Arastirma Makalesi BAUN Fen Bil. Enst. Dergis20(3) Ozel Sayi, 129-142, (2018)
DOI: 10.25092/baunfbed.483084 J. BAUN Inst..Sleéchnol., 20(3) Special Issue, 129-142, (2018)

Various technigues to solve Blasius equation

Utku Cem KARABULUT ", Alper KILIC 2

! Bandirma Onyedi Eyliil University, Maritime Facyl§epartment of Naval Architecture and Marine
Engineering, Balikesir.
2 Bandirma Onyedi Eyliil University, Maritime FacylBepartment of Maritime Business
Administration, Balikesir.

Gelis Tarihi (Recived Date): 24.07.2018
Kabul Tarihi (Accepted Date): 06.11.2018

Abstract

This paper presents three distinct approximate pughfor solving Blasius Equation.

The first method can be regarded as an improverteeatseries solution of Blasius by
means of Pade approximation. The second methofhimaus type of weighted residual
technique which is called Galerkin method after faenous Russian engineer and
mathematician Boris Galerkin. The last method issienple discrete, numerical

technique. Additionally, in order to show the poveérthe last method, the Thomas-
Fermi problem is solved using the same technigquesuls obtained by all three

methods are highly accurate in comparison with lHeavarth’s solution and Bender’s

solution.

Keywords: Blasius equation, perturbation technique, Padé ampnation, weighted
residual method, Galerkin method, Thomas Fermi geqoa

Blasius denkleminin ¢6zUmu icin g#i teknikler

Ozet

Bu makalede Blasius Denklemi'ni ¢dzmek igin Uclfariklagik yontem sunmaktadir.
Ik yontem Blasius’un seri ¢cozimunin Padeé yaklayardimi ile iyilgtiriimesi olarak
degerlendirilebilir. /kinci yontem (nli Rus mihendis ve matematikci B®akerkin'e
izafeten Galekin Metodu olarak adlandirilan bigidikli artik yéntemdir. Son yontem
ise basit, ayrik bir sayisal tekniktir. EK olara&nsyontemin gucinid gostermek adina
Thomas-Fermi Problemi de ayni teknik ile ¢ozihini Her G¢ ydntem, sonuclar
Howarth’in ve Bender'in ¢6zumu ile kiyaslaghda, oldukga bgarilhi sonug
vermektedir.
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Anahtar Kelimeler: Blasius denklemi, pertirbasyon tekiniPade yaklaimi, asirhikh
artik yontemler, Galerkin metodu, Thomas Fermi temk

1. Introduction

The theory of boundary layer constitutes one of rii@st important branch of fluid

dynamics since external flows with high Reynoldsibers are common in both nature
and many engineering applications. Solving theseblpms generally requires a
challenging effort due to the non-linearity and taiensional character of the

governing equations. Although there is reasonabiieumt of exact solution found for

the full Navier-Stokes equations in literature,yttage only valid for some particular

cases and geometries [1].

An effective approach to solve an external flowlpean with high Reynolds number is
known as boundary layer analysis technique whidingsdeveloped by Prandtl in 1904.
One of his students Blasius, in 1908, introducegchnique to transform the well-
known problem of laminar boundary layer flow overflat plate into an ordinary

differential equation (ODE). Blasius equation hageeat importance in many
engineering applications since it provides verydyapproximations for boundary layer
thickness and total drag force in laminar extefi@ks [2]. For example, drag force
acting on a thin airfoil in a laminar flow can bery well approximated by using Blasius
equation. The equation is given as:

1
)+ 5 ff ) =0 (1)
where relative boundary conditions are defined as:
f(0)=0,f(0)=0 (2)
7%1_{{}0 ffm =1 )

and wheref’(n) is the first derivative of with respect tg). n is the similarity variable
of the problem and defined in the Cartesian coatés as:

U
n=y\/; @)

where U is free stream velocity and is kinematic viscosity of the fluid. The
relationship betweefi and stream functio@i¥) is given by:

Y = f(n)VUvx (5)
and velocity components,(v) can be derived from stream function by:

¥
u=7 (6)
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0¥
0x

(7)

v =

The first term of (1) represents the viscos difbusi so it becomes dominant as
approaches to zero. The second term, on the othed, his due to convective
acceleration and is dominant for high valueg.oEven though the equation looks very
simple at first glance, there haven't been any eraalytical solution found for over
100 years, so all solutions suggested so far depansbme approximate techniques;
some of them are very successful while some of tammot. In fact, the equation has
been used as a tool to investigate the successaobug approximate solution
techniques.

Blasius himself [3] suggested an approximate smtutwith an infinite series which is
only convergent for small values of. [4] reaches an estimation for shooting angle,
f"(0), with 8.6% relative error, using-perturbation method and Padé approximation.
[5] gives a simple approach called iteration pdyation method and obtajfi’(0) with
0.73% relative error which can be considered as a vegdgresult considering the
simplicity of calculations. Using variational itéi@n method, [6 - 8] give valid solutions
for whole domain. Solution with numerical transf@ations was presented by [9] while
[10] uses an evaluation technique to find out Tagefficients. Reproducing Kernel
Method was applied successfully by [11]. Amongséalthe numerical solutions, [12]
is the most famous one with its extreme accuraclisugenerally regarded as an exact
result for comparison purposes. Some other solutemhniques applied to Blasius
equation are Sinc-collocation method [13], homotagyalisys method [14, 15],
Laguerre-collocation method [16], homotopy perttidda method [17], parameter
iteration method [18], differential transformatiomethod [19, 20], Adomian’s
decomposition method [21, 22] and modified ratidredendre tau method [23].

In this paper approximate solutions for (1), unther boundary conditions (2) and (3),
with three different methods are applied. Firstiesesolution of Blasius (solution with
perturbation technique) is considered and validdapge of the series is increased
making use of Pade approximation [24]. Secondi@aterkin-based weighted residual
method [25] is applied with two different trial fotmon. Finally, a simple numerical
technique, which can be used for various non-lipeablems, is introduced.

2. Perturbation Technique

In order to obtain a series solution, we put aysbetion parameter to (1) as:

fIII +%6ff” — 0 (8)

And assume that solution can be given with Poinsarees:

N

f.e =) €f, ©)

i=0

By putting (9) into (8) results in:
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N 1 N

z elfI + EZ eFffI = 0 (10)

i=0 i=0

By considering the same powerseofve obtain a set of differential equations as:
III 0 (11)
l’+”1 +fifi' =0 (12)

It is not possible to obtain a solution with bourydeondition (3). Thus, we consider the
initial value problem where:

[ =0 (13)

By solving (11) with (2) and (13):

fo=2n’ (14)
2

Now solving (12) with homogenious initial condit®r(f;;,;(0) = 0) and ase = 1,
approximate solution can be obtained in followieges form:

N +1
f= ;( ) Gi+ 2)"“31}2 (15)
where,
i = Z (%5 1) Bibess (16)
Bo —Jl;10— 1 (17)

This is the approximate series solution first gibgnBlasius [2]. However power series
is only convergent for small values gf In order to expand the range of validity, Padé
approximation technique can be applied to the firsérm of the series. For example,
first five term of the (15) can be calculated as:

f = 0.50m2 — 4.1667 x 10~3021° + 6.8204 x 10 50°n® — 1.1743
x 10-6g4y1t (18)
+2 x 10~ 85514

Padé approximant of (18) around= 0, as degree of both numerator and denominator
of the approximate rational function being sevem be found as:

4.88204 x 107302n% + 0.50n2

19
1.44037 X 10~5¢2n° 4+ 1.80974 X 1072073 + 1 (19)

f:

and first derivative of:
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on(2.44102 x 1072013 + 1)

~ 1.44037 x 10-5021° + 1.80974 x 10~2073 + 1
—4.21917 x 10~ 75*n® — 3.08268 x 10~*53y7 — 2.71461 X on*

(1.44037 x 10=502n% + 1.80974 x 10~20n3 + 1)?

fl
(20)

It is of course impossible to satisfy the boundeoydition at infinity for any finite
value of o. However, we can investigate the behaviouf'dbr various values of and
determine the necessawsyin order to approximate the exact solution fofFor this
purpose, the range at whigfi is monotone increasing, for positive valuesnofis
calculated. By using a shooting technique and mgr¢hef’ = 1 at local maxima, very
accurate solution is obtained for In order to do that, we start with two initialegs for
o; 0 and 1 respectively:

c=0,f".=0 (21)
o=1,f' = 2.09866 where n = 4.60438 (22)

max

Now more and more accuratevalues can be estimated by linear interpolatiabld@ 1
showsao, andf’ . . values where n denotes the number of iteration.

Tablel. o andf’, with respect to iteration number.

n o f,max n

1 0.4765 1.28032 5.8950

2 0.3722 1.08591 6.4009
3 0.3428 1.02795 6.5790
4 0.3335 1.00927 6.6395
5 0.3304 1.00300 6.6602
6 0.3294 1.00098 6.6670
7 0.3291 1.00037 6.6690
8 0.3290 1.00017 6.6697
9 0.3289 0.99997 6.6704

This indicates that solution is not validps 6.67. As a resultf”’(0) is estimated with
only 0.96% relative error. Accuracy can be increasg adding higher order terms of
the series, but we do not go further under this@ecTable 2. shows calculated results
for f, f" and f'" and their comparison to result of [12].

Table 2. Results and comparison of solution wittiygbation technique.

n f Howarth f' Howarth f" Howarth
[12] [12] [12]

0 0.0000 0.0000 0.0000 0.0000 0.3289 0.3321
1 0.1640 0.1656 0.3267 0.3298 0.3200 0.3230
2 0.6440 0.6500 0.6241 0.6298 0.2648 0.2668
3 1.3843 1.3969 0.8392 0.8461 0.1609 0.1614
4 22864 2.3059 0.9489 0.9555 0.0652 0.0642
5 3.2581 3.2834 0.9869 0.9916 0.0189 0.0159
6 4.2516 4.2798 0.9979 0.9990 0.0058 0.0024
7 52510 5.2794 0.9993 0.9999 -0.004 0.0002
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This results are amazing considering the simplioftyhe methodology however, since
the domain is infinite and problem has a strong-lnogarity, technique can be used for
limited range of the domain. This is the generatrietion of perturbation techniques as
it is pointed out by [26].

3. Weighted residual method

In this section, an approximate solution technigsieg well-known Galerkin method is
presented. In this method, first a trial functiohieh satisfies all boundary condition
should be introduced such as:

N
Fenc) = g@n) + ) cH () (23)
i=1

Where F; is trial function, g(n) is a function ofn which satisfies all boundary
conditions,H(n) is a function ofy which satisfies the homogenious form of the given
boundary conditions, angs are unknown coefficients to be determined.

UnlessF; has not the form of exact solution of the problénere is always a residual
function ofn andc;. In all weighted residual methods, the goal islétermine the;s,
which somewhat minimize the residual, by usingatlé weight functions and integral
relations. Specifically, in Galerkin method, theigh# functions are chosen with having
same form of the trial function, for another words:

_ ok 24
wj = aCj (24)
Wherew;s are weight functions. The integral relationsima outc;s are:
r 1
f w; (Fg" 4 EFt”Ft) dn =0 (25)
0

As one can notice (25) provides N equations for;Bl In order to solve (1) with
boundary conditions (2) and (3), we first introddickowing trial function.

N
Fe=n+e -1+ Z cife= @V — (i + 1)e™ + i (26)

i=1

And relative weight functions in this case:
w; = e UtDn — (j 4+ 1)e ™M + j (27)
By substituting trial function (26) into (1), resia function (R) is found as:

N

R=—-e"+ Z e[+ 1)3e~EDm + (i + 1)e7 ] + (28)

=1

134



BAUN Fen Bil. Enst. Dergisi, 20(3) Ozel Say1, 1292, (2018)

N
n+e -1+ Z cile @V — (i + 1)e™ + ]

N| =

i=1
N

e+ Z ci[ (i + 12e D1 — (i + 1)

i=1

The simplest case occurs wh&n= 1 which results in only one quadratic equation for
one unknown. By multiplying (28) and (27) and suthsihg into (25), and with some
algebra we get:

48c? + 65¢;, +55 =0 (29)

The difficilty due to the non-linearity arises on®re time since (29) does not have a
solution forc; in real numbers. Although using only real partttod solution of (29)
gives very good results fgf, this is nothing to do with the method. However téking

N = 2 and following the same process we get two quadeafiuations fot,, andc,:

4720c? + 19680c2 + 19170¢; ¢, + 7826¢; + 9630c, + 7875 = 0 (30)
3360c? + 13815¢Z + 13560¢; ¢, + 4550¢; + 4599¢, + 4900 = 0 (31)

These equations have two distinct real solutiomsfcandc, but we are interested in
only one of them which minimize the residual. Thevant solution fof can be found
as:

¢, = —2.33236,¢, = 0.7607 (32)
Thus, the approximate solution becomes:
fh=n+e™—1-233236(e™?" —2e "+ 1)+ 0.7607(e3" —3e "+ 2) (33)

Where f, denotes the approximate solution pfwhen N = 2. f; and f, can be
calculated similarly and given as:

fs=n+e™—1+15796(e™%" — 2"+ 1) + 0.2864(e™3" — 37" + 2)
+0.1093(e~*" — 4~ + 3)

fi=n+em—1-17237(e?"—2e "+ 1) + 0.0008(e 3" — 3¢~ + 2)
+0.8121(e " — 47" 4+ 3) — 0.3547(e~>" — 57" + 4)

(34)

(35)

Comparative results fgf, f and f'' are shown by Table 3, 4 and 5 respectively.

Table 3. Comparative Results br

n fo fs fa Howarth [12]
0 0.0000 0.0000 0.0000 0.0000
1 0.1556 0.1768 0.1674 0.1656
2 0.6060 0.6805 0.6661 0.6500
3 1.3518 1.4599 1.4391 1.3969
4 2.2502 2.3731 2.3494 2.3059
5 3.2117 3.3405 3.3155 3.2834
6 4.1974 4.3284 4.3129 4.2798
7 5.1921 5.3238 5.2983 5.2794
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Table 4. Comparative Results ffir

n 5 f3 fa Howarth [12]
0 0.0000 0.0000 0.0000 0.0000
1 0.2733 0.3237 0.3263 0.3298
2 0.6220 0.6682 0.6602 0.6298
3 0.8429 0.8652 0.8606 0.8461
4 0.9396 0.9486 0.9468 0.9555
5 09774 0.9809 0.9801 0.9916
6 0.9916 0.9929 0.9927 0.9990
7  0.9969 0.9974 0.9973 0.9999
Table 5. Comparative Results fif
n f2' 3 Y Howarth [12]
0 0.8995 0.8715 0.2094 0.3321
1 0.3227 0.3584 0.3381 0.3230
2 0.3039 0.2787 0.2796 0.2668
3 0.1461 0.1272 0.1309 0.1614
4  0.0589 0.0503 0.0521 0.0642
5 0.0224 0.019 0.0197 0.0159
6 0.0083 0.0071 0.0073 0.0024
7 0.0031 0.0026 0.0027 0.0002

It appears that the results are very goodffandf’. However method is not successful,
with this trial function, at predictingf’’ for small values ofj, especially wheny < 1.

In order to obtain better results fgr< 1 we can force the trial function to include
additional information wheren = 0. By satisfying (1) ay = 0, we obtain following
condition:

f(0)=0 (36)
Now we introduce following trial function which ssfies (35) besides (2) and (3).

e‘z”+4e"’ 7
6 3 6
- _ - 3 - 3_ .

. n+l+2 (i+2) e‘2"+(l+2) 4(l+2)e‘"
6 3
(i+2)3-7(i+2)+6
6

fe=n-— - =
N

—(i+2)
=1

¢ |e (37)

1

This time, there are no real solutions available No=1 and N = 2. However, by

takingN = 3 and applying the same procedure we obtain;
g e T 075 — 4?1 4 5e71 — 2
fz=n-— e + 3 _E+ 75(e™°" — 4e™*" + 571 - 2) — (38)

0.05(e™*" — 10e™%" 4+ 16" — 7) — 0.04(e~>" — 202" + 35¢~" — 16)

Results are tabulated below.
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Table 6. Results for Second Trial Function

n Howarth , Howarth ' Howarth
Iz Y ! [12]

0 0.0000 0.0000 0.0000 0.0000 0.3667 0.3321
1 0.1676 0.1656 0.3375 0.3298 0.3649 0.3230
2 0.6812 0.6500 0.6727 0.6298 0.2699 0.2668
3 14624 1.3969 0.8654 0.8461 0.1259 0.1614
4 23755 2.3059 0.9484 0.9555 0.0503 0.0642
5 3.3427 3.2834 0.9807 0.9916 0.0191 0.0159
6 4.3305 4.2798 0.9929 0.9990 0.0071 0.0024
7 5.3260 5.2794 0.9974 0.9999 0.0026 0.0002

Inclusion of additional information did not increathe solution accuracy in general. On
the other hand, new trial function predicf§(0) far better than the previous solution.
Even though this method is more complicated than garturbation technique, it is

useful since it gives good results for whole domain

4. Discrete solution based on numerical integration

In this section, a simple numerical procedure isspnted. Even though common
methods such as Runge Kutta Fehlberg algorithmsaceessful enough to solve
Blasius equation with extreme accuracy, trying B®®mon or new solution techniques
is important since all numerical methods have tbhein advantages and disadvantages
when solving various type of differential equatiote method which is discussed in
this section is based on numerical integration @uide simple to adopt many type of
differential equations. We first integrate (1) frgnton + h where h is considered to be
small.

n+h n+h

f"de o ff'de =0 (39)
2
n n

With some arrangement, we obtain following equation

n+h

1
fraem ==y [ fride (40)
n

Now we can attack this problem with two differepipeoaches. First, we can directly
apply a suitable numerical integration method, sasheft end point (starting point)
method, to the last term of (39). Secondly, we apply integration by parts before
numerical integration. So we get:

h
fra+h) =70 =5 faf ) (41)

Or:
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1 h
f'a+h) = ") =51 0+ Bf G+ k) = /() f ] =5 1F (] (42)

As it is shown in previous sectiofi;'(0) can be obtained by shooting technique, so we
can assume that the only unknown at (40f'i$n + h). Thus we get a simple linear
initial value problem in each step, which can beexb easily by direct integration.

o !
firn=5h* + fih+ f; (43)

wheref; denotes (n) andf;,, is f(n + h) anda is given by:

h
sz'ill_zf‘if'ill (44)
(42) and (43) provide an incredibly simple algamthand should give quite good results
for small values ofi, since it depends only on one approximation. @di)the other
hand, includes two additional unknowns which candeéermined by Taylor series
expansion, or for more accurate estimate a predglictorector type algorithm can be
applied. For this algorithm, we first try to guggs, andf;’., by Taylor series:

h? h3

frovs = fit W+ f = 5 fifi" + 0(h) (45)
hZ

fian = f + W = fifi" + 0(h%) (46)

n

WhereT implies that, value is estimated by Taylor sevidsle f;'"’ term is calculated
from (1). As it is mentioned above, these valuas digectly be used to determimeas
well as, in order to obtain further accuracy, ckdted value of ¢ can be treated as a
prediction and used to calculate more accurateegalihan Taylor series, fof;,; and
fi+1- Then a correction can be applied by calculatingth these new values.

Even though second method is far more complicdtiad the first one, it is important
since it can be generalized for more accurate nigalentegration methods such as
trapezoidal method, Simpson’s methods etc. Addifignit should be noted that the
first approximation cannot be used for equationsclvinave singularities at any point
while integration by parts may be used in somes#asget rid of singularities. In order
to guarantee an adequately accurate result, we ttadeintegration at (39) with
trapezoidal method and obtain following relation to

n h n
f' =2 fif:

o=
h
1+Zfi+1

(47)

Extreme accuracy can be obtained by applying mocarate integration techniques,
however we do not go further. By takirhg= 0.01 and solving (42) and (46) &%,
denoting results for (42) and,, denoting results for (46), obtained results are
summarized at Table 7, 8 and 9.
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Table 7. Comparative Results of Numerical Methantg f

n far fae Howarth [12]
0 0.0000 0.0000 0.0000
1 0.1658 0.1659 0.1656
2 0.6510 0.6513 0.6500
3 1.3987 1.3990 1.3969
4 2.3084 2.3086 2.3059
5 3.2864 3.2863 3.2834
6 4.2828 4.2827 4.2798
7 5.2825 5.2823 5.2794

Table 8. Comparative Results of Numerical Methaatg f

n fio fie Howarth [12]
0 0.0000 0.0000 0.0000
1 0.3303 0.3305 0.3298
2 0.6307 0.6308 0.6298
3 0.8470 0.8469 0.8461
4 0.9561 0.9559 0.9555
5 0.9918 0.9916 0.9916
6 0.9990 0.9990 0.9990
7 0.9999 0.9999 0.9999

Table 9. Comparative Results of Numerical Methaatg f

n a2 46 Howarth [12]
0 0.3326 0.3328 0.3321
1 0.3236 0.3237 0.3230
2 0.2674 0.2672 0.2668
3 0.1618 0.1615 0.1614
4 0.0642 0.0642 0.0642
5 0.0158 0.0159 0.0159
6 0.0023 0.0024 0.0024
7 0.0002 0.0002 0.0002

Results are incredibly interesting since the sistplapproach provides amazingly
accurate results. It seems there is no used to allrthat calculations with the
trapezoidal rule.

Now in order to show the power of second approachequations which includes
singularity, we consider well known Thomas-Fermiatipn [27] which is given as:

INTE)

. _Y? (48)
R

Where relative boundary conditions are:

y(0) =1 (49)
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y(0) =0 (50)

As one can notice, equation has a singularity &t0 which cause additional difficulty
to solve this equation numerically. In fact, thiguation has high reputation with its
difficulty not only since it is non-linear or hassingularity, but also equation is so
sensitive to initial slopey’(0), that we cannot solve it with common technigu¥s.

give a relatively simple technique which is develdpvith a similar idea. By integrating

the whole equation, we obtain:
x+h

3 3
Vier =¥i +2Vx + h(y141)2 — 2Vx(y;)2 — f 3/xyy'de (51)

X

Now applying the trapezoidal method and similarcpdure, we obtain following
equation.

3 3 .
o = yi 4 2Vx + h(y41)2 — 2Vx ()2 + 3Vx /vy (52)
gk 14+ 3Vx+ hyyis
Following a similar procedure presented above, @sidg bisection method, assuming

that relativey’(0) value is in between-1.5 and —2, an accurate solution can be
obtained. Solution of (51) @as= 0.001 is summarized at Table 10.

Table 10. Comparative Results for Thomas Fermi Eguia

X y(x) Bender [27]
0.0 1.0000 1.0000
0.2 0.7932 0.7931
0.5 0.6071 0.6070
1.0 0.4241 0.4240
5.0 0.0788 0.0788
10 0.0243 0.0243
20 0.0058 0.0058
50 0.0006 0.0006
100 0.0001 0.0001

Additionally, initial slope,y’(0), is calculated as-1.58927 with 0.076% relative error
comparing to [28].

5. Conclusion

Several approximate solution techniques were appteBlasius Equation. Obtained
results reveals that all three approaches are luseid highly effective. The first
approach which depends on simple perturbation tqaknis so easy that solution can
be obtained with less than 1% error without eveinguany computer programme. It
should be kept in mind that the results are natdvat whole domain though.

Galerkin method is more complicated than the fapproach but it provides an
approximate analytical solution which is valid fehole domain. The only weakness of
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the method is that it cannot give highly accurasults for second derivative at small
values ofn. In order to get rid of this weakness, a new fiuaiction which includes an
additional information was introduced. Even thowgbakness diminishes when using
this technique, calculation became more complictited before.

The last approach is a simple numerical method lwHiscretize the domain into small
sections and calculates the values at the endspoyngolving an initial value problem at
each section. Most accurate results were obtaingdtiis approach. In order to show
the power of this approach, famous Thomas Fernblpno was also solved with the
same technique, and a highly accurate solutionolvtgned one more time.

These three techniques have some benefits andvdigades. The fist technique gave
an approximated continuous curve which the dis@ebetions such as finite difference
techniques cannot provide. However, solution wiils approach is only valid for small
values ofn. Galerkin method overcomes that issue while itncarestimate the drag
force on the plate correctly. Discrete solutionegithe most accurate results though it is
not capable of providing analytical curves as fivad methods does. As a consequence,
all three approaches presented in this paper caeffbetively used to obtain highly
accurate solutions for Blasius Flow problem.
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