Arastirma Makalesi BAUN Fen Bil. Enst. Dergisi, 20(3) Ozel Sayt, 75-89, (2018)
DOI: 10.25092/baunfbed.476608 J. BAUN Inst. Sci. Technol., 20(3) Special Issue, 75-89, (2018)

Homotopy methods for fractional linear/nonlinear
differential equations with a local derivative
operator

Mehmet YAVUZ", Burcu YASKIRAN

Necmettin Erbakan University, Faculty of Science, Department of Mathematics-Computer Sciences,
Meram, 42090, Konya, Turkey.

Gelis Tarihi (Recived Date): 12.10.2018
Kabul Tarihi (Accepted Date): 24.10.2018

Abstract

In this paper, we consider some linear/nonlinear differential equations (DES)
containing conformable derivative operator. We obtain approximate solutions of these
mentioned DEs in the form of infinite series which converges rapidly to their exact
values by using and homotopy analysis method (HAM) and modified homotopy
perturbation method (MHPM). Using the conformable operator in solutions of different
types of DEs makes the solution steps are computable easily. Especially, the
conformable operator has been used in modelling DEs and identifying particular
problems such as biological, engineering, economic sciences and other some important
fields of application. In this context, the aim of this study is to solve some illustrative
linear/nonlinear problems as mathematically and to compare the exact solutions with
the obtained solutions by considering some plots. Moreover, it is an aim to show the
authenticity, applicability, and suitability of the methods constructed with the
conformable operator.
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YAVUZ M., YASKIRAN B.

Lokal tiirev operatorlii lineer/lineer olmayan diferansiyel
denklemler i¢in homotopi metotlari

Ozet

Bu ¢alismada conformable (uyumlu) tiirev operatorii (CTO) iceren bazi lineer/lineer
olmayan diferansiyel denklemler ele alinmuistir. Homotopi analiz metodunu (HAM) ve
modifiyeli homotopi pertiirbasyon metodunu (MHPM) kullanarak bu bahsi gegen
denklemlerin sonsuz seri formunda yaklasik ¢oziimleri elde edilmistir. CTO kullaniimast
farkl tiirden diferansiyel denklemlerin ¢oziimlerini elde etmede ¢oziim adimlarimin
kolay bir sekilde hesaplanmasini saglamaktadir. Ozellikle CTO miihendislik, fiziksel
bilimler, ekonomi ve diger bazi alanlardaki problemleri modellemede kullaniimaktadir.
Bu baglamda, bu ¢alismanin amact bazi lineer/lineer olmayan diferansiyel denklemleri
matematiksel olarak ¢ozmek ve ¢oziim grafiklerini kullanarak elde edilen yaklagik
coziimler ile tam ¢oziimleri karsilagtirmaktir. Ayrica CTO ile yeniden tanimlanan HAM
ve MHPM metotlarinin giivenirligini, uygulanabilirligini ve elverisliligini gostermektir.

Anahtar kelimeler: Yaklasik ¢oziim, uyumlu operatér, homotopi analiz metodu,
modifiyeli homotopi pertiirbasyon metodu, lineer olmayan diferansiyel denklemler.

1. Introduction

In the last decade, several numerical, approximate and analytical methods have been
investigated to get solutions of linear/nonlinear fractional PDEs. Especially, in the
physics and engineering areas, numerous applications and theoretical aspects of
fractional calculus have been studied. For example, in [1-10] researchers solved some
important problems modelled with fractional DEs. Furthermore, conformable derivative
operator defined in 2014 [11], is preferred by some researchers [12-19] to apply it to
FDEs and to model some special physical, chemical and engineering problems.
Moreover, the mentioned approximate methods have been applied extensively to real-
life problems by taking these theoretical aspects into consideration. For instance,
approximate-analytical methods have included homotopy analysis method (HAM) [20-
22], Adomian decomposition method (ADM) [23-25], differential transform method
(DTM) [26, 27], homotopy perturbation method (HPM) [28, 29], modified homotopy
perturbation method (MHPM) [30], variational iteration method (VIM) [31], sine-
Gordon expansion method [32], g-homotopy analysis method (g-HAM), [33], etc.

2. Conformable derivative operator

2.1. Definition
Given a function ¢ [O,oo) — R. Then the conformable derivative of & order « € (0,1]

is defined for all t>0 by [11]

T ()0 = tim L) 7€)

-0 <
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2.2. Definition
The o —fractional integral of & is defined by
t
X)
15 (£)(t)=13(t jggadx ae(0,).
> X

2.3. Theorem
Let « €(0,1] and &, 9 be « — differentiable at a point t>0. Then [11];

() To(ag+bd)=aTs(£)+bT2(9) forall abeR,

(i) T (t)=kt““ forall keR,

(i) To(&(t)=0if &(t)=

(iv)  TL(89)=E&Te(9)+9T5 (&),
ITE(E)=ET2 (9

V)  Ti(&19)=—= (£) T )

192
(i) If £(t) is differentiable, then T (&(t)) =t %f(t).

2.4. Lemma
Consider & as an n-— times differentiable at t. Then we have T (£(t))=t“"&“!(t),

forall t >0, & e(n,n+1] [11].

3. Homotopy analysis method in the conformable sense

This section of the study proposes the solution strategies that are generated by
homotopy analysis method in the conformable-type derivative (CHAM). Firstly, we
take the following general form of a nonlinear equation:

N[ v (xt)]=0 )

where J\/“() is a nonlinear operator. Then, the deformation equation is presented as,

(1-p){L[p(xt;p)—yo (x1)]}

)
= pAH (x,t) V[ ¢(x.t; p) |

Let w,(X,t) show an initial estimation value of the exact solution of Eq. (1), p <[0,1]

is an embedding parameter, 7#=0 is an supporting parameter, H(x,t)=0 is an

supporting function, and L=TS an supporting linear operator. It is free to choose the

supporting parameters by applying the suggested method. Clearly, if p=0 and p=1,
Eq.(2) turns out to be
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(x.1;0) =y, (x,t), d(xt1)=p(xt) (3)

respectively. Thus, p increases from 0 to 1, the solution ¢(x,t; p) varies from the
initial value w,(x,t) to the solution w(x,t). Then, we consider the Taylor series

expansion of ¢(x,t; p) with respect to p, we get

o0

(Xt p)=wo (X t)+ D v, (xt)p", 4)

m=1

where

. () - LTB0ED)

m!  op" ©)

p=0
If the supporting parameters mentioned above are chosen appropriately, the solution of
Eq. (3) exists for p €[0,1]. Then we have

o0

W(X,t):Z(//m(X,t). (6)

m=0

If we take the vector

Vo ={wo (X 1), 0 (1), (X)), 7)
we obtain m th-order altered equation as

Ly (%) = Zotrs (6 0) J=AH (X 1) R, (07,4 (x,1)), (8)

where
1 am‘lJ\/"[¢(x,t; p)]|

s‘Rm (lpm—l(x’t)): (m_1)| apm—l ‘ ! (9)
and

0, m<1,
X = {1' ol (10)

Finally, operating the conformable integral operator defined in Definition 2.2. on both
side of Eq. (8), we have

S N ,
v (X,t)= ;(my/mfl(x,t)—;(mZt//;@l(x,O )G-'_ 157H (X, )R, (Wm—l(x’t))' (12)
k=0 .
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4. Modified homotopy perturbation method in the conformable sense

In this section we illustrate the solution strategies that are generated by modified
homotopy perturbation method in conformable-type derivative (CMHPM). Now we
introduce a solution algorithm in an effective way for the general nonlinear PDEs. In
this regard, firstly, we consider the following nonlinear equation:

Tou(xt)+L(uu,u,)+N(uu,u,)=f(xt), t>0, (12)

where L is a linear operator, N is a nonlinear operator, f is a known analytical
function and T.J, n—1<a <n, shows the conformable derivative of order «. We also
have the initial conditions

u“(x,0)=9,(x), k=041,...,n-1. (13)

In view of the homotopy perturbation method (HPM), we can derive the following
homotopy:

@-p)Tu(xt)+ p[T*‘fu(x,t)+ L(u,uy, U, )+N(u,u,u,)—f (x,t)] =0, (14)
or
Tou(xt)+p[L(uu,,u, )+ N (u,u,u,) - f (xt)]=0. (15)

Therefore, we get the solution of Eg. (15) by using the powers of p:
U=U,+ pu, + p°U, +---. (16)

The modified form of the HPM which was proposed by Odibat [34] can be established
based on the assumption that the function f (x,t) in Eq. (12) can be divided into parts,

F(xt)=3 £ (1), (17)

Then we have the following homotopy:

(1-p)Tu(xt)+ p[T*f‘u(x,t)+ L(u,u,,u,)+N (u,ux,uxx)] =i p"f, (x.1), (18)
or
Tou(xt)+ p[L(u,uX,uXX)+N(u,ux,uxx)]=ip”fn(x,t), (19)

where pe[0,1]. If we set f(x,t)=0, f(xt)=f(xt) for n=0 or n>2, then the
homotopy Eq. (18) or Eqg. (19) reduces to the homotopy Eq. (14) or Eg. (15),
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respectively. The form of homotopy Eq. (19) allows us to obtain the individual terms
Uy, Uy, U,,... In Eq. (16). Substituting Eq. (16) in Eq. (15) and collecting the terms with
the same powers of p, we get

P*iTu, = fo(xit)’ U(()k)(X,O)=gk( )
T L) N (50, (60)-0 o0
P Ty ==L (u) =N (g, Uy) + o (x, ) ;) (x,0)=0

At this step, by applying the conformable integral operator on both side of Eq. (20), the
first few terms of the MHPM solution can be given by

m— k
uoziu(k)(x,o L +I“[f xt]
k=0

15 L (Up) [= L [N (up) [+ 15 (1) ],
_—I"[L(ul )= 15N (ugu, ) [+ 15[ f, (x.1)], (21)
15 [ L(uy) = 1 [N (ugouy,u, )+ 15 [ f(x1) ],

Then we get the solution in the series form as

u(xt)=Su, (x.t).

n=0

5. Numerical examples

5.1. Example
We consider the one-dimensional linear Klein-Gordon equation [35]

T,,j‘u(x,t)—u‘xx(x,t)+u(x,t):6x3F +(X°—6x)t°, t>0, xeR, I<a<2, (22)

with the initial conditions

u(x,0)=0, u,(x,0)=0. (23)
Firstly, we will solve this problem by using the mentioned HAM. Choosing the operator
L(#(xtp))=Tid(xt p)

with the property that L[k]=0, k is a constant. We use the initial approximation
u(x,0)=0. Choosing H (x,t) =1, we can construct the m. order modified equation as
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L[ u, (Xt) = 2l (X 1) [ =79 (0, (X,1)) (24)
where
Ry (Ury (%,1)) =TU s = (Upy )y, + Uy — (1= 2, )| 6X° - (Zja) +(x*-6x)t° | (25)
Therefore, the solution of Eq. (24) for m >1 becomes
Up (X,1) = ZUpy (1) +RLER (T, (X,1)). (26)
From Eqgs. (23), (25) and (26), we obtain
Up (x,t) =0,

23 3 ay\patd
()= _hF()é('rt—a) ‘h(g+ 2?21 3)’
o (0t) = . , (x3 —6x)t‘”3 2 Xt 2 (x3 —6x)t”‘*3

F(4—a) (a+2)(a+3) F(4—a) (a+2)(a+3)
(X3 _ 6X)t0{+3 . (X3 _12X)t2a+3
(a+2)(a+3)[(4-a) (a+2)(a+3)(2a+2)(2a+3)’

2

Then the approximate solution of Eq. (22) is presented by

U(X't) =U, (X,t)+U1(X,t)+u2 (X,t)+u3(x,t)+...

3,3 X3 —6X ta+3 3,3 X3 _6X ta+3
F(4—a) (a+2)(a+3) F(4—a) (a+2)(a+3)
_hz X3t3 _hz (X3 _6X)ta+3 _hz (X3 _6X)ta+3

I'(4-a) (a+2)(a+3) (a+2)(a+3)(4-a)
(x3 —12x)t20’+3 N
(a+2)(a+3)(2a+2)(2a+3)

Y

Then the exact solution of the Eq. (22) subject to the initial conditions Eq. (23) for
a =2, is obtained with HAM as u(x,t) = x*t°.
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Figure 1. Comparison the HAM and the exact solutions at « =2, x=0.5.

Secondly, we solve the Eq. (22) by using the MHPM. Let us take the initial conditions
in Eq. (23) into consideration and use the homotopy in Eg. (19) and finally set

t37a
f(x,t)=6x——
o (%) I'(4-a)
homotopy in Eq. (19) allows us to obtain the individual terms u,,u,,u,,... in Eq. (16).

Substituting Eq. (16) in Eq. (19) and collecting the terms with the same powers of p,
we obtain

,f(xt)=(x*=6x)t°, -, f(x,t)=0,n22. The form of

p°:Tou, = fy(x.1), Up(x,0)=0, (uy),(x,0)=0,
prTou = (Uy), —Up + fi (X 1), u,(x,0)=0, (u;),(x,0)=0,
p*:Tou, =(uy) —uy, uf?(x,0)=0, u,(x,0)=0, (u,) (x0)=0, (27)
p*:Tou, =(u,), —u,, ul?(x,0)=0, uy(x,0)=0, (u;),(x,0)=0,

Now, by applying the operator 15 on both side of Eq. (27), the first few terms of the

*t

MHPM solution can be given by

X3t

(x*—6x)t*? N (x*—6x)t«*
(a+2)(a@+3)T(4-a) (a+2)(a+3)

Uy (x,1)=

u (x,t)=-
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0, (x,t) = 6xt*" _ 6xt*"
2A (a+2)(a+3)(2a+2)(2a+3) (a+2)(a+3)(2a+2)(2a+3)[(4-a)
(% —6x)t*? (x*—6x)t*?

_(a+2)(a+3)(2a+2)(2a+3) +(a+2)(a+3)(2a+2)(2a+3)F(4—a)'

In this way, the rest terms of the series can be calculated. The approximate solution of
Eq. (22) is given by

u(xt) = Xt (x3—6x)t“*3 +(x?’—6x)t”‘+3
' F(4—a) (a+2)(a+3)1"(4—a) (a+2)(a+3)
. 6Xta+3 ~ 6Xta+3
(a+2)(a+3)(2a+2)(2a+3) (a+2)(a+3)(2a+2)(2a+3)1“(4—a)
(x*—6x)t*? (x*—6x)t?
(a+2)(a+3)(2a+2)(2a+3)+(a+2)(a+3)(2a+2)(2a+3)F(4—a)

+ ..

Then the exact solution of the Eq. (22) subject to the initial conditions Eq. (23) for
2,

special case of a =2, is obtained with MHPM as u(x,t) = x

Figure 2. HAM sol. with ¢ =1.4 and « =1.8 for Example 1
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=2

Figure 3. HAM solution and exact solution with « =2 for Example 1.

5.2. Example
Now let us consider the following nonlinear differential equation [36]
e 244
Tau(x,t)+u?(xt)=2x———+x%t*, t>0, 0<x<1, O<a<l, 28
U+ (0) =2 s 28)
with the initial condition
u(x,0)=0, (29)

and the boundary conditions
u(0,t)=0, u(Lt)=t> (30)

Firstly, we will apply the HAM to the problem. Choosing H (x,t) =1, we can construct
the m. order modified equation as

L[ u, (Xt) = 2l (X 1) [ =R (0,4 (X,1)) (31)
where
R, (Um—l (X't)) =Tl + uli—l - (1_ Am ){ZX% + thﬂ' (32)

Now the solution of Eq. (28) for m >1 becomes

Up (X,1) = ZUpy (1) +RLER (T, (X,1)). (33)
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From Eqgs. (29), (32) and (33), we get

Up (x,t) =0,
Xt2 XZta+4
Jt)=-h —h ,
s (1) F(3-a)  (a+4)
2 24 a+4 2 2+ a+4
bt = n XX e
I(3-a) (a+4) I'(3-a) (a+4)
2 2 2 24 a+4
U (xt)=—h—2 gy X X, XA
r(3-a) I'(3-a) r(3-a) (a+4)
2:a+4 2¢a+4 2+ a+4
_thxt —h3Xt L Xt
(a+4) (a+4) (a+4)T(3-a)T(3-0a)
X3t2a+6 . X4t3a+8

+ 2i°

(@+8)(2a+6)(3-a) " (a+8)(a+4)(3a+8)

These steps give that the approximate solution of Eq. (28) as

2 2ea+h 2 2, q+4 2
sxt)e X X, x
I(3-a) (a+4) T (3-a) (a+4) r(3-a)
24+a+4 2 2 2 2+a+4
XU s X
(a+4) T(3-a) I'(3-a) r(3-a) (a+4)
_2h2 X2ta+4 _hg XZta+4 +h3 X2ta+4
(a+4) (a+4) (a+4)F(3—a)F(3—a)
X3t2a+6 s X4t3a+8

+ 23

+h +e
(a+4)(2a+6)T'(3-a) (a+4)(a+4)(3x+8)
Then the exact solution of Eq. (28) for a =1 is obtained with the HAM as u(x,t) = xt*.
Secondly, we solve the mentioned problem by applying the MHPM to it. Considering
the initial condition in Eg. (29) and the homotopy in Eg. (19), we set

2-a
fo(x,t):2xﬁ, f,(x,t)=x" -, f (xt)=0, n>2. Then we obtain

p°:T.iu, = fy(x,t), Uy (%,0)=0,
ptiTou =-u; + f (x.t), u, (x,0)=0,
p?:Tu, =—2u.,, ul (x,0)=0, u, (x,0

-0, (34)
p° :Tuy =—(uf +2uu, ), uf” (x,0)=0, u,(x,0)=0

Following the same solution steps in the Example 1, the first few terms of the MHPM
solution can be obtained as
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2

xt
%)= a)
XZta+4 XZta+4
1t = - y
u (%) (a+4) (a+4)T(3-a)T(3-a)
342a+6 342a+6
uz(x,t):— 2x°t 2X°t

(@+4)(22+6)T(3-a) (a+4)(2a+6)[(3-a) (3-a)l(3-a)

The rest parts of the series can be given as the same way. Then the approximate solution
of Eqg. (33) is given by

t B Xt2 XZta+4 XZta+4 2X3t2a+6
) = 30y (0 ) (@ )T (3-a)T(3-a) (a+d)(2a+6)T(3-a)
2X3t2a+6
" (a+4)(22+6) (3—a)T (3-a)[ (3—a)

The last equation means that the exact solution of the Eq. (28) for a =1 is obtained
with the proposed MHPM as u(x,t) = xt’.

0,045 : . : . : . : .
—[J— a=0.45, HAM

0,040 -
0,035 -

0,030

0,025 -

0,020 -

u(x,t)

0,015 -
0,010 -

0,005 -

0,000 -

Figure 4. Comparison the numerical solutions with the exact solution at #=-1,t=0.2.
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6. Conclusion

In this work, approximate-analytical solutions of some linear/nonlinear PDEs are
obtained by using the HAM and MHPM methods considering the conformable
derivative operator. The fundamental solutions for non-homogeneous Klein-Gordon
equation and a nonlinear PDE have been investigated by applying these suggested
methods. The results of numerical computations have been illustrated by the figures
under the variation of order «, time value t, distance term x and the auxiliary

parameter 7. The results of this study find out that the HAM and MHPM in the
conformable derivative mean are applicable and suitable methods that can evaluate the
components of infinite series smoothly and with ease in short notice even in nonlinear
PDEs and the results have proven the accuracy and influence of these mentioned
methods.
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