

Fundamental Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/fujma ISSN: 2645-8845

Some Properties of Proper UP-Filters of UP-Algebras

Daniel A. Romano^{a*}

^aInternatinal Mathematical Virtual Institute, 78000 Banja Luka, 6, Kordunaška Street, Bosnia and Herzegovina ^{*}Corresponding author

Article Info

Abstract

Keywords: UP-algebras, UP-ideals, Proper UP-filters, UP-homomorphism 2010 AMS: 03G25 Received: 30 June 2018 Accepted: 16 September 2018 Available online: 25 December 2018 The concept of UP-algebras was introduced and analyses by A. Iampan. In our recently published article we introduced the concept of proper UP-filter in UP-algebras in a somewhat different way than it is usual in literature. In this paper we analyse some fundamental properties of such determined proper UP-filters in UP-algebras.

1. Introduction

The concepts of UP-algebra are introduced and analyzed in [1]. The author in his article has introduced and analyzed the concepts of UP-algebra, UP-subalgebra and UP-ideal and their mutual connections. This author introduced in [2] the concept of proper UP-filter in UP-algebras on something different way then it is common in the available literature. In addition, in [2] he established the connection between UP-ideals and proper UP-filters.

In this article, the author further develops the idea of a proper UP-filter by identifying some of the fundamental features of this concept. First, we have shown two criteria (Theorem 3.1 and Theorem 3.2) that allow us to estimate whether a certain subset of UP-algebra is proper UP-filter or not. Other claims relate to a link between the proper UP-filters and UP-homomorphisms. Theorem 3.5 can be viewed as the first isomorphism theorem. For more details, see [3, 4].

The notations and notions appearing in this text are not predefined, the reader can find in the articles [1, 2, 3, 4].

2. Preliminaries

Let us recall the definition of UP-algebra.

Definition 2.1. [[1], Definition 1.3] An algebra $A = (A, \cdot, 0)$ of type (2,0) is called a UP- algebra if it satisfies the following axioms: $(UP - 1): (\forall x, y, z \in A)((y \cdot z) \cdot ((x \cdot y) \cdot (x \cdot z)) = 0),$ $(UP - 2): (\forall x \in A)(0 \cdot x = x),$ $(UP - 3): (\forall x \in A)(x \cdot 0 = 0),$ $(UP - 4): (\forall x, y \in A)((x \cdot y = 0 \land y \cdot x = 0) \Longrightarrow x = y).$

In the following we give definition of the concept of UP-ideals of UP-algebra.

Definition 2.2. [[1], Definition 2.1] Let A be a UP-algebra. A subset J of A is called a UP-ideal of A if it satisfies the following properties:

1. $0 \in J$, and 2. $(\forall x, y, z \in A)(x \cdot (y \cdot z) \in J \land y \in J \Longrightarrow x \cdot z \in J).$

One of fundamental properties of UP-ideals is given in statement (1) of Proposition 2.7 in the article [1]:

Proposition 2.3. Let A be a UP-algebra and B a UP-ideal of A. Then

 $\forall x, y \in A)((x \in B \land x \leq y) \Longrightarrow y \in B).$

Email address and ORCID number: bato49@hotmail.com, 0000-0003-1148-3258 (D. A.Romano)

Our intention in short notice [2] was to construct a substructure G in UP-algebras that will have the following property

$$(\forall x, y \in A)((y \in G \land x \le y) \Longrightarrow x \in G)$$

and has a standard attitude toward the UP-ideal. This was done by introducing the concept of a proper UP-filter by the following way.

Definition 2.4 ([2], Definition 3.1). Let A be a UP-algebra. A subset G of A is called a proper UP-filter of A if it satisfies the following properties:

3. $\neg (0 \in G)$, and 4. $(\forall x, y, z \in A)((\neg (x \cdot (y \cdot z) \in G) \land x \cdot z \in G) \Longrightarrow y \in G)$

In the mentioned article it was shown

Proposition 2.5. Let A be a UP-algebra and G a proper UP-filter of A. Then

- 5. $(\forall x, y \in A)((\neg (x \cdot y \in G) \land y \in G) \Longrightarrow x \in G).$
- 6. $(\forall x, y \in A)(x \cdot y \in G \Longrightarrow y \in G).$
- 7. $(\forall x, y \in A)((x \leq y \land y \in G) \Longrightarrow x \in G).$

Proposition 2.6. A subset G of a UP-algebra A is a proper UP-filter of A if and only if the set $A \setminus G$ is a UP-ideal of A.

Proposition 2.7. The family \mathfrak{G}_A of all proper UP-filters in a UP-algebra A forms a completely lattice.

Finally, the concept of UP-homomorphisms is defined by the following

Definition 2.8 ([1], Definition 4.1). Let $(A, \cdot, 0_A)$ and $(B, \circ, 0_B)$ be UP-algebras. A mapping f from A to B is called a UP-homomorphism if holds

$$(\forall x, y \in A)(f(x \cdot y) = f(x) \circ f(y)).$$

In [1] it was shown that f(A) is a subalgebra of algebra B (Theorem 4.5 (3)) and that Kerf is an UP-ideal in A (Theorem 4.5 (6)).

3. The main results

First, for a subset G of UP-algebra A we show that from (5) and (6) follows (3) and (4) if we assume that $G \neq A$.

Theorem 3.1. For a subset G of a UP-algebra A (5) and (6) implies (3) and (4) if we assume that $G \neq A$

Proof. Let formulas (5) and (6) be valid for the proper subset *G* in *A*. Suppose that $\neg(x \cdot (y \cdot z) \in G)$ and $x \cdot z \in G$ is valid for arbitrary elements $x, y, z \in A$.

If we put y = x in (6) we get that $0 = x \cdot x \in G$ implies $x \in G$ for any element $x \in A$. This is in a contradiction with $G \neq A$. The resulting contradiction yields $\neg(0 \in G)$. Thus, (3) is proven. From here it follows immediately that the subset G satisfies the formula (7). Indeed, if $x \leq y$ and $y \in G$, then we have $\neg(x \cdot y = 0 \in G)$ and $y \in G$. From here follows $x \in G$ according to (5).

First, from $x \cdot z \in G$ we have $z \in G$ by (6). Second, suppose it is $\neg(y \in G)$ holds. Thus, from $\neg(y \in G)$ and $z \in G$ follows $y \cdot z \in G$ by the contraposition of (5). Third, we have $y \cdot z \leq x \cdot (y \cdot z)$ by statement (6) in Theorem 1.8 in the article [1]. Now, from this and $y \cdot z \in G$ we conclude $x \cdot (y \cdot z) \in G$ by (7). This is in a contradiction with the first hypothesis. So, it has to be $y \in G$. Therefore, (4) is proven.

Our second proposition is one more criterion for determining whether a subset G of A is a proper UP-filter or not.

Theorem 3.2. Let A be a UP-algebra and $G \subseteq A$ such that $\neg (0 \in G)$. Then G is a proper UP-filter in A if and only if

8. $(\forall x, y, z \in A)((\neg (y \in G) \land x \cdot z \in G) \Longrightarrow x \cdot (y \cdot z) \in G).$

Proof. Let *G* be a proper UP-filter in a UP-algebra *A* and *x*, *y*, *z* be arbitrary elements of *A*. Suppose $\neg(y \in G)$ and $x \cdot z \in G$. If there were $\neg(x \cdot (y \cdot z) \in G)$ then from this and $x \cdot z \in G$ would have $y \in G$. The resulting result is in contradiction with the first hypothesis. Therefore, it must be $x \cdot (y \cdot z) \in G$.

Opposite, let for subset *G* of *A* (3) and (8) be hold for any $x, y, z \in A$. Suppose $\neg(x \cdot (y \cdot z) \in G)$ and $x \cdot z \in G$ are valid. If there were $\neg(y \in G)$ then from this and the second hypothesis would have $x \cdot (y \cdot z) \in G$ by (8). The resulting result is in contradiction with the first hypothesis. Therefore, it must be $y \in G$.

Corollary 3.3. Let G be a proper UP-filter in a UP-algebra A. Then

9.
$$(\forall x, y \in A)((\neg (x \in G) \land y \in G) \Longrightarrow x \cdot y \in G).$$

Proof. If we put x = 0, y = x and z = y in (8) we will got (9).

Theorem 3.4. Let $(A, \cdot, 0_A)$ and $(B, \circ, 0_B)$ be UP-algebras and let $f : A \longrightarrow B$ be a UP-homomorphism. Then the following statements hold: (a) If F is a proper UP-filter in a UP-algebra A, then f(F) is a proper UP-filter in a UP-algebra f(A). (b) If G is a proper UP-filter of B, then $f^{-1}(G)$ is a proper UP-filter of A.

Proof. (a) Assume that F is a proper UP-filter of A. Since $\neg(0_A \in F)$ and the statement (1) of Theorem 4.5 in article [1], we have $\neg (0_B = f(0_A) \in f(F)).$

Let $a, b, c \in f(A)$ be arbitrary elements such that $\neg (a \circ (b \circ c) \in f(F))$ and $a \circ c \in f(F)$. Then there exist elements $x, y, z \in A$ such that f(x) = a, f(y) = b and f(z) = c and $\neg(f(x) \circ (f(y) \circ f(z)) \in f(F))$ and $f(x) \circ f(z) \in f(F)$. This means $\neg(f(x \cdot (y \cdot z) \in f(F)))$ and $f(x \cdot z) \in f(F)$. So, we conclude $\neg (x \cdot (y \cdot z) \in F)$ and $x \cdot z \in F$. Thus $y \in F$ by (4). Therefore, $c = f(y) \in f(F)$.

(b) Assume that G is a proper UP-filter of B. Since $\neg(0_B \in G)$, we have $\neg(f(0_A) = 0_B \in G)$. Thus $\neg(0_A \in f^{-1}(G))$.

Let $x, y, z \in A$ be arbitrary elements of A such that $\neg(x \cdot (y \cdot z) \in f^{-1}(G))$ and $x \cdot z \in f^{-1}(G)$. Then $\neg(f(x \cdot (y \cdot z)) \in G)$ and $f(x \cdot z) \in G$. Since f is a UP-homomorphism, we have $\neg(f(x) \circ (f(y) \circ f(z))) \in G)$ and $f(x) \circ f(z) \in G$. Since G is a proper UP-filter of B, we have $f(y) \in G$. Thus $y \in f^{-1}(G)$.

Without major difficulties, it can be proved that if J is a UP-ideal in a UP-algebra A and $' \sim '$ the congruence on A determined by the ideal J ([1], Proposition 3.5), then $A/J \equiv A/ \sim = \{[x]_{\sim} : x \in A\}$ is also UP-algebra with the internal operation ' * ' defined by

$$(\forall x, y \in A)([x]_{\sim} * [y]_{\sim} = [x \cdot y]_{\sim})$$

and the fixed element J. The following claims is proven by direct verification.

Theorem 3.5. Let $f: A \longrightarrow B$ be a UP-homomorphism between UP-algebras. Then there exists the UP-isomorphism $g: A/Ker(f) \longrightarrow f(A)$ such that $f = g \circ \pi$ where $\pi : A \longrightarrow A/Ker(f)$ is the canonical UP-epimorphism.

Theorem 3.6. Let $f : A \longrightarrow B$ be a UP-homomorphism between UP-algebras and J be a UP-ideal in A. If K is a UP-ideal in a UP-algebra A such that $J \subseteq K$, then the set $K/J = \{[x]_J \in A/J : x \in K\}$ is a UP-ideal in UP-algebra A/J. If G is a proper UP-filter in a UP-algebra A such that $G \subseteq A \setminus J$, then the set $G/J = \{[x]_J : x \in G\}$ is a proper UP-filter in a UP-algebra A/J.

Proof. (a) It is clear that $J = [0]_J \in A/J$ is the fixed element in a UP-algebra A/J. Let $x, y, z \in A$ be arbitrary elements such that $[x]_J *$ $([y]_J * [z]_J) \in K/J$ and $[y]_J \in H/L$. Since $x \cdot (y \cdot z) \in K$ and $y \in K$ and since K is a UP-ideal in a UP-algebra A we conclude $x \cdot z \in K$. Thus $[x]_J * [z]_J \in K/J$. Therefore, the set K/J is a UP-ideal in a UP-algebra A/J.

(b) If there were $[0]_J \in G/J$, they would have $0 \in G$, which is a contradiction. So, we have $\neg([0]_J \in G/J)$. Let $x, y, z \in A$ be arbitrary elements such that $\neg([x]_J * ([y]_J * [z]_J) \in G/J)$ and $[x]_J * [z]_J \in G/J$. This means that $\neg(x \cdot (y \cdot z) \in G)$ and $x \cdot z \in G$. Since G is a proper UP-filter in a UP-algebra A, we have $y \in G$. Thus $[y]_J \in G/J$. Therefore, the set G/J is a proper UP-filter in a UP-algebra A/J. \square

Corollary 3.7. There is a mutually unambiguous correspondence between the family $F_{A/J}$ of all proper UP-filters in a UP-algebra A/J and the family of all proper UP-filters contained in $A \setminus J$.

4. Final observation

In the present paper, in order to continue developing the theory of proper UP-filters and UP-algebras, we given some fundamental properties of proper UP-filters in UP-algebra. The author believes that this new properties of proper UP-filters in UP-algebras enrich our knowledge about UP-algebras.

References

- [1] A. Iampan, A new branch the logical algebra: UP-Algebras, J. Algebra Relat. Top., 5(1) (2017), 35–54.
- D. A. Romano, *Proper UP-filters in UP-algebras*, Univ. J. Math. Appl., **1**(2) (2018), 98–100. A. Iampan, *The UP-isomorphism theorems for UP-algebras*, (2018) arXiv:1808.07370v1 [math.GM]. [3]
- [4] P. Mosrijai, A. Satirad, A. Iampan, The new UP-isomorphism theorems for UP-algebras in the meaning of the congruence determined by a UPhomomorphism, Fund. J. Math. Appl., 1(1) (2018), 12-17.