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Abstract 
 
This paper presents three distinct approximate methods for solving Blasius Equation. 
The first method can be regarded as an improvement to a series solution of Blasius by 
means of Padè approximation. The second method is a famous type of weighted residual 
technique which is called Galerkin method after the famous Russian engineer and 
mathematician Boris Galerkin. The last method is a simple discrete, numerical 
technique. Additionally, in order to show the power of the last method, the Thomas-
Fermi problem is solved using the same technique. Results obtained by all three 
methods are highly accurate in comparison with the Howarth’s solution and Bender’s 
solution. 
 
Keywords: Blasius equation, perturbation technique, Padè approximation, weighted 
residual method, Galerkin method, Thomas Fermi equation. 
 
 

Blasius denkleminin çözümü için çeşitli teknikler 
 
 

Özet 
 
Bu makalede Blasius Denklemi’ni çözmek için üç farklı yaklaşık yöntem sunmaktadır. 
İlk yöntem Blasius’un seri çözümünün Padè yaklaşımı yardımı ile iyileştirilmesi olarak 
değerlendirilebilir. İkinci yöntem ünlü Rus mühendis ve matematikçi Boris Galerkin’e 
izafeten Galekin Metodu olarak adlandırılan bir ağırlıklı artık yöntemdir. Son yöntem 
ise basit, ayrık bir sayısal tekniktir. Ek olarak son yöntemin gücünü göstermek adına 
Thomas-Fermi Problemi de aynı teknik ile çözülmüştür. Her üç yöntem, sonuçlar 
Howarth’ın ve Bender’in çözümü ile kıyaslandığında, oldukça başarılı sonuç 
vermektedir. 
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Anahtar Kelimeler: Blasius denklemi, pertürbasyon tekniği, Padè yaklaşımı, ağırlıklı 
artık yöntemler, Galerkin metodu, Thomas Fermi denklemi. 
 
 
1. Introduction 
 
The theory of boundary layer constitutes one of the most important branch of fluid 
dynamics since external flows with high Reynolds’ numbers are common in both nature 
and many engineering applications. Solving these problems generally requires a 
challenging effort due to the non-linearity and multidimensional character of the 
governing equations. Although there is reasonable amount of exact solution found for 
the full Navier-Stokes equations in literature, they are only valid for some particular 
cases and geometries [1].  
 
An effective approach to solve an external flow problem with high Reynolds number is 
known as boundary layer analysis technique which is first developed by Prandtl in 1904. 
One of his students Blasius, in 1908, introduced a technique to transform the well-
known problem of laminar boundary layer flow over a flat plate into an ordinary 
differential equation (ODE). Blasius equation have great importance in many 
engineering applications since it provides very good approximations for boundary layer 
thickness and total drag force in laminar external flows [2]. For example, drag force 
acting on a thin airfoil in a laminar flow can be very well approximated by using Blasius 
equation. The equation is given as: 
 ������� + 1

2 ���������� = 0 (1) 

 
where relative boundary conditions are defined as:  
 ��0� = 0, ���0� = 0	 (2) 
lim�→������ = 1 (3) 

 
and where ����� is the first derivative of � with respect to �.  � is the similarity variable 
of the problem and defined in the Cartesian coordinates as: 
 � = ���	
 (4) 

 
where � is free stream velocity and 	 is kinematic viscosity of the fluid. The 
relationship between � and stream function �Ψ� is given by: 
 
Ψ = ����√�	
 (5) 
 
and velocity components (�, 
) can be derived from stream function by: 
 � = �Ψ��  (6) 
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 = −�Ψ�
  (7) 

 
The first term of (1) represents the viscos diffusion, so it becomes dominant as � 
approaches to zero. The second term, on the other hand, is due to convective 
acceleration and is dominant for high values of	�. Even though the equation looks very 
simple at first glance, there haven’t been any exact analytical solution found for over 
100 years, so all solutions suggested so far depend on some approximate techniques; 
some of them are very successful while some of them are not. In fact, the equation has 
been used as a tool to investigate the success of various approximate solution 
techniques. 
 
Blasius himself [3] suggested an approximate solution with an infinite series which is 
only convergent for small values of 	�. [4] reaches an estimation for shooting angle, �′′(0), with 8.6% relative error, using �-perturbation method and Padè approximation.  
[5] gives a simple approach called iteration perturbation method and obtain �′′(0) with 
0.73% relative error which can be considered as a very good result considering the 
simplicity of calculations. Using variational iteration method, [6 - 8] give valid solutions 
for whole domain. Solution with numerical transformations was presented by [9] while 
[10] uses an evaluation technique to find out Taylor coefficients. Reproducing Kernel 
Method was applied successfully by [11]. Amongst all of the numerical solutions, [12] 
is the most famous one with its extreme accuracy and is generally regarded as an exact 
result for comparison purposes. Some other solution techniques applied to Blasius 
equation are Sinc-collocation method [13], homotopy analisys method [14, 15], 
Laguerre-collocation method [16], homotopy perturbation method [17], parameter 
iteration method [18], differential transformation method [19, 20], Adomian’s 
decomposition method [21, 22] and modified rational Legendre tau method [23].  
 
In this paper approximate solutions for (1), under the boundary conditions (2) and (3), 
with three different methods are applied. First, series solution of Blasius (solution with 
perturbation technique) is considered and validity range of the series is increased 
making use of Padè approximation [24]. Secondly, a Galerkin-based weighted residual 
method [25] is applied with two different trial function. Finally, a simple numerical 
technique, which can be used for various non-linear problems, is introduced.  
 
 
2. Perturbation Technique 
 
In order to obtain a series solution, we put a perturbation parameter to (1) as: 
 ���� + 1

2 ����� = 0 (8) 

 
And assume that solution can be given with Poincare series: 
 ���, �� =������

���
 (9) 

 
By putting (9) into (8) results in: 
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 ���������

���
+ 1
2����	�������

���
= 0 (10) 

 
By considering the same powers of �, we obtain a set of differential equations as: 
 ����� = 0 (11) ���	��� + ������ = 0 (12) 
 
It is not possible to obtain a solution with boundary condition (3). Thus, we consider the 
initial value problem where: 
 �′′�0� = � (13) 
 
By solving (11) with (2) and (13): 
 �� = �

2 �
 (14) 

 
Now solving (12) with homogenious initial conditions (���	�� �0� = 0) and as � = 1, 
approximate solution can be obtained in following series form: 
 � =��−1

2�� �����	�3� + 2�!�

���

���
 (15) 

 
where, 
 �� = ��3� − 1

3� � ����
�
	�
	

���
 (16) �� = �	 = 1 (17) 

 
This is the approximate series solution first given by Blasius [2]. However power series 
is only convergent for small values of  �. In order to expand the range of validity, Padè 
approximation technique can be applied to the first n term of the series. For example, 
first five term of the (15) can be calculated as: 
 � = 0.5��
 − 4.1667 × 10
��
�� + 6.8204 × 10
����� − 1.1743

× 10
����		 (18) 
       +2 × 10
����	� 
 
Padè approximant of (18) around � = 0, as degree of both numerator and denominator 
of the approximate rational function being seven, can be found as: 
 � = 4.88204 × 10
��
�� + 0.5��


1.44037 × 10
��
�� + 1.80974 × 10

��� + 1 (19) 

 
and first derivative of �: 
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�′ = ���2.44102 × 10

��� + 1�
1.44037 × 10
��
�� + 1.80974 × 10

��� + 1 

(20) 									+−4.21917 × 10
����	� − 3.08268 × 10
����� − 2.71461 × �
���1.44037 × 10
��
�� + 1.80974 × 10

��� + 1�
  

  
It is of course impossible to satisfy the boundary condition at infinity for any finite 
value of  �. However, we can investigate the behaviour of �′ for various values of � and 
determine the necessary � in order to approximate the exact solution of �. For this 
purpose, the range at which �′ is monotone increasing, for positive values of �, is 
calculated. By using a shooting technique and forcing the �� = 1 at local maxima, very 
accurate solution is obtained for �. In order to do that, we start with two initial guess for �; 0 and 1 respectively: 
 � = 0, ��

��� = 0 (21) � = 1, ��
��� = 2.09866	�ℎ���	� = 4.60438 (22) 

 
Now more and more accurate � values can be estimated by linear interpolation. Table 1 
shows �� and ��

���,� values where n denotes the number of iteration. 
 

Table 1. � and ��
��� with respect to iteration number. � � ��

��� � 
1 0.4765 1.28032 5.8950 
2 0.3722 1.08591 6.4009 
3 0.3428 1.02795 6.5790 
4 0.3335 1.00927 6.6395 
5 0.3304 1.00300 6.6602 
6 0.3294 1.00098 6.6670 
7 0.3291 1.00037 6.6690 
8 0.3290 1.00017 6.6697 
9 0.3289 0.99997 6.6704 

 
This indicates that solution is not valid as � > 6.67. As a result, �′′�0� is estimated with 
only 0.96% relative error. Accuracy can be increased by adding higher order terms of 
the series, but we do not go further under this section. Table 2. shows calculated results 
for �, ��	���	�′′ and their comparison to result of [12].  
  

Table 2. Results and comparison of solution with perturbation technique. � � Howarth 
[12] 

�′ Howarth 
[12] 

�′′ Howarth 
[12] 

0 0.0000 0.0000 0.0000 0.0000 0.3289 0.3321 
1 0.1640 0.1656 0.3267 0.3298 0.3200 0.3230 
2 0.6440 0.6500 0.6241 0.6298 0.2648 0.2668 
3 1.3843 1.3969 0.8392 0.8461 0.1609 0.1614 
4 2.2864 2.3059 0.9489 0.9555 0.0652 0.0642 
5 3.2581 3.2834 0.9869 0.9916 0.0189 0.0159 
6 4.2516 4.2798 0.9979 0.9990 0.0058 0.0024 
7 5.2510 5.2794 0.9993 0.9999 -0.004 0.0002 
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This results are amazing considering the simplicity of the methodology however, since 
the domain is infinite and problem has a strong non-linearity, technique can be used for 
limited range of the domain. This is the general restriction of perturbation techniques as 
it is pointed out by [26].  
 
 
3. Weighted residual method 
 
In this section, an approximate solution technique using well-known Galerkin method is 
presented. In this method, first a trial function which satisfies all boundary condition 
should be introduced such as: ����, ��� =  ��� +���!����

��	
 (23) 

 
Where �� is trial function,  ��� is a function of � which satisfies all boundary 
conditions, !��� is a function of � which satisfies the homogenious form of the given 
boundary conditions, and ��s are unknown coefficients to be determined. 
 
Unless �� has not the form of exact solution of the problem, there is always  a residual 
function of � and ��. In all  weighted residual methods, the goal is to determine the ��", 
which somewhat minimize the residual, by using suitable weight functions and integral 
relations. Specifically, in Galerkin method, the weight functions are chosen with having 
same form of the trial function, for another words: 
 �� = ������  (24) 

 
Where ��s are weight functions. The integral relations to find out ��s are: 
 # ��

�

�
������ + 1

2������� �� = 0 (25) 

 
As one can notice (25) provides N equations for N ��s. In order to solve (1) with 
boundary conditions (2) and (3), we first introduce following trial function. 
 �� = � + �
� − 1 +���$�
���	�� − �� + 1��
� + �%�

��	
 (26) 

 
And relative weight functions in this case: 
 �� = �
���	�� − �� + 1��
� + � (27) 
 
By substituting trial function (26) into (1), residual function (R) is found as: & = −�
� +���$−�� + 1���
���	�� + �� + 1��
�%+�

��	
 (28) 
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	12 '� + �
� − 1 +���$�
���	�� − �� + 1��
� + �%�

��	
( 				'�
� +���$�� + 1�
�
���	�� − �� + 1��
�%�

��	
( 

 
The simplest case occurs when ) = 1 which results in only one quadratic equation for 
one unknown. By multiplying (28) and (27) and substituting into (25), and with some 
algebra we get: 
 

48�	
 + 65�	 + 55 = 0 (29) 
 
The difficilty due to the non-linearity arises one more time since (29) does not have a 
solution for �	 in real numbers. Although using only real part of the solution of (29) 
gives very good results for �, this is nothing to do with the method. However, by taking ) = 2 and following the same process we get two quadratic equations for �	, and �
: 
 

4720�	
 + 19680�

 + 19170�	�
 + 7826�	 + 9630�
 + 7875 = 0 (30) 
3360�	
 + 13815�

 + 13560�	�
 + 4550�	 + 4599�
 + 4900 = 0 (31) 
 
These equations have two distinct real solutions for �	 and �
 but we are interested in 
only one of them which minimize the residual. The relevant solution for � can be found 
as: 
 �	 = −2.33236, �
 = 0.7607 (32) 
 
Thus, the approximate solution becomes: 
 �
 = � + �
� − 1 − 2.33236��

� − 2�
� + 1� + 0.7607��
�� − 3�
� + 2� (33) 
 
Where �
 denotes the approximate solution of � when ) = 2. �� and �� can be 
calculated similarly and given as: 
 �� = � + �
� − 1 + 1.5796��

� − 2�
� + 1� + 0.2864��
�� − 3�
� + 2� (34) +	0.1093��
�� − 4�
� + 3�																																																																														 �� = � + �
� − 1 − 1.7237��

� − 2�
� + 1� + 0.0008��
�� − 3�
� + 2� (35) +	0.8121��
�� − 4�
� + 3� − 0.3547��
�� − 5�
� + 4�																					 
 
Comparative results for �, �’ and �′′ are shown by Table 3, 4 and 5 respectively.  
 

Table 3. Comparative Results for � � �
 �� �� Howarth [12] 
0 0.0000 0.0000 0.0000 0.0000 
1 0.1556 0.1768 0.1674 0.1656 
2 0.6060 0.6805 0.6661 0.6500 
3 1.3518 1.4599 1.4391 1.3969 
4 2.2502 2.3731 2.3494 2.3059 
5 3.2117 3.3405 3.3155 3.2834 
6 4.1974 4.3284 4.3129 4.2798 
7 5.1921 5.3238 5.2983 5.2794 
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Table 4. Comparative Results for �′ � �
� ��� ��� Howarth [12] 
0 0.0000 0.0000 0.0000 0.0000 
1 0.2733 0.3237 0.3263 0.3298 
2 0.6220 0.6682 0.6602 0.6298 
3 0.8429 0.8652 0.8606 0.8461 
4 0.9396 0.9486 0.9468 0.9555 
5 0.9774 0.9809 0.9801 0.9916 
6 0.9916 0.9929 0.9927 0.9990 
7 0.9969 0.9974 0.9973 0.9999 

 
Table 5. Comparative Results for �′′ � �
�� ���� ���� Howarth [12] 

0 0.8995 0.8715 0.2094 0.3321 
1 0.3227 0.3584 0.3381 0.3230 
2 0.3039 0.2787 0.2796 0.2668 
3 0.1461 0.1272 0.1309 0.1614 
4 0.0589 0.0503 0.0521 0.0642 
5 0.0224 0.019 0.0197 0.0159 
6 0.0083 0.0071 0.0073 0.0024 
7 0.0031 0.0026 0.0027 0.0002 

 
It appears that the results are very good for � and �′. However method is not successful, 
with this trial function, at predicting  �′′ for small values of �, especially when  � < 1. 
In order to obtain better results for � < 1 we can force the trial function to include 
additional information where  � = 0. By satisfying (1) at � = 0, we obtain following 
condition: 
 �����0� = 0   (36) 
 
Now we introduce following trial function which satisfies (35) besides (2) and (3). 
 �� = � − �

�

6 + 4�
�
3 − 7

6 + 

(37) 										��� *�
���
�� + � + 2 − �� + 2��
6 �

� + �� + 2�� − 4�� + 2�

3 �
��

��	

− �� + 2�� − 7�� + 2� + 6
6 + 

 
This time, there are no real solutions available for ) = 1 and ) = 2. However, by 
taking ) = 3 and applying the same procedure we obtain; �� = � − �

�

6 + 4�
�
3 − 7

6 + 0.75��
�� − 4�

� + 5�
� − 2� − (38) 
0.05��
�� − 10�

� + 16�
� − 7� − 0.04��
�� − 20�

� + 35�
� − 16� 

 
Results are tabulated below. 
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Table 6. Results for Second Trial Function � � 

Howarth 
[12] �′ Howarth 

[12] �′′ Howarth 
[12] 

0 0.0000 0.0000 0.0000 0.0000 0.3667 0.3321 
1 0.1676 0.1656 0.3375 0.3298 0.3649 0.3230 
2 0.6812 0.6500 0.6727 0.6298 0.2699 0.2668 
3 1.4624 1.3969 0.8654 0.8461 0.1259 0.1614 
4 2.3755 2.3059 0.9484 0.9555 0.0503 0.0642 
5 3.3427 3.2834 0.9807 0.9916 0.0191 0.0159 
6 4.3305 4.2798 0.9929 0.9990 0.0071 0.0024 
7 5.3260 5.2794 0.9974 0.9999 0.0026 0.0002 

 
Inclusion of additional information did not increase the solution accuracy in general. On 
the other hand, new trial function predicts 	�′′(0) far better than the previous solution. 
Even though this method is more complicated than the perturbation technique, it is 
useful since it gives good results for whole domain.  
 
 
4. Discrete solution based on numerical integration 

In this section, a simple numerical procedure is presented. Even though common 
methods such as Runge Kutta Fehlberg algorithm are successful enough to solve 
Blasius equation with extreme accuracy, trying less common or new solution techniques 
is important since all numerical methods have their own advantages and disadvantages 
when solving various type of differential equations. The method which is discussed in 
this section is based on numerical integration and quite simple to adopt many type of 
differential equations. We first integrate (1) from � to � + ℎ where h is considered to be 
small. 
 # �����,���

�
+ 1
2 # �����,���

�
= 0 (39) 

 
With some arrangement, we obtain following equation: 
 ����� + ℎ� = ������ − 1

2 # �����,���

�
 (40) 

 
Now we can attack this problem with two different approaches. First, we can directly 
apply a suitable numerical integration method, such as left end point (starting point) 
method, to the last term of (39). Secondly, we can apply integration by parts before 
numerical integration. So we get: 
 ����� + ℎ� = ������ − ℎ

2 ���������� (41) 

 
Or: 
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 ����� + ℎ� = ������ − 1
2 -���� + ℎ���� + ℎ� − ���������.− ℎ

2 -�����.
 (42) 

 
As it is shown in previous section, ����0� can be obtained by shooting technique, so we 
can assume that the only unknown at (40) is ����� + ℎ�. Thus we get a simple linear 
initial value problem in each step, which can be solved easily by direct integration. 
 ���	 = �

2 ℎ

 + ���ℎ + �� 

 
(43) 

where �� denotes ���� and ���	 is ��� + ℎ� and � is given by: 
 � = ���� − ℎ

2 ������ (44) 

(42) and (43) provide an incredibly simple algorithm, and should give quite good results 
for small values of ℎ, since it depends only on one approximation. (41) on the other 
hand, includes two additional unknowns which can be determined by Taylor series 
expansion, or for more accurate estimate a predictor, corrector type algorithm can be 
applied. For this algorithm, we first try to guess ���	 and ���	�  by Taylor series: 
 ��,��	 = �� + ℎ��� + ℎ


2 ���� − ℎ�

12 ������ + /�ℎ�� (45) ��,��	� = ��� + ℎ���� − ℎ


4 ������ + /�ℎ�� (46) 

 
Where 0 implies that, value is estimated by Taylor series while ����� term is calculated 
from (1). As it is mentioned above, these values can directly be used to determine � as 
well as, in order to obtain further accuracy, calculated value of  � can be treated as a 
prediction and used to calculate more accurate values, than Taylor series, for  ���	 and ���	� . Then a correction can be applied by calculating � with these new values. 
Even though second method is far more complicated than the first one, it is important 
since it can be generalized for more accurate numerical integration methods such as 
trapezoidal method, Simpson’s methods etc. Additionally, it should be noted that the 
first approximation cannot be used for equations which have singularities at any point 
while integration by parts may be used in some cases to get rid of singularities.  In order 
to guarantee an adequately accurate result, we take the integration at (39) with 
trapezoidal method and obtain following relation for  �. 
 � = ���� − ℎ

4 ������
1 + ℎ

4 ���	  (47) 

 
Extreme accuracy can be obtained by applying more accurate integration techniques, 
however we do not go further. By taking ℎ = 0.01 and solving (42) and (46) as ��
 
denoting results for (42) and ��� denoting results for (46), obtained results are 
summarized at Table 7, 8 and 9. 
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Table 7. Comparative Results of Numerical Methods for � � ��
 ��� Howarth [12] 
0 0.0000 0.0000 0.0000 
1 0.1658 0.1659 0.1656 
2 0.6510 0.6513 0.6500 
3 1.3987 1.3990 1.3969 
4 2.3084 2.3086 2.3059 
5 3.2864 3.2863 3.2834 
6 4.2828 4.2827 4.2798 
7 5.2825 5.2823 5.2794 

 
Table 8. Comparative Results of Numerical Methods for �′ � ��
�  ����  Howarth [12] 

0 0.0000 0.0000 0.0000 
1 0.3303 0.3305 0.3298 
2 0.6307 0.6308 0.6298 
3 0.8470 0.8469 0.8461 
4 0.9561 0.9559 0.9555 
5 0.9918 0.9916 0.9916 
6 0.9990 0.9990 0.9990 
7 0.9999 0.9999 0.9999 

 
Table 9. Comparative Results of Numerical Methods for �′′ � ��
��  �����  Howarth [12] 

0 0.3326 0.3328 0.3321 
1 0.3236 0.3237 0.3230 
2 0.2674 0.2672 0.2668 
3 0.1618 0.1615 0.1614 
4 0.0642 0.0642 0.0642 
5 0.0158 0.0159 0.0159 
6 0.0023 0.0024 0.0024 
7 0.0002 0.0002 0.0002 

 
Results are incredibly interesting since the simplest approach provides amazingly 
accurate results. It seems there is no used to carry all that calculations with the 
trapezoidal rule.  
 
Now in order to show the power of second approach on equations which includes 
singularity, we consider well known Thomas-Fermi equation [27] which is given as: 
 ��� = ��


√
 (48) 

 
Where relative boundary conditions are: 
 ��0� = 1 (49) 
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��∞� = 0 (50) 
 
As one can notice, equation has a singularity at 
 = 0 which cause additional difficulty 
to solve this equation numerically. In fact, this equation has high reputation with its 
difficulty not only since it is non-linear or has a singularity, but also equation is so 
sensitive to initial slope, �′�0�, that we cannot solve it with common  techniques. We 
give a relatively simple technique which is developed with a similar idea. By integrating 
the whole equation, we obtain: ���	� = ��� + 2√
 + ℎ����	��
 − 2√
�����
 − # 31
��′�,���

�
 (51) 

  
Now applying the trapezoidal method and similar procedure, we obtain following 
equation.  
 ���	� = ��� + 2√
 + ℎ����	��
 − 2√
�����
 + 3√
1�����

1 + 3√
 + ℎ1���	  (52) 

  
Following a similar procedure presented above, and using bisection method, assuming 
that relative �′�0� value is in between −1.5 and −2, an accurate solution can be 
obtained. Solution of (51) as ℎ = 0.001 is summarized at Table 10. 
 

Table 10. Comparative Results for Thomas Fermi Equation 
 �(
) Bender [27] 
0.0 1.0000 1.0000 
0.2 0.7932 0.7931 
0.5 0.6071 0.6070 
1.0 0.4241 0.4240 
5.0 0.0788 0.0788 
10 0.0243 0.0243 
20 0.0058 0.0058 
50 0.0006 0.0006 
100 0.0001 0.0001 

 
Additionally, initial slope, �′(0), is calculated as −1.58927 with  0.076%	relative error 
comparing to [28].  
 
 
5. Conclusion 
 
Several approximate solution techniques were applied to Blasius Equation. Obtained 
results reveals that all three approaches are useful and highly effective. The first 
approach which depends on simple perturbation technique is so easy that solution can 
be obtained with less than 1% error without even using any computer programme. It 
should be kept in mind that the results are not valid for whole domain though. 
 
Galerkin method is more complicated than the first approach but it provides an 
approximate analytical solution which is valid for whole domain. The only weakness of 
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the method is that it cannot give highly accurate results for second derivative at small 
values of �. In order to get rid of this weakness, a new trial function which includes an 
additional information was introduced. Even though weakness diminishes when using 
this technique, calculation became more complicated than before.  
 
The last approach is a simple numerical method which discretize the domain into small 
sections and calculates the values at the end points by solving an initial value problem at 
each section. Most accurate results were obtained with this approach. In order to show 
the power of this approach, famous Thomas Fermi problem was also solved with the 
same technique, and a highly accurate solution was obtained one more time.  
 
These three techniques have some benefits and disadvantages. The fist technique gave 
an approximated continuous curve which the discrete solutions such as finite difference 
techniques cannot provide. However, solution with this approach is only valid for small 
values of �. Galerkin method overcomes that issue while it cannot estimate the drag 
force on the plate correctly. Discrete solution gives the most accurate results though it is 
not capable of providing analytical curves as first two methods does. As a consequence, 
all three approaches presented in this paper can be effectively used to obtain highly 
accurate solutions for Blasius Flow problem.  
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