results for a class of generalized polynomials, Adv. 

Comput. Math., 12, 133–149, (2000).  

[4]   Aral, A., Cardenas-Morales, D., Garrancho, P., Bernstein-type operators that 

reproduce exponential functions, J. Math. Inequal., 3, 861–872, (2018).  

[5]   Angeloni, L., Costarelli, D., Approximation by exponential-type polynomials, 

Journal of Mathematical Analysis and Applications, 532, 1, 127927 (2024).  

[6]   Barbosu, D., Kantorovich-Stancu type operators, Journal of Inequalities in Pure 

and Applied Mathematics, 5, 3, (2004).  

[7]   Altomare, F., Campiti, M., Korovkin-Type Approximation Theory and Its 

Applications, Walter de Gruyter, Berlin, (1994).  

[8]   Altomare, F., Korovkin-type theorems and approximation by positive linear 

operators, arXiv, https://doi.org/10.48550/arXiv.1009.2601, (2010).  

[9]   Paşca, S. V., The modified Bernstein-Stancu operators, General Mathematics, 

291, 121-128, (2021).  



BAUN Fen Bil. Enst. Dergisi, 27(1), 315-323, (2025) 
 

323 

[10]   Acar, E., Izgi, A., Kırcı Serenbay, S., Note On Jakimovski-Leviatan Operators 

Preserving ex, Applied Mathematics and Nonlinear Sciences, 4 2, 543–550, 

(2019).  
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