
Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 68, Number 1, Pages 451—456 (2019)
DOI: 10.31801/cfsuasmas.425624
ISSN 1303—5991 E-ISSN 2618-6470

Available online: May 23, 2018

http://communications.science.ankara.edu.tr/index.php?series=A1

NULL CURVES OF CONSTANT BREADTH IN MINKOWSKI
4-SPACE

BÜLENT ALTUNKAYA AND FERDAĞ KAHRAMAN AKSOYAK

Abstract. In this paper, we define null curves of constant breadth in Minkowski
4-space and obtain a characterization of these curves. Also we give an example
for such curves.

1. Introduction

The concept about curves of constant breadth were introduced by Euler in 1780
[2]. After then, this subject were studied by many geometers. Köse [7] investigated
some properties of curves of constant width in plane. Also Köse [8] showed that
when a space curve is given, another space curve can be obtained such that the
tangents at corresponding points of the curves are parallel in the opposite direc-
tions and the distance between these points is always constant. In [9] and [1], the
concepts about the curves of constant breadth were extended to spaces E4 and
En , respectively. However, many mathematicians have been interested in studying
curves of constant breadth in semi-Euclidean space [4],[5],[6], [11], [13], [14]. In [12],
they proved that there does not exist null curves of constant breadth in Minkowski
3- space.
In this paper, we define null curves of constant breadth in Minkowski 4 - space

and give a characterization of these curves. Also we obtain a differential equation
for null curves whose tangents at the corresponding points are parallel in opposite
direction and give an example for such curves.

2. Preliminaries

Let E41 be the 4- dimensional Minkowski space-time. Then the metric tensor g
in E41 is given by

g = −dx21 + dx22 + dx23 + dx24,
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where (x1, x2, x3, x4) is a standard rectangular coordinate system of E41 . There are
three casual characters in Minkowski space. Let v be a vector in E41. If g(v, v) > 0
or v = 0 , then it is called spacelike vector, if g(v, v) < 0, then it is called timelike
vector and if g(v, v) = 0 and v 6= 0 then it is called null vector. The norm of a
vector v is defined by ||v|| =

√
|g(v, v)| and if ||v|| = 1 then v is said to be unit

vector. A curve β in E41 is called spacelike, timelike or null, if all of its velocity
vectors are spacelike, timelike or null, respectively. If a spacelike (or a timelike,
resp.) curve β is given by arc-length parameter s, then its velocity vector β′(s)
satisfy the equality g(β′(s), β′(s)) = 1 (or g(β′(s), β′(s)) = −1, resp.) [10]. But
that case is different for null curves. If a null curve β is parameterized by arclength
function s, then g(β′′(s), β′′(s)) = 1.
Let the Frenet frame along a null curve β in E41 be denoted by {T,N1, N2, N3}.

Then the Frenet formulae of β is given as [15]:

T ′ = k1N1,
N ′1 = k2T − k1N2,
N ′2 = −k2N1 + k3N3,
N ′3 = − k3T,

(1)

where T and N2 are null vectors that hold g(T,N2) = 1 and N1 and N3 are spacelike
vectors. Also k1 (s), k2 (s) and k3 (s) are the curvature functions. If α is a straight
line, then the first curvature k1 (s) vanishes but it is equal to 1 in other cases. In
this paper, we assume that the null curve β is not a straight line.

3. Null Curves of Constant Breadth in Minkowski 4-Space E41
In this section, we define null curves of constant breadth in Minkowski 4-space

and have a characterization of these curves. Also we give an example for these
curves at the last of the section.

Definition 1. Let β : J ⊂ R → E41 and γ : J ⊂ R → E41 be null curves. If the
curves β and γ have parallel tangents in opposite directions at the corresponding
points β(s) and γ(s) and the distance between these corresponding points is always
constant, then the pair of null curves β and γ is called null curves of constant
breadth.

Let β and γ be a null pair of curves which have parallel tangents in opposite
directions. Then the position vector of γ at the point γ(s) can be written as:

γ(s) = β(s) + a (s)T (s) + a1 (s)N1 (s) + a2 (s)N2 (s) + a3 (s)N3 (s) , (2)

where a and ai (i = 1, 2, 3) are C∞−functions on J.
If we take the derivative of (2) with respect to s and use (1) , then we obtain

T (s)
ds̄

ds
= (1 + a′ + a1k2 − a3k3)T (s) + (a′1 + a− a2k2)N1 (s) (3)

+ (a′2 − a1)N2 (s) + (a′3 + a2k3)N3 (s) ,
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where T is the tangent vector of γ. Since T = −T, by using (3), we get

1 + a′ + a1k2 − a3k3 = −ds̄
ds
, (4)

a′1 + a− a2k2 = 0, (5)

a′2 − a1 = 0, (6)

a′3 + a2k3 = 0. (7)

Since the tangents at the corresponding points β(s) and γ(s) of the null curves β
and γ are parallel in opposite directions we can write

T = −T.

If we take the derivative of this equation with respect to s and use (1) again, we
have

N̄1(s)
ds

ds
= −N1(s).

Since the vectors N̄1 and N1 are spacelike vectors, we have(
ds

ds

)2
= 1.

On the other hand, by using (5), (6) and (7), we can rewrite (3) as follows:

dγ

ds
= (1 + a′ + a1k2 − a3k3)T (s) . (8)

Differentiating (8) with respect to s, we have

d2γ

ds2
= (1 + a′ + a1k2 − a3k3)′ T (s) + (1 + a′ + a1k2 − a3k3)N1(s). (9)

There exists a regular map defined by ϕ : J → J

s = ϕ(s) =

∫ s

0

g(γ′′(t), γ′′(t))
1
4 dt, for all s ∈ J (10)

where s denotes the pseudo-arc length parameter of the curve γ. By using (9) and
(10), we have

ds

ds
=
√
|(1 + a′ + a1k2 − a3k3)|.

So we can say that the value of dsds is positive and
ds
ds = 1.

Theorem 1. Let β : J ⊂ R → E41 and γ : J ⊂ R → E41 be null curves. If the
tangents at the corresponding points β(s) and γ(s) of the curves β and γ are parallel
in opposite direction then the following differential equation is satisfied(

(a2k2 − a′′2)
′
+ a′2k2 + 2

k3

)′
+ a2k3 = 0. (11)
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Proof. We assume that the tangents at the corresponding points β(s) and γ(s)
of the curves β and γ are parallel in opposite directions. By using the equations
(4),(5),(6) and (7) we obtain the differential equation given by (11). �

Remark 1. The differential equation (11) is a characterization for null curves
which have parallel tangents in opposite directions. Via its solution, the position
vector of γ can be determined. The general solution of this differential equation has
not yet been found. But it can be considered for some special cases.

Corollary 1. Let β : J ⊂ R→ E41 be a null curve whose the curvatures are constant
and γ : J ⊂ R→ E41 be a null curve. If the tangents at the corresponding points of
the curves β and γ are parallel in opposite direction then we obtain a2 as follows:

a2 = d1e
√
λs + d2e

−
√
λs + d3 cos

√
−µs+ d4 sin

√
−µs, (12)

where λ = c2 +
√
c22 + c23 and µ = c2 −

√
c22 + c23.

Proof. Let us suppose that β is a null curve whose the curvatures are constant.
Then we can consider them as k2 = c2 and k3 = c3, where c2 and c3 are non-zero
real constants. In that case we induced differential equation (11) to following linear
differential equation.

a
(4)
2 − 2c2a

′′
2 − c23a2 = 0. (13)

If we solve the differential equation is given by (13), we have (12). It completes the
proof. �

Theorem 2. Let β : J ⊂ R → E41 and γ : J ⊂ R → E41 be null curves. Let the
tangents at the corresponding points β(s) and γ(s) of the curves β and γ be parallel
in opposite directions. Then β and γ are null curves of constant breadth if and only
if the curve a2 = 0, where a2 is the component of γ in the direction N2(s).

Proof. We assume that the tangents at the corresponding points β(s) and γ(s) of
the curves β and γ are parallel in opposite directions and the distance between
these points is always constant. Then we obtain

‖γ(s)− β(s)‖2 = 2a (s) a2 (s) + a21 (s) + a23 (s) = constant. (14)

By differentiating (14) with respect to s and by using (4),(5),(6) and (7), we
have a2 = 0.
Conversely we assume that the component of γ in the direction N2(s) is equal

to zero. In that case, by using the differential equations given by (4-7), we get a =
a1 = 0 and a3 =constant and a3k3 = 2. Then we can write γ(s) = β(s) + a3N3(s).
So, the distance between corresponding points of the curves β and γ is constant. It
completes the proof. �

Corollary 2. If β and γ are null curves of constant breadth then the curvatures of
β are k2 = k2(s) and k3 = 2

a3
=constant.
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Corollary 3. If β and γ are null curves of constant breadth then the curve γ is
determined as γ(s) = β(s) + a3N3(s), where a3 = 2

k3
=constant.

Example 1. (This null curve is given in [3] ) Let β be a null curve in E41 given by

β(s) =
1√
2

(sinh (s) , cosh (s) , sin (s) , cos (s)) .

The Frenet Frame of β is given by

T (s) =
1√
2

(cosh (s) , sinh (s) , cos (s) ,− sin (s)) ,

N1 (s) =
1√
2

(sinh (s) , cosh (s) ,− sin (s) ,− cos (s)) ,

N2 (s) =
1√
2

(− cosh s,− sinh s, cos (s) ,− sin (s)) ,

N3 (s) =
1√
2

(sinh (s) , cosh (s) , sin (s) , cos (s)) .

Then, we get the curvatures of β as follows:

k1 (s) = 1, k2 (s) = 0, k3 (s) = −1.

From Theorem (2), we obtain null curve γ as follows:

γ(s) =
1√
2

(− sinh (s) ,− cosh (s) ,− sin (s) ,− cos (s)) .

So, β and γ are null curves of constant breadth and ‖γ(s)− β(s)‖ = 2. Also, it can
be easily seen that the tangent of γ T̄ = −T.
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[4] Kocayiğit H., Önder, M., Space curves of constant breadth in Minkowski 3-space, Ann. Mat.

Pura. Appl. 192 (5), (2013), 805-814.
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B 8, (1984), 119-126.
[8] Köse Ö., On space curves of constant breadth, Dŏga Mat. 10, (1986), 11-14.
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Education Kırşehir, Turkey

E-mail address : bulent.altunkaya@ahievran.edu.tr
ORCID Address: http://orcid.org/0000-0003-4633-034X
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