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Abstract 

In the last decades, great attention has been paid to structural optimization with stochastic methods. 

The applications of metaheuristic algorithms have become popular, which mostly provide solutions 

with adequate precision for the structural optimization problems from an engineering point of view. 

However, these algorithms should be specifically tuned for the considered problem to obtain 

satisfactory results. Big Bang - Big Crunch is one of the efficient metaheuristic optimization algorithms 

that is based on the famous theory on the evolution of the universe. A considerable number of 

researchers presented applications of the Big Bang - Big Crunch algorithm for the size optimization of 

trusses, which is an inviting challenge in the structural optimization field. This study revisits the size 

optimization of trusses with continuous variables using the Big Bang - Big Crunch algorithm, discusses 

the previously introduced improvements and presents the results of a few experimental modifications. 

 

Kafes Sistemlerin BB-BC Algoritması ile Boyut Optimizasyonu Üzerine bir 
Çalışma: İnceleme ve Sayısal Deneyler 

Anahtar Kelimeler 

Kafes sistem; 

Optimizasyon; 

Big Bang - Big Crunch; 

Metasezgisel 

Özet 

Son birkaç on yılda, stokastik yöntemler ile yapısal optimizasyon konusuna büyük ilgi gösterilmiştir. 

Yapısal optimizasyon problemlerine mühendislik bakış açısına göre çoğunlukla yeterli hassasiyette 

çözümler sağlayan metasezgisel algoritmaların uygulamaları popüler hale gelmiştir. Ancak, tatmin edici 

sonuçlar elde edebilmek için, bu algoritmaların ele alınan probleme özel olarak düzenlenmeleri 

gerekmektedir. Evrenin oluşumu ile ilgili ünlü teori üzerine kurulu olan Big Bang - Big Crunch algoritması, 

etkili metasezgisel algoritmalardan biridir. Kayda değer sayıda araştırmacı, yapısal optimizasyon 

alanındaki çekici yarışlardan biri olan kafes sistemlerin boyut optimizasyonu için Big Bang - Big Crunch 

algoritmasının uygulamalarını sunmuşlardır. Bu çalışmada, Big Bang - Big Crunch algoritması ile kafes 

sistemlerin sürekli değişkenler kullanılarak optimizasyonu konusu tekrar incelenmiş, daha önce tanıtılan 

iyileştirmeler tartışılmış ve birkaç deneysel değişikliğin sonuçları sunulmuştur. 

© Afyon Kocatepe Üniversitesi 

 

1. Introduction 

There are three optimization types for truss 

structures as size, shape and topology optimization. 

In shape optimization, the optimal design is 

searched by moving the joints within the design 

space while the number of the bars used in the 

structure and the connection information stay the 

same. In addition to joint positions, bar count and 

connection information can be changed in a 

topology optimization application. Size 

optimization, which is the main concern of the 

study, only takes the cross sections of the bars into 

account as design variables. The objective of the size 

optimization procedure is to minimize the weight of 

the structure as; 

 

min𝑤 = ∑ 𝛾𝐿𝑖𝐴𝑖
𝑛
𝑖=1 ,  (𝐴𝑖 ∈ ℝ≥0) (1) 

 

for the design variables, 

 

𝑋𝑗 = {𝐴1, 𝐴2, … , 𝐴𝑛−1, 𝐴𝑛},  (𝐴
𝐿 ≤ 𝐴𝑖 ≤

𝐴𝑈) 
(2) 
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In Eq. 1, 𝑤 is the weight of the structure, 𝑛 is the 

total number of the bars, 𝛾 is the unit weight of the 

structural material, 𝐿𝑖 and 𝐴𝑖  are the length and 

section area of the 𝑖𝑡ℎ bar, respectively. In Eq. 2, 𝑋𝑗 

is the 𝑗𝑡ℎ candidate solution. Finally, 𝐴𝐿 and 𝐴𝑈 are 

the lower and upper allowed limits for the section 

area, respectively. Size optimization procedure can 

be carried out by controlling a variety of constraints 

such as stress, displacement and frequency. 

The first paper that author could find in the 

literature on size optimization of trusses with the 

BB-BC algorithm (Erol and Eksin 2006) is written by 

Camp (2007). Camp proposed a multiphase search 

procedure and an alternative equation to calculate 

the next positions of the particles. Kaveh and 

Talatahari (2009) had presented a hybrid BB-BC 

algorithm that utilizes a sub-optimization 

mechanism and uses a more extensive equation for 

the redistribution. Then, they extended their work 

to discrete size optimization of skeletal structures 

(Kaveh and Talatahari 2010a) and topology 

optimization of Schwedler and ribbed domes (Kaveh 

and Talatahari 2010b). Casavola et al. (2012) 

powered the BB-BC algorithm with pseudo-gradient 

information and presented the results for the size 

optimization of two benchmark problems. Kaveh 

and Zolghadr (2012) developed a hybrid method 

with trap recognition capabilities by using the 

Charged System Search and BB-BC algorithms and 

evaluated their method with truss size and shape 

optimization examples considering natural 

frequency constraints. Hasançebi and Azad (2013) 

presented a new redistribution equation for size 

optimization of skeletal structures. Azad et al. 

(2013) proposed the Upper Bound Strategy (UBS) to 

reduce the number of analyses and validated the 

performance of their strategy with various truss-

sizing problems. Another hybrid algorithm is 

presented by Kaveh and Mahdavi (2013) for size 

optimization of trusses with multiple frequency 

constraints. Their work installs the Quasi-Newton 

method to the original BB-BC algorithm as an 

additional step. Milajić et al. (2014) presented the 

size optimization of spatial trusses with the BB-BC 

algorithm. Hasançebi and Azad (2014) presented an 

application of their previously proposed 

modification (Hasançebi and Azad 2013) for discrete 

size optimization of steel trusses. Lotfi and 

Ghoddosian (2015) presented the size optimization 

of two-dimensional trusses by Kaveh and 

Talatahari's (2009) hybrid algorithm. Milajić and 

Beljaković (2016) compared four BB-BC variants for 

the multi-objective (size and displacement) 

optimization of trusses. Jain et al. (2016) developed 

a Visual Basic interface for the optimization of 

trusses with BB-BC algorithm, which uses STAAD.Pro 

for analysis and AutoCAD for drafting. 

This paper revisits the size optimization of trusses 

with the BB-BC algorithm using continuous variables 

and presents the contribution of a few experimental 

modifications to the algorithm on one of the famous 

truss-sizing optimization benchmark problems. The 

first thoughts on this paper were presented by the 

author in ICOME2017 (Özbaşaran 2017). 

 

2. The Algorithm 

The BB-BC algorithm simulates the well-known 

theory on the evolution of the universe. It consists 

of two main phases as big bang and big crunch. First, 

the particles are scattered to the design space (big 

bang). Then, they shrank to a single point, which is 

called the center of mass (big crunch). The analogy 

of the BB-BC algorithm is simple. The particles are 

the candidates. Each design variable represents a 

coordinate in the design space. Therefore, location 

of a particle is a candidate solution. And, the mass 

of a candidate is its objective value. 

 

Step 1: Initialization 

The particles are randomly scattered to the design 

space. It will be proper to draw the initial 

coordinates from a uniform distribution. The 

coordinates (design variables of the candidate 

solution) of the 𝑗𝑡ℎ particle (candidate) 𝑋𝑗 are stored 

in the form {𝑥𝑗,1, 𝑥𝑗,2, … , 𝑥𝑗,𝑛}. 

 

Step 2: Calculate the masses (objective values) of the 

particles 

The objective value of the 𝑗𝑡ℎ candidate is 

represented by 𝑓(𝑋𝑗), which corresponds to the 

penalized weight of the structure in most of the size 

optimization problems. 

Step 3: Calculate the center of the mass 
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The algorithm offers two ways to calculate the 

center of mass (𝑋𝑐). First one is as follows: 

 

𝑋𝑐 =

∑
1

𝑓(𝑋𝑗)
𝑋𝑗

𝑡
𝑗=1

∑
1

𝑓(𝑋𝑗)
𝑡
𝑗=1

 (3) 

 

In Eq. 3, 𝑡 is the particle count. An important note is 

Eq. 1 is for minimization problems and calculates the 

“inverse” center of mass. Since truss size 

optimization is a minimization problem, Eq. 3 

assumes that the center of mass is closer to the 

lighter particles. Note that the terms 1/𝑓(𝑋𝑗) 

should be replaced by 𝑓(𝑋𝑗) for maximization 

problems. The second alternative is assuming the 

best candidate in the candidates list (the local best 

solution: 𝑋𝑙𝑏) as the center of mass (Eq. 4). 

 

𝑋𝑐 = 𝑋𝑙𝑏 (4) 
 

Step 4: Redistribute the particles around the center 

of mass 

This step simulates the big bang and recalculates the 

new positions of the particles as: 

 

𝑋𝑗+1 = 𝑋𝑐 +
𝑟𝑥𝑈

𝑘
 (5) 

 

where, 𝑥𝑈 is the upper limit of the parameter, 𝑟 is a 

normal random number and 𝑘 is the iteration step. 

 

Step 5: Closing the loop 

The new positions of the particles calculated by Eq. 

5 may go out of the design space. Any method can 

be used to keep the design variables in the allowed 

limits. The algorithm repeats by returning to Step 2 

until the stopping criteria have been met. 

 

3. Literature Review 

The improvements presented for the BB-BC 

algorithm mostly modify the redistribution equation 

and/or create hybrids with other algorithms. Table 

1 presents the modifications made on redistribution 

equations in the studies that are given in the 

references list. 

 

Table 1. Redistribution equations 

Study Redistribution Equation 

(Erol and Eksin 
2006) 𝑋𝑗 = 𝑋𝑐 +

𝑟𝑥𝑈

𝑘
 

(Camp, 2007) 𝑋𝑗 = 𝛼2𝑋𝑐 + (1 − 𝛼2)𝑋𝑔𝑏 + 𝛼1
𝑟(𝑥𝑈 − 𝑥𝐿)

𝑘
 

(Kaveh and 
Talatahari 2009) 

𝑋𝑗 = 𝛼2𝑋𝑐 + (1 − 𝛼2)(𝛼3𝑋𝑔𝑏 + (1 − 𝛼3)𝑋𝑙𝑏)

+ 𝛼1
𝑟(𝑥𝑈 − 𝑥𝐿)

𝑘 + 1
 

(Casavola et al. 
2012) 

𝑋𝑗 =
𝑋𝑐 + 𝑋𝑔𝑏

2
+ 𝑟[0,1](𝑋𝑓 −𝑋𝑐)

+ 𝑟[0,1](𝑋𝑔𝑏−1 − 𝑋𝑐)

+ 𝑟[0,1](𝑋𝑔𝑏 − 𝑋𝑐)𝜇 

(Kaveh and 
Zolghadr 2012) 

𝑋𝑗 = 𝑋𝑐 +
𝑟𝐿𝑢
𝑘

 

(Hasançebi and 
Azad 2013) 

𝑋𝑗 = 𝑋𝑐 + Round [𝛼1𝑟
𝛼2
(𝑥𝑈 − 𝑥𝐿)

𝑘
] 

(Kaveh and 
Mahdavi 2013) 

𝑋𝑗 = 𝑋𝑐 + 𝛼1
𝑟(𝑥𝑈 − 𝑥𝐿)

1 +
𝑘
𝛼2

 

 

In Table 1, notation of the original papers are 

changed in order to clearly indicate the differences 

between the redistribution equations. The equation 

presented by Camp (2007) considers the 

contribution of the global best solution (𝑋𝑔𝑏) 

obtained so far with an 𝛼2 adjusting parameter. The 

𝛼1 parameter regulates the balance between the 

random part and the rest of the equation. Kaveh and 

Talatahari's (2009) equation keeps the balance 

between the contribution of the local best (𝑋𝑙𝑏) 

solution and the global best solution with the 𝛼3 

parameter. The methods introduced in Casavola et 

al. (2012), Kaveh and Mahdavi (2013) and Kaveh and 

Zolghadr (2012) are hybrid algorithms. Casavola et 

al. (2012) benefitted from the largest and steepest 

descent. In their equation, 𝑟[0,1] is a random number 

drawn from a uniform distribution between 0 and 1. 

The symbol 𝑋𝑓 is for the solution that has the 

steepest descent with respect to 𝑋𝑐 and 𝑋𝑔𝑏−1 is the 

second global best solution. Kaveh and Zolghadr 

(2012) used a Charged System Search powered 

algorithm and Kaveh and Mahdavi (2013) 

performed local searches with a quasi-Newton 

method called Broyden-Fletcher-Goldfarb-Shannon 

(BFGS) method between the loops. The 

redistribution equation presented by Hasançebi and 

Azad (2013) is for combinatorial optimization. 

However, it can be used in optimization with 

continuous variables by removing the rounding 
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operator. The objective functions used in the cited 

studies are presented in Table 2. 

 

Table 2. Objective functions 

Study Objective Function 

(Camp, 2007) 𝑊𝑗 = 𝑤𝑗(1 + 𝜙𝑗,𝜎 + 𝜙𝑗,𝛿)
𝜀1

 

(Kaveh and Talatahari 2009) 𝑊𝑗 = 𝜀3𝑤𝑗 + 𝜀2(𝜙𝑗,𝜎 + 𝜙𝑗,𝛿)
𝜀1

 

(Casavola et al. 2012) N/A 

(Kaveh and Zolghadr 2012) 𝑊𝑗 = 𝑤𝑗(1 + 𝜀2𝜙𝑗,𝜔)
𝜀1

 

(Hasançebi and Azad 2013) 𝑊𝑗 = 𝑤𝑗[1 + 𝜀2(𝜙𝑗,𝜎 +𝜙𝑗,𝛿)] 

(Kaveh and Mahdavi 2013) 𝑊𝑗 = 𝑤𝑗 [1 + 𝜀2(𝜙𝑗,𝜎 + 𝜙𝑗,𝛿)
2
] 

 

In Table 2, 𝑊𝑗 and 𝑤𝑗 are the objective function and 

the weight of the 𝑗𝑡ℎ candidate, respectively. 𝜙𝑗,𝜎, 

𝜙𝑗,𝛿 and 𝜙𝑗,𝜔 represent the stress, displacement 

and frequency constraint violations, respectively. 

Finally, 𝜀1, 𝜀2 and 𝜀3 are the weighting coefficients. 

The efficiency of the optimization methods are 

measured by benchmark problems. A spatial truss 

structure called “25-Bar transmission tower” is used 

for benchmarking in most of the truss size 

optimization papers (Figure 1). 

 

 
Figure 1. Configuration of the 25-Bar transmission tower  

 

The structure given in Figure 1 has 25 bars that are 

classified into 8 groups. Tables 3 and 4 present the 

node coordinates and connectivity information of 

the transmission tower, respectively. 

Table 3. Node coordinates of the transmission tower 

Node 𝒙 (in.) 𝒚 (in.) 𝒛 (in.) 

1 -37.5 0.0 200.0 

2 37.5 0.0 200.0 

3 -37.5 37.5 100.0 

4 37.5 37.5 100.0 

5 37.5 -37.5 100.0 

6 -37.5 -37.5 100.0 

7 -100.0 100.0 0.0 

8 100.0 100.0 0.0 

9 100.0 -100.0 0.0 

10 -100.0 -100.0 0.0 

 

Table 4. Element connectivity information of the 

transmission tower 

Element Group 

1 2 3 4 

1: (1,2) 2: (1,4) 6: (2,4) 10: (3,6) 

 3: (2,3) 7: (2,5) 11: (4,5) 

 4: (1,5) 8: (1,3)  

 5: (2,6) 9: (1,6)  

Element Group 

5 6 7 8 

12: (3,4) 14: (3,10) 18: (4,7) 22: (6,10) 

13: (5,6) 15: (6,7) 19: (3,8) 23: (3,7) 

 16: (4,9) 20: (5,10) 24: (4,8) 

 17: (5,8) 21: (6,9) 25: (5,9) 

 

In Table 3, the dimensions are given in inches. In 

Table 4, 𝑖: (𝑎, 𝑏) notation is for the ith bar that 

connects the node 𝑎 to node 𝑏. This tower is 

optimized for both single and multiple loading cases 

in the literature. In this study, the multiple loading 

cases (Table 5) are considered. 

 

Table 5. Loading conditions for the transmission tower 

Case Node 𝑷𝒙 (kips) 𝑷𝒚 (kips) 𝑷𝒛 (kips) 

1 
1 0.0 20.0 -5.0 

2 0.0 -20.0 -5.0 

2 

1 1.0 10.0 -5.0 

2 0.0 10.0 -5.0 

3 0.5 0.0 0.0 

6 0.5 0.0 0.0 

 

The nodal displacements are limited to ±0.35 in all 

global directions. The allowed compressive and 

tensile stress values of each group are as given in 

Table 6 for the introduced problem. 

 

 

 

 

Table 6. Stress limits for the transmission tower 

 Element Group 
Compressive 

Stress Limit (ksi) 
Tensile Stress 

Limit (ksi) 

1 𝐴1 35.092 40.0 
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2 𝐴2~𝐴5 11.590 40.0 

3 𝐴6~𝐴9 17.305 40.0 

4 𝐴10~𝐴11 35.092 40.0 

5 𝐴12~𝐴13 35.092 40.0 

6 𝐴14~𝐴17 6.759 40.0 

7 𝐴18~𝐴21 6.959 40.0 

8 𝐴22~𝐴25 11.082 40.0 

 

Since this study compares the results of the single 

objective optimization (weight) with only stress and 

deflection constraints using continuous variables, 

there are four studies to place into the comparison 

tables in the references list (Table 7). 

 

Table 7. Optimization results as given in the references 

Study 

Best 
Weigh
t (lb) 

Averag
e 

Weight 
(lb) 

Number 
of 

Analyse
s 

𝑪𝒗 
(%) 

Particl
e 

Count 
Run

s 

(Camp, 
2007) 

545.4
8 

546.40 9746 
0.0
0 

100 100 

(Kaveh 
and 
Talatahar
i 2009) 

545.1
6 

545.66 12500 
0.0
1 

50 50 

(Casavola 
et al. 
2012) 

545.1
1 

N/A 593 
0.1
9 

20 N/A 

(Milajić 
et al. 
2014) 

545.1
6 

N/A N/A 
0.0
0 

N/A N/A 

 

It should be noted that Camp (2007) obtained better 

solutions by implementing an additional phase 

(Phase 2). However, results of Phase 1 are 

considered in this paper. Kaveh and Talatahari 

(2009) obtained a better average weight with less 

runs compared to Camp’s study. Casavola et al. 

(2012) improved the computation time by 

significantly decreasing the number of analyses 

utilizing a hybrid procedure. Unfortunately, Milajić 

et al. (2014) did not provide detailed information 

about the optimization process. 

There are 55 constraints of the introduced problem 

(3 × 10 node displacement components and 25 

stress values). Each node has three displacement 

components in the global directions 𝑥, 𝑦 and 𝑧. For 

example, 12th displacement component represents 

the displacement of 4th node in the global 𝑧 

direction. Total constraint violation ratio is 

calculated by the equation given below. 

 

𝐶𝑣 =∑ 𝜙𝑝,𝜎
25

𝑝=1
+∑ 𝜙𝑚,𝛿

30

𝑚=1
 (6) 

 

where 𝜙𝑝,𝜎  is the stress constraint violation ratio of 

the 𝑝𝑡ℎ bar and 𝜙𝑚,𝛿 is the constraint violation ratio 

of the 𝑚𝑡ℎ deflection component, which are 

calculated as follows. 

 

𝜙𝑝,𝜎 = |
𝜎𝑝 − 𝜎𝑙𝑖𝑚

𝜎𝐿
| (7) 

𝜙𝑚,𝛿 = |
𝛿𝑚 − 𝛿𝑙𝑖𝑚

𝛿𝐿
| (8) 

 

In Eqs. 7 and 8, the superscript 𝑙𝑖𝑚 indicates the 

limiting value, which may be the upper or lower 

limit. 𝜎 is for bar stresses and 𝛿 is for node 

displacements. Constraint violation is taken 0 if the 

design variable is in the allowed limits. Note that 

there are constraint violations in the designs 

presented by Kaveh and Talatahari (2009) and 

Casavola et al. (2012) (see Table 7). 

 

4. Numerical Experiments 

The first experiment involves the bounding 

methods. Due to the nature of the algorithm, 

particles may go out of the design space after 

applying the movement operator. Therefore, the 

last step of the loop is “Then new point is upper and 

lower bounded” in the own words of the author 

(Erol and Eksin 2006). One can use different 

bounding methods such as; 

 

 CC: Clip the exceeding part 

 CR: Clip if smaller than the lower limit, 

regenerate if greater than the upper limit 

 RC: Regenerate if smaller than the lower limit, 

clip if greater than the upper limit 

 RR: Regenerate the coordinate 

 

Clipping is assigning the lower or upper limit to the 

design variable if its value exceeds the defined 

limits. Regeneration is applying the same 

redistribution equation with different random 

numbers until a value that is in the design space is 

obtained. Table 8 summarizes the optimization 

results of the 25-Bar transmission tower obtained 

by Camp’s equation using various bounding 

methods. It should be reminded that Phase 2 of 



Size Optimization of Trusses with BB-BC Algorithm, Özbaşaran 

261 

 

Camp’s work is not considered. The parameters 𝛼1 

and 𝛼2 are taken 1 and 0.2, respectively. 

In the further tables (including Table 8), each row 

represents the results of 100 consecutive runs. The 

stopping criterion is “No improvement is observed 

in the last 20 iterations”. The number of the 

particles (population count) is set to 100 and the 

simple penalty function mentioned in the Camp’s 

work is used unless indicated otherwise. 

 

Table 8. The results obtained by using Camp’s equation 

and the introduced bounding methods 

Bounding 
Method 

Best 
Weight 

(lb) 

Average 
Weight 

(lb) 

Worst 
Weight 

(lb) 

Avg. No. 
of 

Analyses 

𝑪𝒗 
(%) 

(CC) 545.44 549.34 569.41 10371 0.00 

(CR) 545.48 549.84 564.78 10047 0.00 

(RC) 545.63 550.30 566.77 12375 0.00 

(RR) 545.76 549.99 564.73 11860 0.00 

 

It can be seen from Table 8 that the introduced 

bounding methods do not have a significant effect 

on the best, average and worst solutions. However, 

the algorithm with CR bounding converged to near-

optimal solutions with less than about 18.8% and 

15.3% structural analyses compared to RC and RR 

methods, respectively. The convergence history of 

the best solutions are presented in Figure 2. 

 

 
Figure 2. Convergence history of the best solutions for 

the introduced bounding methods 

 

In Figure 2, the limits of the vertical axis are selected 

adequately close to each other to clearly show the 

difference between different bounding methods. It 

is seen from Figure 2 that the number of structural 

analyses of the best solutions do not reflect the 

average behavior of bounding methods. 

The effect of UBS on various redistribution 

equations are studied. The UBS scheme of Azad et 

al. (2013) is simple. After generation of the 

candidates, the unpenalized weights are calculated 

before performing the structural analyses. If the 

unpenalized weight of a candidate is greater than 

the penalized weight of the global best solution, it is 

thought that the mentioned candidate is not 

capable of improving the final result and removed 

from the candidates list. In this study, an additional 

rule is applied: Another candidate that meets the 

above mentioned criterion fills the place of the 

removed one. In the further text, UBS refers to this 

modified version. Table 9 presents the contribution 

of the UBS to the procedures that use Camp and 

Kaveh-Talatahari redistributions and CR bounding. It 

should be noted that the sub-optimization 

mechanism (SOM) of Kaveh and Talatahari’s work is 

not considered. The 𝛼1, 𝛼2 and 𝛼3 parameters are 

taken 1, 0.4 and 0.8, respectively. 

 

Table 9. Effect of the UBS on the optimization results 

Eq. 
Best 

Weight 
(lb) 

Average 
Weight 

(lb) 

Worst 
Weight 

(lb) 

Avg. No. 
of 

Analyses 

𝑪𝒗 
(%) 

Camp (2007) 545.48 549.84 564.78 10047 0.00 

Camp (2007) 
+ UBS 

545.40 547.31 560.99 9913 0.00 

Kaveh and 
Talatahari 
(2009) 

545.32 548.78 561.25 10874 0.00 

Kaveh and 
Talatahari 
(2009) + UBS 

545.43 547.61 565.30 9200 0.00 

 

By utilizing the UBS, structural analysis count of the 

Camp’s procedure is improved by 1.3%, which is a 

negligible ratio. However there is a 15.4% 

improvement in the Kaveh-Talatahari algorithm. 

Figure 3 presents the convergence history of the 

best solutions. 
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Figure 3. Contribution of the UBS to convergence 

 

It is seen from Figure 3 that the Kaveh-Talatahari 

algorithm with UBS precedes the other procedures 

for this special case. The last test involves the 

definition of a new objective function as given in Eq. 

9. 

 

𝑊𝑗 = 𝑤𝑗(1 + 𝜙𝑗,𝜎 +𝜙𝑗,𝛿)
𝜂(𝑘+1)

𝑡  (9) 

 

where 𝜂 is a positive real number. Eq. 9 is a dynamic 

penalty function that gradually increases the 

penalty amount by the iteration count. This gives 

the infeasible solutions a “chance” to contribute to 

the exploration phase. Table 10 presents the results 

obtained by Camp’s equation and CR bounding for 

the values of 𝜂 from 1 to 5. 

 

Table 10. Variation of the results obtained by Camp’s 

equation and CR bounding with respect to 𝜂 

parameter. 

𝜼 
Best 

Weight 
(lb) 

Average 
Weight 

(lb) 

Worst 
Weight 

(lb) 

Avg. No. of 
Analyses 

𝑪𝒗 
(%) 

1 545.38 550.62 576.06 9861 0.00 

2 545.42 549.41 567.04 9539 0.00 

3 545.39 549.50 563.72 9855 0.00 

4 545.32 549.38 566.96 10818 0.00 

5 545.52 549.14 569.05 10569 0.00 

 

Table 10 shows that the best, average and worst 

values do not change considerably with 𝜂. However, 

𝜂 = 2 provides the best performance in the average 

number of structural analyses, which is less than the 

worst result by 11.8%. In addition, the presented 

dynamic penalty function requires 5.1% less 

calculations than the penalty function used by Camp 

to converge to a near-optimal design. The 

convergence histories for various 𝜂 values are 

presented in Figure 4. Note that the member section 

areas of the best designs given in Tables 8, 9 and 10 

are presented in Tables 11, 12 and 13 of the 

Appendix part, respectively. 

 

 
Figure 4. Effect of the 𝜂 parameter on the best designs 

 

It should be remembered that this study evaluates 

the contribution of the mentioned experimental 

modifications over a numerical example. It is not 

possible to certainly determine the superiority of 

one method over other methods in stochastic 

optimization. However, their convergence behavior 

can be assessed by comparing the average results of 

multiple runs. 

 

5. Conclusions 

In this study, size optimization of trusses with the 

BB-BC algorithm is revisited. First, various 

redistribution equations from the literature are 

summarized and findings of the authors are 

discussed. Then, the contributions of three 

experimental modifications to the BB-BC algorithm 

are presented over a spatial truss structure 

example. The effect of four introduced bounding 

methods as CC, CR, RC and RR are presented. It is 

found that the CR bounding requires about 18.8% 

less structural analyses than the worst bounding 

method to converge to a near-optimal solution. The 

modified UBS provides up to 15.4% decrease in the 

number of structural analyses. As the last 

improvement, presented dynamic penalty function 

provides 5.1% less structural analyses than the 

penalty function used by Camp. The ideal penalty 

parameter value for the dynamic function is 

545

550

555

560

565

0 50 100 150 200 250

W
ei

gh
t 

(l
b

)

Iteration

Camp (2007)

Camp (2007) + UBS

Kaveh and Talatahari (2009)

Kaveh and Talatahari (2009) + UBS

545

555

565

575

585

0 50 100 150 200 250 300

W
ei

gh
t 

(l
b

)

Iteration

η=1

η=2

η=3

η=4

η=5



Size Optimization of Trusses with BB-BC Algorithm, Özbaşaran 

263 

 

determined as 2. It should be noted that all 

introduced procedures found nearly the same best, 

average and worst values. The significant difference 

is in the number of the structural analyses, which is 

an important measure in evaluating the 

performance of an optimization procedure. 
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Appendix 

Table 11. Section areas (in2) of the designs presented in 

Table 8. 
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Element 
Group 

CC CR RC RR 

1 𝐴1 0.01000 0.02556 0.03588 0.02592 

2 𝐴2~𝐴5 1.92878 2.03565 2.01196 2.03431 

3 𝐴6~𝐴9 3.08260 2.90631 2.94261 2.90374 

4 𝐴10~𝐴11 0.01645 0.01000 0.01055 0.01373 

5 𝐴12~𝐴13 0.01000 0.01000 0.01235 0.01323 

6 𝐴14~𝐴17 0.68065 0.67562 0.68762 0.67588 

7 𝐴18~𝐴21 1.68883 1.67926 1.68091 1.68388 

8 𝐴22~𝐴25 2.63960 2.69628 2.67241 2.69629 

Weight (lb) 545.45 545.48 545.63 545.76 

 

Table 12. Section areas (in2) of the designs presented in 

Table 9. 
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1 𝐴1 0.02556 0.01000 0.01000 0.01000 

2 𝐴2~𝐴5 2.03565 1.98440 1.98684 1.97498 

3 𝐴6~𝐴9 2.90631 2.98593 2.96871 2.95763 

4 𝐴10~𝐴11 0.01000 0.01000 0.01000 0.01000 

5 𝐴12~𝐴13 0.01000 0.01000 0.01000 0.01000 

6 𝐴14~𝐴17 0.67562 0.66585 0.70041 0.67894 

7 𝐴18~𝐴21 1.67926 1.68743 1.68889 1.70875 

8 𝐴22~𝐴25 2.69628 2.68556 2.64658 2.67123 

Weight (lb) 545.48 545.40 545.32 545.43 

 

Table 13. Section areas (in2) of the designs presented in 

Table 10. 

 

 
Element 
Group 

𝜼 = 𝟏 𝜼 = 𝟐 𝜼 = 𝟑 𝜼 = 𝟒 𝜼 = 𝟓 

1 𝐴1 
0.0100

0 
0.0100

0 
0.0100

0 
0.0100

0 
0.0100

0 

2 𝐴2~𝐴5 
2.0187

3 
1.9921

2 
1.9510

9 
1.9714

6 
1.9865

3 

3 𝐴6~𝐴9 
2.9463

7 
2.9858

6 
3.0273

9 
3.0086

1 
2.9642

1 

4 𝐴10~𝐴11 
0.0100

0 
0.0100

0 
0.0100

0 
0.0100

0 
0.0100

0 

5 𝐴12~𝐴13 
0.0100

0 
0.0100

0 
0.0188

0 
0.0100

0 
0.0208

1 

6 𝐴14~𝐴17 
0.7022

6 
0.6767

0 
0.6836

9 
0.6616

7 
0.6679

2 

7 𝐴18~𝐴21 
1.6744

2 
1.6789

6 
1.6939

3 
1.6863

9 
1.6943

7 

8 𝐴22~𝐴25 
2.6514

5 
2.6751

8 
2.6491

8 
2.6856

2 
2.6877

2 

Weight (lb) 545.38 545.42 545.39 545.32 545.52 

 


