Akademik Tarih ve Düşünce Dergisi Academic Journal of History and Idea ISSN: 2148-2292

12 (1) 2025

Araştırma Makalesi | Research Article Geliş tarihi |Received:12.12.2024 Kabul tarihi |Accepted:14.02.2025 Yayın tarihi |Published:25.02.2025

Aslıhan Güngördü

https://orcid.org/0000-0002-0911-3525

Phd, Istanbul Gedik University, Institute of Graduate Studies Department of Occupational Health and Safety, Türkiye, aslihan.Güngördü@gmail.com

Hasan Uğur Öncel

https://orcid.org/0000-0002-6900-1955

Assistant Professor, Istanbul Gedik University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Türkiye, ugur.oncel@gedik.edu.tr

Atıf Künyesi | Citation Info

Güngördü, A. & Öncel, H.U. (2025). Determination of Occupational Health and Safety Risks in the Restoration of Historical Buildings. *Akademik Tarih ve Düşünce Dergisi, 12* (1), 664-708.

Determination of Occupational Health and Safety Risks in the Restoration of Historical Buildings*

Abstract

Restoration practices, which are one of the methods of preserving cultural heritage buildings in historical environments that have become inactive and lost their function due to various reasons, aim to ensure structural and urban continuity. Restoration practices, which also include some construction items, contain unique hazards and risks due to their unique structure and construction techniques. Identifying these hazards and risks in advance is of great importance for the long-term sustainability of the health and safety of workers working in this field. In this study, the hazards that may be encountered in restoration works and the risks that these hazards may cause will be examined. As a result of the studies on regulations

^{*} This study was produced from the thesis titled "A Field Research and Model Proposal for Occupational Health and Safety Practices in Restoration Works" numbered 10706086 of the Council of Higher Education.

https://dergipark.org.tr/tr/pub/atdd

and field applications, it is of great importance to correctly identify the risks in restoration works in order to obtain more reliable working spaces for those working in this field and users. The main purpose of this study is to contribute to the elimination of these application risks by identifying them at the beginning of the application.

Keywords: Restoration, Reconstruction, Historical Environment, Hazard, Risks

Tarihi Yapıların Restorasyonunda İş Sağlığı ve Güvenliği Risklerinin Belirlenmesi

Öz

Çeşitli nedenlerle atıl hale gelmiş ve işlevini yitirmiş tarihi çevrelerdeki kültürel miras yapılarını koruma yöntemlerinden biri olan restorasyon uygulamaları, yapısal ve kentsel sürekliliğin sağlanmasını amaçlıyor. Bazı yapı öğelerini de içeren restorasyon uygulamaları, özgün yapısı ve yapım teknikleri nedeniyle kendine özgü tehlike ve riskler barındırır. Bu tehlike ve risklerin önceden tespit edilmesi, bu alanda çalışan işçilerin sağlık ve güvenliklerinin uzun vadede sürdürülebilirliği açısından büyük önem taşımaktadır. Bu çalışmada restorasyon çalışmalarında karşılaşılabilecek tehlikeler ve bu tehlikelerin yol açabileceği riskler incelenecektir. Yönetmelikler ve saha uygulamaları ile ilgili yapılan çalışmalar sonucunda bu alanda çalışanlar ve kullanıcılar için daha güvenilir çalışma alanlarının elde edilmesi için restorasyon çalışmalarındaki risklerin doğru tespit edilmesi büyük önem taşımaktadır. Bu çalışmanın temel amacı, bu uygulama risklerinin uygulamanın başında tespit edilerek ortadan kaldırılmasına katkı sağlamaktır.

Anahtar Kelimeler: Restorasyon, Rekonstrüksiyon, Tarihi Çevre, Tehlike, Riskler

Introduction

Historical buildings are achievements that are historical artifacts that transfer the sociological, cultural and economic conditions of the period to which they belong to the present day (Güngördü, 2021). For this reason, the preservation and transfer of cultural heritage period buildings to the present day is of great importance for the sustainability of urban memory. Structural wear and tear occurs as a result of historical buildings losing their function over time, losing their users or remaining idle for various reasons. There are various methods of renovation and integration of these cultural heritage buildings into the present day. According to Feilden (2003), restoration practices are also a conservation method that refers to the stages of renovation or repair of the historical building (Feilden, 2003). In accordance with the legislation in our country, the restoration work item is considered as a part of the construction sector (Uzun et al., 2020). Construction works are among the sectors with the highest number of occupational accidents. According to the 2024

SSI Statistical Yearbook, it is the sector where fatal work accidents are the most common after the industrial sector with a rate of 26% (İş Sağlığı ve Güvenliği Yönetmeliği, 2024).

Figure 1: Sectoral distribution of mortality rates due to occupational accidents in the first 6 months of 2024 (İş Sağlığı ve Güvenliği Yönetmeliği, 2024).

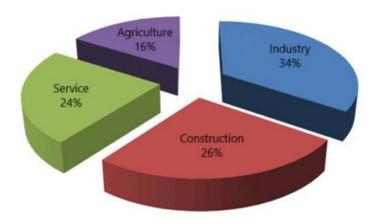
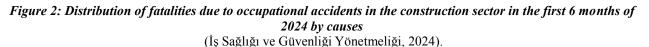
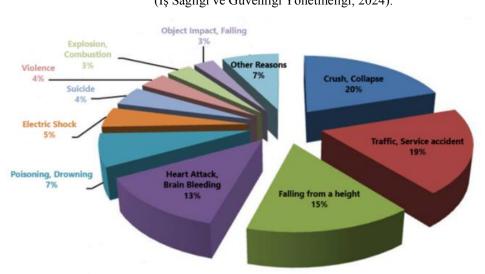
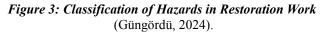
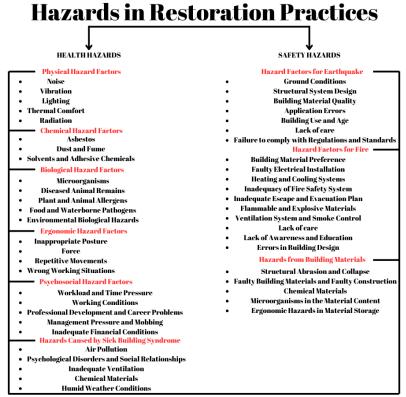




Figure 2 shows the distribution of occupational accidents in the construction sector in the first 6 months of 2024 according to the causes of death. Restoration works in historical buildings include all work items that can be encountered in construction works. In addition, it also has its own specific work items. For this reason, workers in this field also face different hazards and potential risks.

Although restoration works are considered as construction works, in order to continue successfully within the scope of occupational health and safety measures, it is necessary to determine the hazard and risk distinctions correctly, to analyze the existing risks correctly and to


determine how often the risks will be encountered (Özkılıç, 2005). In this way, it is aimed to prevent accidents and fatal accidents that employees are exposed to in this field.


1. Material and Methods

In this study, terms, concepts and methods related to the subject are examined using the literature review method. Hazards and risks in restoration works are analyzed and tabulated. In order to develop the most accurate and applicable risk analysis in restoration practices in future studies, it is of great importance to distinguish between hazard analysis and health and safety risks in restoration practices. For this reason, the risks identified in the study are listed using check-list and job hazard analysis methods.

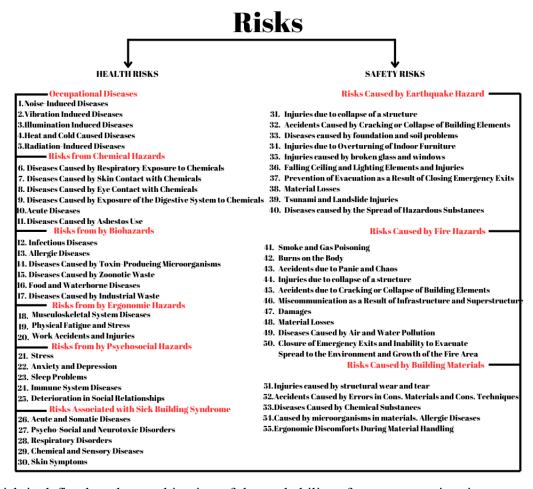
2. Detection of Hazards in the Restoration Process of Historic Buildings

Hazards are situations that may directly affect a person's health, may cause great harm or loss, and are likely to occur but undesirable (Özkılıç, 2005). During restoration works carried out for the protection of historical buildings, there are some hazards that employees, employers and visitors may encounter. Article 8, paragraph 1 of the *Occupational Health and Safety Risk Assessment Regulation* specifies the sources of information required to identify the hazards (Çalışma ve Sosyal Güvenlik Bakanlığı Yapı Yönetmeliği, 2013). In order to identify Occupational Health and Safety hazards, first macro information and then micro information should be analyzed and a detailed plan should be prepared based on this data and detailed according to the type, size and special determinants of the construction works (Güngördü et al., 2024). Based on the regulation, it is possible to classify the dangers we will encounter in restoration practices under two main headings on a macro scale. The main headings of *Health Hazards and Safety Hazards* will facilitate the hazard analysis in determining the risks we will encounter during restorations.

According to the Building Regulation of the Çalışma ve Sosyal Güvenlik Bakanlığı Yapı Yönetmeliği of Turkey, construction and implementation works should be evaluated together with construction works and other related legislations in order to be applicable in our country. Accordingly, annex 3 of the Building Inspection Implementation Regulation should include control forms for architectural, elevator, thermal insulation, plumbing and electrical projects. In the annexes of these control forms, the architectural project should include details such as site plan, floor plans, sections and elevations (Çalışma ve Sosyal Güvenlik Bakanlığı Yapı Yönetmeliği, 2013). These forms and projects show the techniques with which the building was constructed or revised, which is important for OHS. Especially restoration projects differ from construction projects in terms of special needs. And in our country, there is no rule or regulation that determines the method and order of construction of these construction works. For this reason, while making a project-based evaluation, implementation details gain importance. For example, when evaluating building gaps such as a lighting or elevator shaft in the project, it is of great importance to determine the risk of falling from height that may occur here and the measures that can be taken to eliminate this risk during the application. For this reason, these designs should be continuously reviewed in terms of occupational health and safety during the detailed design process of the project. All data

obtained from the application projects and the work site should be evaluated with hazard analysis and a safe design should be created (Çalışma ve Sosyal Güvenlik Bakanlığı Yapı Yönetmeliği, 2013). Analyzing the hazard depends on factors such as the size of the construction work, the dimensions and complexity of the project. According to the aforementioned regulation hazard analysis is respectively;

A. All architectural, electrical, insulation, elevator and installation projects must be drawn in detail.


B. Identify the planned business activities and their sub-activities and the estimated duration of these activities.

C. Sources of danger and relevant information should be compiled (Çalışma ve Sosyal Güvenlik Bakanlığı Yapı Yönetmeliği, 2013).

In particular work activities to be carried out, planned application methods and techniques, equipment to be used, material safety data sheets, hazards that may arise as a result of the processing, use, transportation, storage or disposal of materials with the risk of combustion, flash or explosion, the condition of the construction site and its surroundings, soil structure, seasonal weather conditions, hazards that may arise from equipment such as drainage, treatment, fire prevention and intervention equipment, hazards that may arise as a result of the hygiene conditions of the working environment and personal hygiene habits of employees, hazards that may arise from the use of transportation routes within the workplace are factors that should not be ignored. Based on these factors, the hazard factors in *Figure 3* were customized for restoration practices with a micro-scale approach.

3. Risks Related to Hazards in the Restoration Process of Historical Buildings

Risk is the combination of the probability of hazards occurring and the consequences when the hazard occurs (United States Environmental Protection Agency, 1991). Risk considers the potential effects of hazards and the likelihood of these effects. If necessary, precautions are not taken against hazards during restoration works, there are risks that these hazards may cause (Figure 4). Figure 4: Grouping of Risks in Restoration Works (Güngördü, 2024).

Risk is defined as the combination of the probability of an event or situation occurring and the potential consequences of that occurrence. Risk assessment involves identifying hazards and analyzing the probability and impact of these hazards (Aven, 2016). Analyzing the risks encountered in restoration practices is of great importance in terms of occupational health and safety. A detailed assessment of these risks is necessary to ensure the safety of workers and prevent occupational accidents. It is essential to create a risk management plan taking into account the likelihood of the identified risks and the negative consequences that may arise if these risks materialize. In this process, potential hazards should be identified at each stage of work activities and the risk levels of these hazards should be rated.

Figure 5: Risk Management Diagram (Güngördü, 2024).

4. Risk Assessment Methodologies

Risk assessment can be briefly defined as the use of information and knowledge to guide decision-makers using various scientific methods (Aven, 2016). The risk assessment process aims to identify and analyze the significant hazards that a business or institution may encounter in its working life. The identified hazards are evaluated and then the control measures to be taken are determined. These measures are implemented within a plan and the ultimate goal is to eliminate the hazards. We can examine risk assessment methods under three main headings (National Institute for Occupational Safety and Health, 2023).

1. Qualitative Methods: It covers all assessment methods that focus on the qualitative assessment of risks.

2. Quantitative Methods: It is a method that aims to analyze risks with numerical data and covers all quantitative assessment methods.

3. Mixed (Hybrid) Methods: It is a risk assessment method that includes qualitative and quantitative methods and utilizes the advantages of both approaches.

The methods and strategies to be used in the risk assessment and management process may vary depending on the scope and complexity of the work. For example, in large-scale restoration projects, more detailed analyses can be performed using advanced clouding methods or simulation software. In small-scale projects, simpler and classical methods may be preferred. The main purpose of all these preferred methods is to minimize occupational health and safety risks and provide a safe working environment.

Figure 6: Risk Analysis Methods (Güngördü, 2024).

RISK ANALYSIS METHODS

QUALITATIVE METHODS	QUANTITATIVE METHODS	HYBRID METHODS
 Preliminary Hazard Analysis Occupational Safety Analysis What If Analysis Risk Assessment Decision Matrix HAZOP Analysis Cause and Effect Analysis Primary Risk Analysis (PRA) using Checklists SWOT Analysis 	• X Type Matrix • L Type Matrix	 Failure Mode and Effects Analysis (FMEA) Fault Tree Analysis (FTA) Event Tree Analysis (ETA) Fishbone Analysis Ridley Method Fine-Kinney Method

The greater the capacity to manage risks in a restoration works and the more we can control risks, the more we can minimize losses.

5. Some Risk Analysis Methods that We Can Use in Restoration Works

In this section, practical, applicable and accurate risk analysis methods that we can use in restoration works, among the risk analysis methods specified in Figure 6, will be examined.

5.1.Job Safety Analysis

It aims to identify hazards before starting work and to prevent these hazards before they occur by focusing on work tasks. The focus is on the employee, work, tools and workplace. After the identification of hazards, it is based on bringing these hazards to an acceptable risk level or eliminating them completely (İş Güvenliği Analizi Nedir?, 2023).

For job hazard analysis;

-Workers should be included in the risk identification process.

-Previous accidents and near misses in the workplace should be examined and taken into consideration.

- Previous analyzes in the work area should be examined.

-Hazardous work items should be identified and graded.

-The identified hazards should be prioritized and the stages of the work should be established (Gümürçinler, 2023).

5.2. Primary Risk Analysis Using Checklist (PRA)

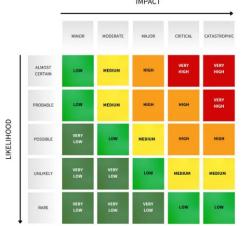
The Check-List method is a qualitative risk analysis method used especially in the construction and restoration sector to determine the compliance of the building with standards and codes. It can be used in inspections and approval processes starting from the design process (Meacham et al., 2021). The Check-List method consists of lists of hazards related to the special characteristics of a building or building class and is usually made more effective by using it in combination with different analysis methods (Ganah et al., 2015). Check-lists provide a basis for non-specialists to identify potential risks. They can be simple or, if necessary, detailed. Since the check-list method, which is a practical method, is not based on a mathematical formula, it is difficult to determine the severity of each hazard in the lists (Meacham et al., 2016). In construction and restoration work, it is important to determine the importance of each hazard and make it measurable. Therefore, using it together with *Fine-Kinney method* or *Matrix method* gives more precise results.

5.3. L Type Matrix

According to this method, also called 5X5 L-type matrix, the main objective is to analyze the relationship between two or more variables. The L-type matrix is used to determine a risk or the degree of impact of that risk. This method is very simple, understandable, easy and fast to apply and is a deterministic and quantitative risk assessment method (Karaelmas, 2019). It aims to find the risk level with the probability of realization of the risk (r) and the severity of the risk (s). Its formulation is Risk Level: I X S. In the L-type matrix method, the degree of risk is determined by multiplying the degrees of importance corresponding to each of the risk elements in the system. The decision matrix methods used in risk assessment are as follows;

- 5 x 5 (L-type) Decision Matrix
- 3 x 3 Decision Matrix
- Type X Decision Matrix

When applying this risk analysis method, a list of hazards is created by carefully examining the entire operation and workflow in the workplace and identifying every source of hazard that is likely to pose a risk, regardless of whether it is small or large. Probability and severity values are determined to determine the risk score of each hazard.


Figure 7: Probability of Hazard Realization (Güngördü, 2024).

POSSIBILITY	SCORE
Very small	1
(Almost never)	
Small	2
(Very few - once a year)	
Middle	3
(Less - several times a year)	
High	4
(Frequently - once a month)	
Very High	5
(Very often - once a week,	
every day)	

Figure 8: Degree of Severity (Güngördü, 2024).

SEVERITY / IMPACT	SCORE
Very Light	1
(No loss of working hours,	
requiring first aid)	
Lightweight	2
(Loss of working hours, no loss of	
working days, requiring first aid)	
Middle	3
(Minor injury,	
requiring inpatient treatment)	
Serious	4
(Death or serious injury,	
long-term treatment or occupational	
disease)	
Very Serious	5
(Multiple deaths, permanent	
incapacity)	

Figure 9: Risk Score according to type L matrix (Güngördü, 2024).

5.4. Fine Kinney Risk Analysis Method

The 'Mathematical Evaluations for Controlling Hazards' method developed by W.T. Fine was revised by Kinney and Wiruth in 1976 and published under the title 'Practical Risk Analysis for Safety Managment' and is now practiced as the Fine-Kinney method (Şimşek et al., 2019). The Fine-Kinney method is a method that determines the prioritization of risks and where resources should be allocated, so it is a method that we frequently encounter in construction works. This

method, which decides the necessity of the measures to be taken by calculating the weight ratios of the risks, provides more realistic results by using workplace statistics (Oturakçı et al., 2015).

According to the *Fine-Kinney method*, severity (s), frequency (f) and probability (p) are needed to calculate the degree of risk. Probability is the likelihood that harm or damage will occur over time. Frequency refers to the frequency of exposure to the hazard. Severity is the estimated harm that the hazard will cause to humans or the environment (Erzurumluoğlu et al., 2015) *.RS is formulated as I x f x p.* It makes the risk assessment process more understandable as it provides mathematical data.

Figure 10: Fine-Kinney Method Severity Value (Şimşek, 2020).

Severity	Significance
1	To be taken into account (insignificant, harmless or mild)
3	Important (minor damage, low work loss, first aid required)
7	Serious (loss of workforce, treatment, significant damage)
15	Very serious (environmental impact, loss of limb, disability)
40	Very bad (severe environmental impact, total disability, death)
100	Disaster (major environmental disaster, multiple deaths)

Figure 11: Fine-Kinney Method Frequency Value (Şimşek,2020).

Frequency	Significance
0,5	Very rarely (once a year or less)
1	Extremely rare (once or a few times per year)
2	Rare (once or a few times per month)
3	Occasionally (once or several times a week)
6	Frequently (once or several times a day)
10	Continuous (continuously or more than once per hour)

Figure 12: Fine-Kinney Method Probability Value (Şimşek, 2020).

Probability	Significance
0,2	Practically pointless
0,5	Weak probability
1	Extremely low probability
3	Rare but possible
6	Highly probable
10	Very strong probability

In the *Fine-Kinney formula*, the severity, frequency and probability values and their meanings are selected from Figures 10-11 and Figures 12, while the value resulting from the multiplication reveals the risk assessment result.

Figure 13: Fine-Kinney Method Risk	Value	Chart
(Şimşek,2020).		

Risk Score	Results
R < 20	Acceptable Risk (no immediate intervention required)
20≤R<70	Definite Risk (action plan required)
70 <r<200< td=""><td>Significant Risk (should be included in the annual action plan</td></r<200<>	Significant Risk (should be included in the annual action plan
	and attention should be paid)
200 <r<400< td=""><td>High Risk (should be included in short-term action plan)</td></r<400<>	High Risk (should be included in short-term action plan)
R<400	Very High Risk (work must be stopped, immediate action
	must be taken)

In the risk assessment process, the degree of each risk is calculated using the frequency, probability and severity values shown in the charts. These values are compared with other risks and ranked in descending order. The risk with the highest score should be considered first in the scope of risk prevention and control activities. For this reason, the Fine-Kinney method primarily aims to manage the most serious and probable risks. The greater the capacities to manage and control risks, the more the damages are minimized.

6. Identification of Risks in Restoration Works

Restoration works, which are the renewal of buildings and building groups in historical environments and which have value in urban memory, seem to carry the same dangers and risks as construction works in some basic features so they have their own unique risks. If we classify all the risks that occur in restoration practices by blending check-list and job hazard analysis methods; *Figure 14: Risks identified in restoration works, precautions to be taken and risk values according to Fine Kinney Method* (*Güngördü,2024*)

	No	Risk	Identified Risks	Risk Prevention	Violenc	Freque	Possibilit	Risk
		Fact		Measures	e	ncy	У	Score
		or						
	1		Hearing loss that may	-Noise	15	6	6	540
			occur on employees due	measurements	(Very	(Freque	(Highly	
		S	to noise sources	should be made	Serious-	ncy -	Possible)	
		ASE	resulting from the use of	during machine	Limb	Once or		
		ISE,	machinery such as	useEmployees	Loss)	Several		
-		ΤD	hammers and drills.	must use PPE		Times a		
SKS		ANC				Day)		
HEALTH RISKS	2	OCCUPATIONAL DISEASES	Diseases caused by	-Vibration	7	6	3	126
ALT]		CUP	vibration exposure	measurements	(Serious	(Freque	(Rare but	
HE,		0C	during restoration work	should be made	Signific	ncy -	possible)	

	when workers use	during machine	ant	Once or		
	crushing, drilling and	useEmployees		Several		
		1 0	damage			
	mixing machines (such	should work in	external	Times a		
	as hand-arm vibration	accordance with	treatmen	Day)		
	syndrome, osteoarthritis	the 2-4 second	t)			
	and muscle diseases)	waiting period				
		Use of PPE by				
		employees				
3	Eye and dermatological	-Revise working	3	3	3	9
	diseases caused by	hours according	(Importa	(Now	(Rare but	
	direct exposure to	to the times when	nt -	and	possible)	
	natural lighting sources	the sun's rays are	minor	again)		
	in the work area	at their	damage			
	(especially in exterior	strongestUse of	requirin			
	and roof works)	PPE	g first			
			aid)			
4	Diseases such as	Programming	3	2	0.5	3
	dizziness and vomiting	working hours to	(Importa	(Rare)	(Weak	
	that occur as a result of	avoid very hot	nt -		probabilit	
	heat and cold to which	and very cold	minor		y)	
	workers are exposed in	hours-Using	damage			
	exterior works.	protective	requirin			
		equipment and	g first			
		clothing against	aid)			
		heat and cold-				
		Employees				
		should take				
		breaks at regular				
		intervals in				
		protected rest				
		areas.				

5		Lung diseases caused	-Use of	100	1	1	100
		by worker exposure to	dosimeters to	(Disaste	(Very	(Very low	
		radiation	control radiation	r - Major	Rare)	probabilit	
			levels of	environ		y)	
			employees -	mental			
			Regular control	disaster			
			of the health	multiple			
			status of	disabiliti			
			employees-	es or			
			Implementation	death)			
			of safety				
			protocols				
			regarding the safe				
			use and				
			protection of				
			radiation sources.				
6		Employees are exposed	-Employees must	15	6	6	540
		to various chemicals	use advanced	(Very	(Freque	(Highly	
		found in insulation	filter masks	Serious-	ncy -	possible)	
	\mathbf{S}	materials such as	Providing air	Limb	Once or		
	ARDS	concrete mixtures,	circulation in the	Loss)	Several		
	AZA	paints, and adhesives	work area-		Times a		
	ΗT	through inhalation.	Regular control		Day)		
	11CA		of insulation				
	HEN		materials				
7	Y CI	Injuries, skin diseases or	- Use of N95 or	15	6	6	540
	DB	toxic disorders that may	P3 type mask to	(Very	(Freque	(Highly	
	USE	occur as a result of	prevent chemical	Serious-	ncy -	possible)	
	CA	contact with chemical	from passing	Limb	Once or		
	RISKS CAUSED BY CHEMICAL HAZ	particles produced	through the	Loss)	Several		
	RI	during work such as	respiratory tract				

Cilt:12 / Sayı:1 Şubat 2025

	grinding, drilling and	Use gloves to		Times a		
	cutting.	avoid skin		Day)		
		contact				
8	Eye irritation,	-Use of glasses	15	6	6	540
	temporary and	during work to	(Very	(Freque	(Highly	
	permanent vision	protect eye health	Serious-	ncy -	possible)	
	disorders caused by	-Preventing the	Limb	Once or		
	contact of chemical	spread of	Loss)	Several		
	gases with the eyes	particles by using		Times a		
	during welding and	local suction		Day)		
	spray painting	systems in				
	operations.	welding work				
		areas.				
9	Poisoning that may	-Correct storage	3	0.5	0.5	0,75
	occur as a result of	of food and	(Importa	(Very	(Weak	
	contact of cleaning	chemicals on	nt -	Rare)	probabilit	
	chemicals used on	site-Planning of	minor		y)	
	construction sites with	cleaning works-	damage			
	food and subsequent	Use of PPE by	requirin			
	consumption by the	those working	g first			
	worker.	with chemicals	aid)			
10	Acute diseases that may	-Optimization of	3	6	10	180
	occur as a result of	stone processing	(Importa	(Freque	(Very	
	continuous exposure of	to reduce dust	nt -	ncy -	strong	
	the worker to dust at the	generation and	minor	Once or	possibilit	
	construction site	protection against	damage	Several	y)	
		dust falling from	requirin	Times a		
		heights-Use of	g first	Day)		
		PPE-Employee's	aid)			
		personal hygiene,				

			change of clothes				
11		Since historical buildings were built with old construction techniques, the use of asbestos as insulation material and exposure to asbestos	after work Asbestos must be removed by professionals.Wo	100 (Disaste r - Major environ mental disaster - multiple disabiliti es or	1 (Very Rare)	3 (Rare but possible)	300
			PPE	death)			
12)GICAL	Infectious diseases such as flu, cold and tuberculosis are seen among the workers who work in closed environments.	-Regular cleaning of construction sites-Vaccination of employees and regular health -Employees must comply with social distancing rules	3 (Importa nt - minor damage requirin g first aid)	3 (Now and again)	6 (Strong probabilit y)	54
13	RISKS CAUSED BY BIOLOGICAL	Allergies and irritations on the skin caused by toxins originating from plants such as ivy, oak, sumac, nettle in buildings that have lost their user base and have	-Employees must avoid contact with unknown plants. -Choosing appropriate clothing and PPE	3 (Importa nt - minor damage requirin	2 (Rare)	3 (Rare but possible)	18

	been neglected in	-Regular allergen	g first			
	natural environments.	testing of	aid)			
		employees				
14	Skin and immune	- Regular checks	3	1	1	3
	system disorders that	of iron	(Minor	(Very	(Very	
	will occur as a result of	reinforcement for	damage	Rare)	Low	
	the wastewater	rust	requirin		Probabilit	
	accumulated on the	-Performing	g first		y)	
	ground or the rusting	necessary	aid)			
	and chemical substance	disinfections to				
	accumulation in the iron	prevent the				
	fittings in the working	spread of				
	environment and the	microorganisms				
	occurrence of infectious	-Regular cleaning				
	microorganisms as a	of waste water on				
	result of the historical	the ground				
	environments					
	remaining idle for a					
	long time.					
15	Since the study area is	Proper collection	3	1	3	9
	far from the city campus	and disposal of	(Importa	(Very	(Rare but	
	and has long been	animal waste	nt -	Rare)	possible)	
	abandoned structures	-Cleaning the	minor			
	and environments,	work area with	damage			
	animal waste and	disinfectants-	requirin			
	residues can be	Regular	g first			
	encountered. This can	ventilation of the	aid)			
	cause diseases such as	work area and				
	parasites, e.coli,	removal of waste				
	salmonella and	gases				
	leptospirosis.					

		- Regular health				
		checks and				
		vaccinations of				
		employees.				
16						
		-Hand cleaning				
	Poisoning caused by	before preparing	3	0.5	3	4,5
	foods consumed in the	food				
	work environment	-Cleaning and	(Importa	(Very	(Rare but	
		proper storage of	nt -	Rare)	possible)	
		nutritional foods-	minor			
		Cleaning of the	damage			
		kitchen where	requirin			
		meals are	g first			
		prepared-	aid)			
		Cooking				
		temperature of				
		foods-Health				
		checks of food				
		preparation				
		workers- Regular				
		food inspections				

17		Hearing disorders and	-Use of	3	0.5	3	4,5
		psychological disorders	ventilation				
		caused by air pollution	systems, air	(Importa	(Very	(Rare but	
		or high noise in the	purifiers and	nt -	Rare)	possible)	
		working environment.	masks	minor			
			-Regular	damage			
			measurement of	requirin			
			noise levels, use	g first			
			of noise	aid)			
			reduction panels				
			and use of PPE				
			-Preventing the				
			employee from				
			working in the				
			same position for				
			a long time				
	C	Musculoskeletal	Informing the	7	6	6	252
	ERGONOMIC	disorders such as tendon	employee about	(Serious	(Freque	(Highly	
18	ON(disorders and spinal	lifting heavy	-	ncy -	possible)	
	ERG	disorders that may	loads with correct	Signific	Once or		
	BY F	occur as a result of the	lifting	ant	Several		
		employee not paying	techniques.	damage	Times a		
	CAUSED	attention to the required	-Use of	external	Day)		
	CAL	_	ergonomic	treatmen			
		seconds) during	equipment for	t)			
	RISKS	material handling and		-			
		1	-				

r	· · · ·			1	1	[,
		lifting or vibrator work	(wheelbarrow,				
		during construction site	forklift)				
		work.	-Providing				
			physiotherapy				
			support to				
			employees				
			suffering from				
			muscular system				
			disorders				
	19	Physical fatigue and	-Providing	1	0.5	3	1,5
		stress caused by reasons	support to	(Insignif	(Very	(Rare but	
		such as employees	employees with	icant,	Rare)	possible)	
		working in narrow	seminars on	harmles			
		spaces without proper	stress	s - light)			
		body posture, which is	management and				
		caused by the	regular health				
		dimensions of old	checks				
		buildings not being up	-Use of				
		to today's standards.	adjustable and				
			ergonomic				
			equipment for				
			use in narrow				
			spaces				
			-Workers				
			working in				
			confined spaces				
			should take more				
			frequent breaks.				
		Accidents and injuries	-Employees must	7	6	6	252
		resulting from	use PPE items	(Serious	(Freque	(Highly	
				-	ncy -	possible)	
				-	ncy -	possible)	

20		1 1.	1 . 1 1.	Q:		[
20		employees working at		Signific	Once or		
		heights	and helmets.	ant	Several		
			-High working	damage	Times a		
			platforms or	external	Day)		
			scaffolding must	treatmen			
			have appropriate	t)			
			guardrails and				
			these platforms				
			must be checked				
			regularly.				
			-Employees				
			should receive				
			safety training on				
			working at				
			heights and				
			emergency				
			situations.				
21		Employees are stressed	-Working	1	0.5	3	1,5
		due to reasons such as		(Insignif	(Very	(Rare but	
		working conditions, not		icant,	Rare)	possible)	
		taking regular breaks,	• ·	harmles		1 /	
	_	salary dissatisfaction, et		s - light)			
	RDS	al.	provided, salaries				
	[Y]		and job				
	, HA		satisfaction,				
	JIAI		stress				
	SOC		management and				
	OHC		support should be				
	PSYCHOSOCIAL HAZARDS		provided.				
	Ρ		provided.				

22	Anxiety attacks and	-Provision of	3	0.5	3	4,5
	related depression	psychological	(Importa	(Very	(Rare but	
	caused by the person's	support, regular	nt -	Rare)	possible)	
	living and working	breathing	minor			
	conditions	exercises,	damage			
		improvement of	requirin			
		the employee's	g first			
		sleep pattern	aid)			
		should be				
		ensured.				
23	Reasons such as noise,	-Taking measures	3	0.5	3	4,5
	physical fatigue, work	to reduce noise in	(Importa	(Very	(Rare but	
	pressure, et al. that the	the construction	nt -	Rare)	possible)	
	employee is exposed to	site	minor			
	in the working	-To prevent	damage			
	environment cause	physical fatigue	requirin			
	insomnia.	of the employee,	g first			
		give regular	aid)			
		breaks, do				
		physical				
		exercises and				
		stretching				
		movements,				
		-To manage and				
		control the				
		workload among				
		employees				
		correctly				
		-Sleep hours				
		should be				
		regularized, the				

		1				
		sleep				
		environment				
		should be				
		improved and				
		relaxing activities				
		should be done				
		before sleep.				
24	Immune system	-Employees use	7	6	6	252
	disorders occur as a	appropriate PPE-	(Serious	(Freque	(Highly	
	result of exposure of the	Regularly	-	ncy -	possible)	
	worker to substances	checking the air	Signific	Once or		
	such as solvent vapors,	quality of the	ant	Several		
	oxidation of metals,	environment and	damage	Times a		
	solder or welding	keeping it clean	external	Day)		
	fumes, silica dust, lead	with air purifiers-	treatmen			
	particles and the sun.	Employees	t)			
	1	should have	,			
		regular health				
		checks and				
		receive treatment				
		in case of any				
		illness.				
25	Deterioration of social	-Social activities	1	2	3	6
23	relationships as a result	taking place in	(Insignif	(Rare)	(Rare but	0
	_			(Kale)		
	of working in a stressful	the workplace	icant,		possible)	
	work environment	and full	harmles			
		participation of	s - light)			
		employees in				
		them should be				
		ensured.				

			-Maintaining the				
			balance between				
			work and time				
			management				
			among				
			employees				
			-Regular breaks				
			and activities can				
			be motivating				
26		All of the symptoms	-Keeping the air	7	6	6	252
		that are experienced	quality of the	(Serious	(Freque	(Highly	
		specifically and	work	-	ncy -	possible)	
		regularly while working	environment	Signific	Once or		
		in a building but	healthy, regularly	ant	Several		
		disappear when the	monitoring the	damage	Times a		
		building is left are	cleanliness of the	external	Day)		
	SYNDROME	called 'sick building	ventilation	treatmen			
	DR(syndrome' (9). Sick	- The chemical	t)			
	NX8	building syndrome	paints and				
		occurs when triggered					
	LDI	by factors such as the	the work area for				
	BUI	person's gender, atopy	a long time				
	SICK BUILDING	and history of disease.	should not				
		The most common	contain air				
	CAUSED BY	discomforts that occur	pollutants and				
	USE	as a result of the	masks should be				
	CA	historical building	used when				
	RISKS	showing sick building	_				
	RI	syndrome on the	these materials.				

 	1					
	employee are; irritated	- Evacuating stale				
	throat and runny nose,	and polluted air				
	itchy eyes, burning eyes	indoors by using				
	and upper respiratory	plants indoors				
	tract, itching and skin					
	irritation.					
27	Sick building syndrome	-If there are	3	0.5	3	4,5
	can cause headaches,	devices emitting	(Importa	(Very	(Rare but	
	irritability, nervous	radiation in the	nt -	Rare)	possible)	
	breakdowns and	building, they	minor			
	distractions in the	should be	damage			
	employee.	detected and	requirin			
		removed from the	g first			
		building.	aid)			
		-If regular				
		maintenance of				
		electronic				
		devices within				
		the building is				
		required, all				
		devices should be				
		gathered in one				
		room and only				
		used for short				
		periods of time.				
28	As a result of sick	-Keeping the air	7	6	6	252
	building syndrome,	quality of the	(Serious	(Freque	(Highly	
	employees may	work	-	ncy -	possible)	
	experience shortness of	environment	Signific	Once or		
	breath, cough, allergic	healthy, regularly	ant	Several		
	asthma and wheezing.	monitoring the	damage			
		0 10	0-			

			cleanliness of the	external	Times a		
			ventilation	treatmen	Day)		
			- The chemical		57		
			paints and				
			adhesives used in				
			the work area for				
			a long time				
			should not				
			contain air				
			pollutants and				
			masks should be				
			used when				
			working with				
			these materials.				
			- Evacuating stale				
			and polluted air				
			indoors by using				
			plants indoors				
			plants indoors				
29	Si	ick building syndrome	-The interior	3	6	6	108
-		an cause odor	should be	(Signific	(Freque	(Highly	100
		ensitivity, hearing	illuminated	ant	ncy -	possible)	
		mpairment, and vision	correctly and	damage	Once or	possiole)	
		roblems.	maximum	external	Several		
	P		efficiency should		Times a		
			be obtained from		Day)		
			the natural light	()	Day)		
			source.				
			-Employees				
			-				
			eye resting				

			1]
					movements at				
					certain intervals.				
					computers,				
					cameras or				
					monitors to use a				
					screen filter or				
					glasses if they				
					need to balance				
					the screen				
					brightness.				
	30			It can cause skin	-Regular cleaning	3	6	6	108
				problems, allergies,	is required to	(Importa	(Freque	(Highly	
				rashes, redness, dryness	prevent the	nt -	ncy -	possible)	
				and itching in the	formation of	minor	Once or		
				employee.	organisms such	damage	Several		
					as mold, fungus	requirin	Times a		
					and dust that	g first	Day)		
					cause skin	aid)			
					irritation.				
					-Employees must				
					use preventive				
					PPE such as				
					gloves.				
	31	ВΥ		Injuries and disabilities	- Early detection	15	2	3	90
		В	D V U	that may be caused by	of construction-	(Very	(Rare)	(Rare but	
			Z A R	partial or total collapses	related	Serious		possible)	
S		ISEI	HA7	as a result of the	weaknesses-New	_			
SECURITY RISKS		CAUSED	КF	weakening of the load-	construction	environ			
ΓΥŀ		-	VIIC	bearing system in the	design, both	mental			
URI		S	RTHC	structure.	reinforcement	impact			
SECI		RISKS	AR		and	loss of			
		Ц	μ						

		reconstruction-	limbs or			
		Regular control,	disabilit			
		protection and	y)			
		maintenance of				
		reconstructed				
		sections				
32	Injuries and injuries due	-Regular	15	2	3	90
	to damage, cracking or	monitoring of	(Very	(Rare)	(Rare but	
	collapse of structural	load-bearing	Serious		possible)	
	elements such as	structural	_			
	columns, pillars and	elements	environ			
	vaults due to	-Strengthening of	mental			
	earthquakes and	columns and	impact			
	landslides caused by	pillars with	loss of			
	these earthquakes.	chemical or	limbs or			
		physical elements	disabilit			
		-Control and	y)			
		maintenance of				
		carrier elements				
		-Connecting the				
		load-bearing				
		structural				
		elements with				
		flexible				
		connections that				
		will absorb the				
		earthquake.				
33	Accidents and injuries	-Soil stabilization	15	2	3	90
	that may occur as a	-Strengthening	(Very	(Rare)	(Rare but	
	result of damage to the	the foundation	Serious		possible)	
	building foundation and	with methods	_			

		1						
			damage to the integrity		environ			
			of the building as a	reinforced	mental			
			result of ground slides	concrete	impact			
			after an earthquake.	sheathing and	loss of			
				fiber polymer.	limbs or			
				-Supporting the	disabilit			
				ground using	y)			
				earthquake				
				shields and				
				reducing damage				
				by distributing				
				the earthquake				
				load.				
				-				
				Simulating				
				potential damage	3	3	6	54
				from an	(Importa	(Now	(Highly	
	34		Damages that may	earthquake with	nt -	and	possible)	
			occur as a result of the	dynamic analysis	minor	again)	1 /	
			collapse of unfixed	and modeling	damage	2,		
			interior elements within	-Fixing unfixed	requirin			
			the structure as a result	interior elements	g first			
			of an earthquake.	-Making interior	aid)			
			of all curtifiquate.	elements durable	uluj			
				and dynamic				
ľ	35		Injuries to the skin	-	7	1	3	21
	55		caused by the explosion	-	/ (Serious	(Very	(Rare but	<i>L</i> 1
				_		(very Rare)	possible)	
			and breakage of	remotement of	-	Kale)	possible)	

	weakened glass in	the glass should	Signific			
	e	be planned (an				
	6					
	earthquake	additional glass	-			
		layer can be				
		added inside or				
		outside the glass.)	t)			
		-Regular checks				
		on glass surfaces				
		for cracking or				
		weakening and				
		reinforcement is				
		carried out.				
		-Increasing the				
		load-bearing				
		capacity of glass				
		surfaces				
	Falling of roof elements	-First, the	3	1	3	9
	such as domes and	structure analysis	(Importa	(Very	(Rare but	
	gargoyles of old	is done and the	nt -	Rare)	possible)	
	buildings or lighting	damaged areas	minor			
	elements on the ceiling	are listed as a	damage			
	as a result of	detailed	requirin			
	earthquakes or	inventory	g first			
	earthquake-related	Repairing	aid)			
	ground damages and	damaged areas				
	injuring workers.	with materials				
		such as wood and				
36		stone in				
		accordance with				
		the construction				
		technique.Strengt				
		technique.Strengt				

	1	1				<u>г г</u>	1
			hening the weak				
			point by adding				
			modern				
			architectural				
			carrier or				
			supporting				
			elements to the				
			design.				
	37	Partial collapse during	-Design and	15	1	3	45
		an earthquake resulting	strengthen the	(Very	(Very	(Rare but	
		in the closure of	carriers in the	Serious	Rare)	possible)	
		building exits and the	emergency exit	_			
		inability to evacuate	line using durable	environ			
		employees	and flexible	mental			
			materials.	impact			
			- Planning exit	loss of			
			axes and doors	limbs or			
			that provide easy	disabilit			
			access to multiple	y)			
			open areas within				
			the building				
			-Preparation and				
			updating of				
			comprehensive				
			emergency plans				
			in the				
			construction site				
		Material loss due to	-Providing safety	1	0.5	3	1,5
1		damages caused by the	training to	(Insignif	(Very	(Rare but	,
		earthquake	employees-Use	icant,	Rare)	possible)	
			of PPE by	·,		r)	
			ci iii oy				

		employees	harmles			
		reduces the risk	s - light)			
38		of injury-Regular				
		control of the				
		structure,				
		detection of				
		potential damage				
		and				
		precautionary				
		measures-Correct				
		storage, regular				
		maintenance and				
		repair of				
		construction				
		materials				
39	Earthquake aftershocks	-Detecting	15	1	3	45
	causing other major	dangerous points	(Very	(Very	(Rare but	
	disasters such as	where landslides	Serious	Rare)	possible)	
	landslides and tsunamis	may occur and	_			
		establishing	environ			
		settlements at	mental			
		these points using	impact			
		bridges or tube	loss of			
		systemsIn areas	limbs or			
		with tsunami risk,	disabilit			
		risky points can	y)			
		be identified				
		through				
		topographic				
		studies and				
		prevention dams				

		or dams can be				[]
		established at				
		these points.				
		-Alarm systems				
		can ensure that				
		employees are				
		informed at the				
		same time and				
		evacuation can be				
		accelerated.				
40	Damage to workers	-During the	7	1	3	21
	caused by the spread of	preparation of				
	hazardous substances	emergency plans,	(Serious	(Very	(Rare but	
	that may occur from	the material	-	Rare)	possible)	
	falling/broken	content of the	Signific			
	structures or interior	building and	ant			
	materials after an	interior elements	damage			
	earthquake.	and hazardous	external			
		material	treatmen			
		determinations	t)			
		should be made.				
		-Preventing the				
		spread of				
		hazardous				
		substances				
		indoors with air				
		purification				
		systems				
		-Employees				
		should be				
		provided with				
		•				

		emergency and intervention training and contingency planning in case of exposure to hazardous substances.				
41 SOM	The employee may experience respiratory problems as a result of the spread of gases such as smoke, carbon dioxide, nitrogen and carbon monoxide after the fire.	gas spread under control after the	7 (Serious - Signific ant damage external treatmen	1 (Very Rare)	3 (Rare but possible)	21
5 RISKS CAUSED BY FIRE HAZARDS		spreading into the atmosphere. -Post-fire monitoring limits the spread of gases	t)			
42 SXSIX	Burns occurring on the employee's body	-Employees should receive	7	1	3	21

		Court and the initial	(Cominant	(VI	(Dave last	
		first aid training		(Very	(Rare but	
		and provide		Rare)	possible)	
		quick and correct	-			
		first aid in case of	ant			
		burns.	damage			
		-In burn cases,	external			
		medical support	treatmen			
		should be sought	t)			
		immediately and				
		injured workers				
		should be taken				
		to the hospital.				
43	Chaos that occurs after	-Providing fire	15	1	3	45
	the panic experienced	safety training to	(Very	(Very	(Rare but	
	by employees during	employees and	Serious	Rare)	possible)	
	the fire makes	conducting	_			
	evacuation difficult.	regular drills-	environ			
		Emergency	mental			
		evacuation plans	impact			
		should be	loss of			
		prepared and	limbs or			
		evacuation axes	disabilit			
		should be	y)			
		established				
		during training.				
		Employees				
		should be trained				
		in preventing the				
		spread of fire and				
		extinguishing it,				
		thus ensuring				

		rapid evacuation without chaos.				
44	Difficulty in evacuation	-During the	15	1	3	45
	and injuries due to	restoration,	(Very	(Very	(Rare but	
	partial or total collapse	material choices	Serious	Rare)	possible)	
	of the structure after a	such as fire-	_			
	fire	resistant	environ			
		concrete,	mental			
		composite and	impact			
		steel can be	loss of			
		added to the	limbs or			
		design.	disabilit			
		-Covering of	y)			
		building carriers				
		with fire				
		insulation				
		-Use of fire				
		extinguishing and				
		sprinkler systems				
45	Injuries and disabilities,	-Preferring	7	1	3	21
	especially as a result of	materials with	(Serious	(Very	(Rare but	
	damage, cracking or	high fire	-	Rare)	possible)	
	collapse of structural	tolerance during	Signific			
	elements such as	design	ant			
	wooden columns,	-If wooden	damage			
	pillars and vaults, as a	material is to be	external			
	result of fire.	used due to	treatmen			
		design, it must be	t)			
		insulated.				
46	Lack of communication	Emergency plans	15	1	3	45
	following damage to the	should be				

	infrastructure and	prepared and	(Very	(Very	(Rare but	
	superstructure system	employees	Serious	Rare)	possible)	
	due to fire	should be trained	_		P)	
		Considering the	environ			
		possibility of the	mental			
		main	impact			
		communication	loss of			
		system being cut	limbs or			
		off, a backup	disabilit			
		communication	y)			
		system such as	<i>y</i>)			
		radio and satellite				
		phones should be				
		considered.				
		Emergency				
		assembly areas				
		should be				
		determined on the construction				
47		site.	2	1	2	0
47	Material loss due to	-Employees	3	1	3	9
	damages caused by fire	receive fire safety	(Signific	(Very	(Rare but	
		training-There	ant	Rare)	possible)	
		should be a	damage			
		sufficient number	external			
		of fire	treatmen			
		extinguishers on	t)			
		the site and their				
		regular				
		maintenance and				
		inspection should				

Т			he corried and				
			be carried out				
			Installation of				
			fire detection and				
			warning systems				
			in the				
			construction site-				
			Fire insurance for				
			the construction				
			site				
	48	Health problems such as	-Establishing	7	1	3	21
		poisoning and burns	effective	(Serious	(Very	(Rare but	
		that employees and the	ventilation	-	Rare)	possible)	
		surroundings will	systems that can	Signific			
		experience as a result of	quickly evacuate	ant			
		air and water pollution	smoke and toxic	damage			
		caused by the fire.	gases generated	external			
			during a fire	treatmen			
			Appropriate gas	t)			
			masks and				
			respiratory				
			protection must				
			be provided for				
			employees.				
			Storage of				
			chemical				
			materials to				
			prevent				
			chemicals from				
			mixing with				
			water resources				

 		T	r	r	1	·
		in the event of a				
		fire. Employees				
		should receive				
		first aid training				
		and a first aid kit				
		should be				
		available at the				
		construction site.				
		Proper disposal				
		of the generated				
		waste.				
49	Problems that may	-Adding fire-	15	1	3	45
	occur in evacuating	resistant doors	(Very	(Very	(Rare but	
	employees as a result of	and fire escapes	Serious	Rare)	possible)	
	damage to structural	to the structure	_			
	elements such as	Insulation of	environ			
	wooden stairs or	structural	mental			
	blocking of exits during	elements that are	impact			
	a fire.	important for	loss of			
		evacuation, such	limbs or			
		as stairs, with	disabilit			
		strong insulation	y)			
		materials.				
		Developing				
		alternative				
		emergency				
		evacuation routes				
		to the closure of				
		main exits and				
		marking these				
		L	I	I	1	

Cilt:12 / Sayı:1 Şubat 2025

					plans on the construction site.				
-	50			Chemical building	- Using materials	15	1	3	45
				materials such as paint	that prevent fire	(Very	(Very	(Rare but	
				and adhesives that	development	Serious	Rare)	possible)	
				should be used specific	instead of	_			
				to the historical	materials that	environ			
				structure exacerbate the	accelerate fire	mental			
				fire	development.Hist	impact			
					orical buildings	loss of			
					should undergo	limbs or			
					regular checks to	disabilit			
					ensure the safety	y)			
					of electrical and				
					gas				
					installations.Corr				
					ect storage of				
					materials				
				Structural wear and tear	-Durable and	7	2	3	42
				resulting from the use of	reliable material	(Serious	(Rare)	(Rare but	
				cheap, inadequate or	selection	-		possible)	
				unsuitable materials	-To procure	Signific			
	51			may cause accidents	materials from	ant			
				and injuries.	reliable, certified	damage			
					vendors.	external			
					- Regular quality	treatmen			
					controls of	t)			
			Ç		building				
		RISKS	DNISIA		materials and				
		RIS	ΔR		building elements				

52	The employee may	-Making material	3	2	3	18
	experience spinal cord	choices	(Signific	(Rare)	(Rare but	
	disorders, skin or vision	according to the	ant		possible)	
	disorders due to the	intended use of	damage			
	construction material	the building.	external			
	and application	-Employees are	treatmen			
	techniques.	trained on the	t)			
		application of the				
		material				
		-The correct use				
		of materials can				
		be controlled by				
		regular controls				
		and inspections				
		during the work.				
53	The chemical materials	-Employees must	7	2	3	42
	used cause skin	receive chemical	(Serious	(Rare)	(Rare but	
	irritation and respiratory	substance	-		possible)	
	tract disorders.	training and pay	Signific			
		attention to safety	ant			
		instructions.	damage			
		-Use of PPE	external			
		-Preparing an	treatmen			
		emergency plan	t)			
		for possible				
		discomfort				
		caused by				
		working with				
		chemicals.				

54	Redness and itching on	-Use of PPE	3	2	3	12
	the skin as a result of the	- Regular	(Signific	(Rare)	(Rare but	
	microorganisms	cleaning of the	ant		possible)	
	contained in the	work area	damage			
	building materials	-Regular	external			
	having an allergic effect	ventilation of the	treatmen			
	on the worker's body.	work area	t			
55	Disorders such as joint	-Training of	7	2	3	42
	and back pain, herniated	employees on	(Serious	(Rare)	(Rare but	
	disc, neck hernia may	material use and	-		possible)	
	occur as a result of the	storage in	Signific			
	employee carrying the	construction	ant			
	material incorrectly	sites-Using	damage			
	while stacking.	auxiliary	external			
		transport vehicles	treatmen			
		such as forklifts	t			
		and				
		wheelbarrows				

7. Results and Discussions

Restoration activities, one of the methods of protecting historical buildings, are a reconstruction method that includes the general characteristics of construction work, but it is one of the specific activities with its own risks. As much as restoration practices are necessary for historical buildings, supervision of occupational health and safety practices in restoration works is just as necessary in terms of user, employee and workplace safety. Figure 14 shows the risk assessments together with their scores. As a result of the study, the results obtained by multiplying these scores are ranked from the largest to the smallest and the urgency of the measure is determined. According to Figure 14, No 1-6-7-8 risks are among the most prioritized risks that need to be taken precautions. Restoration works are unique projects. For this reason, the special situation of restoration activities was addressed in the study and hazards and risks specific to this field were identified. As a result of the study, it was emphasized that the measures to be taken for

those working in the field of restoration should be prioritized according to the risk scores and the necessary measures should be taken urgently.

Conclusion

The study draws attention to the hazards and risks that are specific to restoration work and highlights the similarities and differences between construction and restoration activities. Considering these, 55 risks were identified on the subject of the study and these risks were rated using the severity, frequency and probability values of the *Fine Kinney Method*, which has been proven to be accurate in the literature. The aim of the article is to prioritize the necessary measures to be taken according to the results obtained by enabling those who will work in this field to easily analyze the risk detection. As a result, it is evaluated that the hazards and risks identified in restoration activities and the selected risk analysis methods can pioneer and support new projects to be developed in this field and other academic studies to be included in the literature.

References

Aven, T. (2016). Risk Assessment And Risk Management: Review Of Recent Advances On Their Foundation. European Journal of Operational Research, 253(1), 1-13.

Çalışma ve Sosyal Güvenlik Bakanlığı Yapı Yönetmeliği. (2013). İş Sağlığı ve Güvenliği Risk Değerlendirmesi Yönetmeliği, 2013, Tr. Madde 8 Fıkra 1.

United States Environmental Protection Agency (1991). *Indoor Air Facts No.4, Sick Building Syndrome*, Research and Development (MD-56).

Erzurumluoğlu, K., Köksal, K. N., & Gerek, İ. H. (2015). İnşaat Sektöründe Fine-Kinney Metodu Kullanılarak Risk Analizi Yapılması, 5. İşçi Sağlığı ve İş Güvenliği Sempozyumu, 137, 146.

Feilden, B.M. (2003). Conservation of Historic Buildings. Architectural Press.

Ganah, A., & John, G. A. (2015). *Integrating Building Information Modeling And Health And Safety For Onsite Construction*. Safety And Health At Work, 6 (1), 39-45.

Gümürçinler, T., (2023). *İş Tehlike Analizi ile Tarihi Yapıların Restorasyonunda İş Güvenliğinin Değerlendirilmesi* [Yüksek lisans tezi, İzmir Demokrasi Üniversitesi]. Yök Tez.

Güngördü, A., (2021). Tavlusun Agios Basileos kilisesi yapısal incelemesi ve restorasyon önerisi [Yüksek lisans tezi, İzmir Demokrasi Üniversitesi]. Yök Tez.

Güngördü, A. (2024). Aslıhan Güngördü 2024 Şahsi Arşivi.

Güngördü, G., İmamoğlu, B. (2024). *Occupational Health and Safety Risks in Aircraft Arresting Barrier Systems*. International Journal of Computational and Experimental Science and Engineering (IJCESEN), 1437-1449. İş Sağlığı ve Güvenliği Yönetmeliği. (2024). 2024 İlk 6 Ay İş Kazaları Raporu. 1-6.

- Kabakulak, T. (2019). Bir tekstil işletmesinde risk değerlendirme uygulaması: 5x5 matris ve HAZOP. Karaelmas Journal of Occupational Health and Safety, 3(2), 97-111.
- Martin, D., Tomida, M., & Meacham, B. (2016). Environmental impact of fire. Fire Science Reviews, 5 (1), 5.
- Meacham, B. J., van Straalen, I. J., & Ashe, B. (2021). Roadmap for incorporating risk as a basis of performance objectives in building regulation. *Safety science*, *141*, 105337.

National Institute for Occupational Safety and Health (NIOSH). (2023). *Risk Assessment: A Guide to Hazard Identification and Risk Analysis*. https://www.cdc.gov/niosh/index.html

İş Güvenliği Analizi Nedir? (2023). https://www.ntss.com.tr/

- Oturakçı, M., Dağsuyu, C., & Kokangül, A. (2015). A new approach to Fine Kinney method and an implementation study. *Alphanumeric Journal*, *3*(2), 83-92.
- Özkılıç, Ö. (2005). İş Sağliği ve Güvenliği, Yönetim Sistemleri ve Risk Değerlendirme Metodolojileri. TİSK Yayınları

Şimşek, S., & Doğan, F. (2019). Otel Çalışanlarının Psikososyal Risk Etmenleri Açısından Mobbinge Maruz Kalmalarının Araştırılması. *İsg Akademik*, *1*(1), 59-67.

Şimşek, S. (2020). İş Sağlığı ve Güvenliği Kapsamında Risk Değerlendirme Metotlarından Fine Kinney Metodunun Bir Örnekle Değerlendirilmesi. *İsg Akademik*, 2(2), 91-99.

Uzun, İ., Öztürk, D., & Gürcanlı, G. E. (2020). Mimari Restorasyon ve Konservasyon Projelerinde İşçi Sağlığı ve İş Güvenliği Uygulamaları. *Teknik dergi*, *31*(5), 10275-10290.