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Abstract
In the present paper, we explore the formal properties of the q-Sumudu
transforms to derive a number of inversion and representation formulas.
Some interesting applications of the main results are also presented in
the concluding section.
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1. Introduction and Preliminaries

In the classical analysis, integral transforms are the most widely used to solve
differential equations and integral equations. Thus a lot of work has been done on the
theory and applications of integral transforms (for instance, see [15] and [16]). Most
popular integral transforms are due to Laplace, Fourier, Mellin and Hankel. In 1993 the
Sumudu transform was proposed originally by Watugala [17] as follow:

S{f(t); s} =
1

s

∫ ∞
0

e−t/sf (t) dt, s ∈ (−τ1, τ2) ,

over the set of functions

A =
{
f(t)|∃M, τ1, τ2 > 0, |f(t)| < Me|t|/τj , t ∈ (−1)j × [0,∞)

}
and he applied it to the solution of ordinary differential equations in control engineering
problems. Subsequently, Weerakoon [18] gave the Sumudu transform of partial deriva-
tives and the complex inversion transform and applied it to the solution of partial dif-
ferential equations. The Sumudu transform is not a new integral transform, but simply
s-multiplied Laplace transform, providing the relation between them (see [12] and [5]).
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The Sumudu transform which is itself linear, preserves linear functions, and hence in
particular does not change units (Belgacem and Karaballı [6]). One may, for instance,
refer to such type of works in the recent papers [9] and [10].

The theory of q-analysis, in recent past, have been applied in the many areas of
mathematics and physics like ordinary fractional calculus, optimal control problems, q-
transform analysis, geometric function theory and in finding solutions of the q-difference
and q-integral equations (for instance, see [2], [11], [13] and [14]). Albayrak, Purohit and
Uçar [3] introduced the q-analogues of the Sumudu transform and established several
theorems related to q-Sumudu transforms of some functions. They also introduced the
convolution theorem for q-Sumudu transform.

Abdi [1] gave certain representation and inversion formulae for the two basic analogues
of the Laplace transform. Here, it is worth to note that, the results given in this paper,
can be derived from the corresponding results from q-analogue of Laplace transform
which is given by Theorem 2 and Theorem 4 in [3]:

Theorem 2: Let F1 (s) = Lq {f (t) ; s} and G1 (s) = Sq {f (t) ; s}. Then we have

G1 (s) =
1

s
F1

(
1

s

)
.

Theorem 4: Let F2 (s) = Lq {f (t) ; s} and G2 (s) = Sq {f (t) ; s}. Then we have

G2 (s) =
1

s
F2

(
1

s

)
.

The aim of this paper is to give certain inversion and representation formulas for q-
Sumudu transforms. Throughout this paper we will assume that functions are analytic
at infinity. This paper is organized in following manner. In Section 2, we will give some
theorems, which exhibit the inversion formulae for q-Sumudu transforms. In section 3,
we give some examples for theorems.

As for prerequisites, the reader is expected to be familiar with notations of q-calculus.
We start with basic definitions and facts from the q-calculus necessary for understanding
of this study. Throughout this paper, we will assume that q satisfies the condition
0 < |q| < 1. The q-derivative Dqf of an arbitrary function f is given by

(Dqf)(x) =
f(x)− f(qx)

(1− q)x ,

where x 6= 0. Clearly, if f is differentiable, then

lim
q→1−

(Dqf)(x) =
df(x)

dx
.

For any real number α,

[α] :=
qα − 1

q − 1
.

In particular, if n ∈ Z+, we denote

[n] =
qn − 1

q − 1
= qn−1 + · · ·+ q + 1,

and the q-binomial coefficients is defined by[
n

k

]
=

[n]!

[k]! [n− k]!
,



where [n]! = [n] [n− 1] · · · [2] [1].
Following usual notations are very useful in the theory of q-calculus:

(a; q)n =

n−1∏
k=0

(
1− aqk

)
,

(a; q)∞ =

∞∏
k=0

(
1− aqk

)
,

(a; q)t =
(a; q)∞

(aqt; q)∞
, ( t ∈ R),(1.1)

(a; q)−n =
(−q/a)n qn(n−1)/2

(q/a; q)n
.(1.2)

The q-analogues of the classical exponential functions are defined by

eq(t) =

∞∑
n=0

tn

(q; q)n
=

1

(t; q)∞
, |t| < 1,(1.3)

Eq(t) =

∞∑
n=0

(−1)nqn(n−1)/2tn

(q; q)n
= (t; q)∞, (t ∈ C) .(1.4)

q-exponential functions have the following properties

lim
q→1−

eq ((1− q)x) = ex,

lim
q→1−

Eq ((q − 1)x) = ex.

The q-integrals are defined as (see [7])∫ x

0

f(t)dqt = x(1− q)
∞∑
k=0

qkf(xqk),(1.5)

∫ ∞/A
0

f(t)dqt = (1− q)
∑
k∈Z

qk

A
f(
qk

A
).(1.6)

The following definition is due to Albayrak, Purohit and Uçar [3]:

1.1. Definition. The q-analogues of Sumudu transform are defined as follow:

(1.7) Sq{f(t); s} =
1

(1− q) s

∫ s

0

Eq
(q
s
t
)
f (t) dqt, s ∈ (−τ1, τ2) ,

over the set of functions

A =
{
f(t)|∃M, τ1, τ2 > 0, |f(t)| < MEq (|t| /τj) , t ∈ (−1)j × [0,∞)

}
.

and

(1.8) Sq{f(t); s} =
1

(1− q) s

∫ ∞
0

eq

(
−1

s
t

)
f (t) dqt, s ∈ (−τ1, τ2) ,

over the set of functions

B =
{
f(t)|∃M, τ1, τ2 > 0, |f(t)| < Meq (|t| /τj) , t ∈ (−1)j × [0,∞)

}
.

By virtue of (1.5) and (1.6), q-Sumudu transforms can be expressed as

(1.9) Sq {f (t) ; s} = (q; q)∞

∞∑
k=0

qkf
(
sqk
)

(q; q)k
,



and

(1.10) Sq {f (t) ; s} =
s−1(
− 1
s
; q
)
∞

∑
k∈Z

qkf(qk)

(
−1

s
; q

)
k

.

Furthermore, the q-hypergeometric functions are defined by [11]:

rΦs

[
a1 a2 · · · ar
b1 b2 · · · bs

; q, z

]
=

∞∑
n=0

(a1, a2, . . . , ar; q)n
(b1, b2, . . . , bs; q)n

[
(−1)n q

(
n
2

)]s+1−r
zn

(q; q)n
,

where

(a1, a2, . . . , ar; q)n =

r∏
i=1

(ai; q)n .

The q-Taylor’s series is defined by (see also [13])

(1.11) f (x) =

∞∑
n=0

an
[n]!

(x− a)nq ,

where

an = lim
x→a

D(n)
q f (x) .

The q-Bessel functions were introduced by Jackson [8] and are referred to as Jackson’s
q-Bessel functions. Some q-analogues of the Bessel functions are given by

J(1)
ν (z; q) =

(
qν+1; q

)
∞

(q; q)∞

(z
2

)ν
2Φ1

[
0 0

qν+1 ; q,−z
2

4

]
, |z| < 2,

=
(z

2

)ν ∞∑
n=0

(
−z2/4

)n
(q; q)ν+n (q; q)n

,(1.12)

and

J(2)
ν (z; q) =

(
qν+1; q

)
∞

(q; q)∞

(z
2

)ν
0Φ1

[
−
qν+1 ; q,−q

ν+1z2

4

]
, |z| < 2,

=
(z

2

)ν ∞∑
n=0

qn(n+ν)
(
−z2/4

)n
(q; q)ν+n (q; q)n

.(1.13)

The relation between these two q-Bessel functions is

J(2)
ν (z; q) =

(
−z

2

4
; q

)
∞
J(1)
ν (z; q) , |z| < 2.

q-Bessel functions are q-extensions of the Bessel function of the first kind since

lim
q→1−

J(k)
ν ((1− q) z; q) = Jν (z) , k = 1, 2.

The third kind q-analogue of the Bessel function is given by following formula

J(3)
ν (z; q) =

(
qν+1; q

)
∞

(q; q)∞
zν 1Φ1

[
0

qν+1 ; q, qz2
]
,

= zν
∞∑
n=0

(−1)n qn(n−1)/2
(
qz2
)n

(q; q)ν+n (q; q)n
.(1.14)

This third kind q-Bessel function is also known as the Hahn-Exton q-Bessel function.
This is also q-extension of the Bessel function of the first kind since

lim
q→1−

J(3)
ν ((1− q) z; q) = Jν (2z) .



2. Main Theorems
In the sequel, we need the following results:

Recently, Albayrak, Purohit and Uçar [4] proved the following theorem.

Theorem: Corresponding to the bounded sequence An, let f(x) be given by

f (x) =

∞∑
n=0

Anx
n,

then for α > 0, the following results hold:

Sq
{
xα−1f (x) ; s

}
= sα−1

∞∑
n=0

An (q; q)α+n−1 s
n,(2.1)

Sq
{
xα−1f (x) ; s

}
= sα−1

∞∑
n=0

An
(q; q)α+n−1

K (s;α+ n)
sn.(2.2)

If we write α = j + 1 and f(x) = 1 in the above theorem, we get

(2.3) Sq
{
xj ; s

}
= sj (q; q)j ,

(2.4) Sq
{
xj ; s

}
= q−j(j+1)sj (q; q)j .

If we write α = j/2+1 and choose f(x) = a−j/2J
(1)
j (2

√
ax; q) or f(x) =

( q
a

)j/2
J
(3)
j

(√
q−1ax; q

)
in (2.1), we have

Sq

{(x
a

)j/2
J
(1)
j

(
2
√
ax; q

)
; s

}
= sjeq (−as) ,(2.5)

Sq

{(qx
a

)j/2
J
(3)
j

(√
q−1ax; q

)
; s

}
= sjEq (as) ,(2.6)

and similarly, if we write α = j/2 + 1 and choose f(x) = qj(j+1)/2a−j/2J
(2)
j (2

√
ax; q) or

f(x) =
( q
a

)j/2
J
(3)
j

(√
qjax; q

)
in (2.2), we have

Sq
{
qj(j+1)/2

(x
a

)j/2
J
(2)
j

(
2
√
ax; q

)
; s

}
= sjEq (as) ,(2.7)

Sq
{(qx

a

)j/2
J
(3)
j

(√
qjax; q

)
; s

}
= sjeq (−as) ,(2.8)

where Re (s) > 0 and Re (υ + 1) > 0. The following theorem is due to Belgacem, Karaballı
and Kalla [5].

Theorem: The inverse discrete Sumudu transform, f(t), of the power series,

G (u) =

∞∑
n=0

bnu
n,

is given by

S−1G(u) = f(t) =

∞∑
n=0

(
1

n!

)
bnt

n.

In this section, we will give some theorems, which exhibit the inversion formulae for
q-Sumudu transforms. The usefulness of the theorems are also exhibited by considering
some examples.



2.1. Theorem. Let Sq {f (x) ; s} = G1(s) and Sq {g (x) ; s} = G2(s). If 1
s
G1

(
1
s

)
and

1
s
G2

(
1
s

)
are analytic outside a given circle |s| = r, r > 0 and their values are zero at ∞,

then we have

(2.9) f (x) =

∞∑
j=0

aj (1− q)j xj{
(q; q)j

}2 ,

where

lim
s→0

D(j)
q G1 (s) = aj ,

and

(2.10) g (x) =

∞∑
j=0

bjq
j(j+1)/2 (1− q)j xj{

(q; q)j

}2 ,

where

lim
s→0

D(j)
q G2 (s) = bj .

Proof. We only give the proof of the identity (2.9). Because, the proof of the identity
(2.10) is similar. We suppose that 1

s
G1

(
1
s

)
is analytic in |s| > r, for some r > 0 and

vanishes at ∞. Then, it can be represented as an absolutely convergent power series as
follows:

1

s
G1

(
1

s

)
=

∞∑
j=0

cjs
−j−1.

Therefore, we can write

G1 (s) =

∞∑
j=0

cjs
j .

Making use of the q-Taylor formula (1.11), we have

cj =
(1− q)j

(q; q)j
lim
s→0

D(j)
q G1 (s) .

Thus, we have

G1 (s) =

∞∑
j=0

aj (1− q)j sj

(q; q)j
,

where

aj = lim
s→0

D(j)
q G1 (s) .

Taking into account (2.3), we obtain

f (x) =

∞∑
j=0

aj (1− q)j xj{
(q; q)j

}2 .

2.2. Theorem. Let Sq {f (x) ; s} = G1(s) and Sq {f (x) ; s} = G2(s). If 1
s
G1

(
1
s

)
and

1
s
G2

(
1
s

)
are analytic outside a given circle |s| = r, r > 0 and their values are zero at ∞,

then

(2.11) f (x) =

∞∑
j=0

aj
(1− q)j

(q; q)j

(qx
a

)j/2
J
(3)
j

(√
a

q
x; q

)
,



where

aj = lim
s→0

D(j)
q {eq (as)G1 (s)} .

(2.12) f (x) =

∞∑
j=0

bj
(1− q)j

(q; q)j

(qx
a

)j/2
J
(3)
j

(√
qjax; q

)
,

where

bj = lim
s→0

D(j)
q {Eq (−as)G2 (s)} .

(2.13) f (x) =

∞∑
j=0

bj
(1− q)j

(q; q)j

(x
a

)j/2
J
(1)
j

(
2
√
at; q

)
,

where

bj = lim
s→0

D(j)
q {Eq (−as)G2 (s)} .

(2.14) f (x) =

∞∑
j=0

aj
(1− q)j

(q; q)j
qj(j+1)/2

(x
a

)j/2
J
(2)
j

(
2
√
ax; q

)
,

where

aj = lim
s→0

D(j)
q {eq (as)G1 (s)} .

Proof. We only give the proof of the identity (2.11). Because, by using the formula (2.8),
(2.5), (2.7), respectively, the proof of the identities (2.12)-(2.14) are similar. Let

1

s
F

(
1

s

)
=

1

s
eq (a/s)G1

(
1

s

)
.

Suppose 1
s
G1

(
1
s

)
is analytic outside the circle |s| = r and its value is zero at∞. Therefore

1
s
F
(
1
s

)
is analytic outside the circle |s| = p and its value is zero at ∞. Thus, Theorem

2.1 can be applied for F (s) and we can write

F (s) =

∞∑
j=0

aj (1− q)j sj

(q; q)j
,

where

aj = lim
s→0

D(j)
q {F (s)} .

Following the definition of F (s), we have

eq (as)G1 (s) =

∞∑
j=0

aj (1− q)j sj

(q; q)j
,

G1 (s) =

∞∑
j=0

aj (1− q)j sjEq (as)

(q; q)j
,

where

aj = lim
s→0

D(j)
q {eq (as)G1 (s)} .

Now, on using the formula (2.6), we get

f (x) =
∞∑
j=0

aj (1− q)j
(qx
a

)j/2 J(3)
j

(√
a
q
x; q
)

(q; q)j
,



where

aj = lim
s→0

D(j)
q {eq (as)G1 (s)} .

2.3. Theorem. Let Sq {f (x) ; s} = G1(s), Sq {f (x) ; s} = G2(s). We suppose that
1
s
G1

(
1
s

)
and 1

s
G2

(
1
s

)
are analytic outside a given circle |s| = r, r > 0 and their values

are zero at ∞. If G1 (s) and G2 (s) have a series expansion as follow

Gi (s) =

∞∑
j=0

cj (as; q)j , (i = 1, 2),

where
∞∑
j=0

|cj | convergent, then f has a series expansion as follow

(2.15) f (x) =

∞∑
j=0

aj q
−j(j−1)/2 (q − 1)j a−j

2Φ1

(
q−j , 0; q; q, qjax

)
(q; q)j

,

where

aj = lim
s→a−1q−j

D(j)
q G1 (s) ,

(2.16) f (x) =

∞∑
j=0

bj q
−j(j−1)/2a−j (q − 1)j

1Φ1

(
q−j ; q; q,−qj+1ax

)
(q; q)j

,

where

bj = lim
s→a−1q−j

D(j)
q G2 (s) .

Proof. We only give the proof of the identity (2.15). The proof of the identity (2.16),
can be easily seen by making use of following known identity [4, p.419, (2.11)],

Sq
{

1Φ1

(
q−j ; q; q,−qj+1ax

)
; s
}

= (as; q)j .

Suppose 1
s
G1

(
1
s

)
is analytic in |s| > r, for some r > 0 and its value is zero at ∞. Then,

G1 (s) has a series expansion as follow

G1 (s) =

∞∑
j=0

cj (as; q)j ,

where
∞∑
j=0

|cj | is convergent. Using the q-Taylor’s formula, we get

cj = lim
s→a−1q−j

D(j)
q {G1 (s)} .q−j(j−1)/2 (q − 1)j a−j/ (q; q)j .

Thus, we can write

G1 (s) =

∞∑
j=0

aj q
−j(j−1)/2 (q − 1)j a−j

(as; q)j
(q; q)j

,

where

aj = lim
s→a−1q−j

D(j)
q G1 (s) .

Furthermore, making use of formula [4, p.419, (2.10)],

Sq
{

2Φ1

(
q−j , 0; q; q, qjax

)
; s
}

= (as; q)j ,



we obtain

f (x) =

∞∑
j=0

aj q
−j(j−1)/2 (q − 1)j a−j

2Φ1

(
q−j , 0; q; q, qjax

)
(q; q)j

,

where

aj = lim
s→a−1q−j

D(j)
q G1 (s) .

2.4. Theorem. Let Sq {f (x) ; s} = G(s). We suppose that 1
s
G
(
1
s

)
is analytic outside

the circle |s| = r, r > 0 and its value is zero at ∞. Then, G (s) has the form

G (s) = s−1
∞∑
j=1

cj
(
q (as)−1 ; q

)
−j ,

where
∞∑
j=0

|cj | convergent, if and only if, f has a series expansion as follow

f (x) = eq (ax)

∞∑
j=1

cj (−1)j ajqj(j−1)/2 xj−1

(q; q)j−1

,

where
∞∑
j=1

∣∣∣qj(j−1)/2cj

∣∣∣ <∞.
Proof. Suppose f has a series expansion as follow

f (x) = eq (ax)

∞∑
j=1

cj (−1)j ajqj(j−1)/2 xj−1

(q; q)j−1

.

Using the series representation (1.9) of Sq-transform, we have

G (s) = (q; q)∞

∞∑
k=0

qk

(q; q)k

∞∑
j=1

cj (−1)j ajqj(j−1)/2

(
sqk
)j−1

eq
(
asqk

)
(q; q)j−1

.

Clearly, G (s) has simple poles at s = a−1q−k, (k = 0, 1, 2, ...) which obviously all on lie
or in the exterior of the circle |s| = 1/a. So, for |s| < 1/a, G (s) is absolutely convergent.
Hence interchanging the order of summations in the right side of G (s), we obtain

G (s) = (q; q)∞

∞∑
j=1

cj (−1)j ajqj(j−1)/2 sj−1

(q; q)j−1

∞∑
k=0

(
qj
)k

(q; q)k
eq
(
asqk

)
.

Making use of the definitions (1.3) of eq and (1.1) of (a; q)t, we have

G (s) = (q; q)∞

∞∑
j=1

cj (−1)j ajqj(j−1)/2 sj−1

(q; q)j−1

∞∑
k=0

(
qj
)k

(q; q)k

1

(asqk; q)∞

= (q; q)∞

∞∑
j=1

cj (−1)j aj
qj(j−1)/2

(q; q)j−1

sj−1

(as; q)∞

∞∑
k=0

(as; q)k
(q; q)k

(
qj
)k
.

Now on using the formula
∞∑
k=0

(a; q)k
(q; q)k

zk =
(az; q)∞
(z; q)∞

,



we get

G (s) =

∞∑
j=1

cj (−1)j ajqj(j−1)/2 sj−1

(as; q)j
.

Then using (1.2), we obtain

G (s) =

∞∑
j=1

cj (−1)j ajqj(j−1)/2 sj−1

(−as)j qj(j−1)/2
(q/as; q)−j

=
1

s

∞∑
j=1

cj (q/as; q)−j .

On the other hand, let G (s) has a series expansion as follow

G (s) = s−1
∞∑
j=1

cj
(
q (as)−1 ; q

)
−j ,

where
∞∑
j=1

∣∣∣qj(j−1)/2cj

∣∣∣ <∞.
By the property (1.2) of (a; q)−j , we can write

G (s) =

∞∑
j=1

cj (−1)j ajqj(j−1)/2 sj−1

(as; q)j
.

For some s = s0, |s0| < 1
a
,

|G (s0)| =
∞∑
j=1

∣∣∣∣∣cj (−1)j ajqj(j−1)/2 sj−1
0

(as0; q)j

∣∣∣∣∣ .
Since

|as0| < 1 and

∣∣∣∣∣ s−1
0

(as0; q)j

∣∣∣∣∣ < ∣∣s−1
0 eq (as0)

∣∣ ,
we have

|G (s0)| =
∣∣s−1

0 eq (as0)
∣∣ ∞∑
j=1

∣∣∣qj(j−1)/2cj

∣∣∣ .
Hence, for the absolute convergence of G(s0), we need

∞∑
j=1

∣∣∣qj(j−1)/2cj

∣∣∣ <∞.
Now on using the formula

Sq
{

(−a)j qj(j−1)/2xj−1eq (ax) / (q; q)j−1 ; s
}

=
(q/as; q)−j

s
,

we obtain

f (x) = eq (ax)

∞∑
j=1

cj (−1)j ajqj(j−1)/2 xj−1

(q; q)j−1

.

This completes the proof.



2.5. Theorem. Let Sq {f (x) ; s} = G(s) and the function 1
s
G
(
1
s

)
is analytic outside a

given circle |s| = r, r > 0 and its value is zero at ∞. Then, G (s) has the form

G (s) = s−1
∞∑
j=1

cj
(
−q (as)−1 ; q

)
−j ,

where
∞∑
j=0

∣∣∣qj(j−1)/2cj

∣∣∣ convergent, if and only if, f has a series expansion as follow

f (x) =

∞∑
j=1

cja
jqj(j−1) xj−1

(q; q)j−1

Eq
(
aqjx

)
.

Proof. Suppose f has a series expansion as follow

f (x) =

∞∑
j=1

cja
jqj(j−1) xj−1

(q; q)j−1

Eq
(
qjax

)
.

Making use of series representation (1.10) of Sq-transform, we have

G (s) =
s−1(
− 1
s
; q
)
∞

∑
k∈Z

qk
(
−1

s
; q

)
k

∞∑
j=1

cja
jqj(j−1)

(
qk
)j−1

(q; q)j−1

Eq
(
aqk+j

)
.

Clearly, G (s) has simple poles at s = a−1q−k, (k = 0, 1, 2, ...) which obviously all on lie
or in the exterior of the circle |s| = 1/a. So, for |s| < 1/a, G (s) is absolutely convergent.
Hence, interchanging the order of summations in the right hand side of G (s), we obtain

G (s) =

∞∑
j=1

cja
j q

j(j−1)

(q; q)j−1

s−1(
− 1
s
; q
)
∞

∑
k∈Z

(
−1

s
; q

)
k

(
qj
)k
Eq
(
aqk+j

)
.

Making use of definitions (1.4) of Eq and (1.1) of (a; q)t , we have

G (s) =

∞∑
j=1

cja
j q

j(j−1)

(q; q)j−1

(
aqj ; q

)
∞ s
−1(

− 1
s
; q
)
∞

∑
k∈Z

(−1/s; q)k
(aqj ; q)k

(
qj
)k

=

∞∑
j=1

cja
j q

j(j−1)

(q; q)j−1

(
aqj ; q

)
∞ s
−1(

− 1
s
; q
)
∞

1Ψ1

(
−1/s; aqj ; q, qj

)
.

Now on using the formula

1Ψ1 (a; b; q, z) =
(q, b/a, az, q/az; q)∞
(b, q/a, z, b/az; q)∞

,

we get

G (s) =

∞∑
j=1

cja
j q
j(j−1)

(q; q)j

(
aqj ; q

)
∞ s
−1(

− 1
s
; q
)
∞

(
q,−asqj ,−qj/s,−q1−js; q

)
∞

(aqj ,−qs, qj ,−as; q)∞

=

∞∑
j=1

cja
jqj(j−1) 1

s

1

(−as; q)j (−1/s; q)j (−qs; q)−j
.

By the property (1.2) of (a; q)−j , we obtain

G (s) =

∞∑
j=1

cja
jqj(j−1) 1

s

(−q/as; q)−j (−qs; q)−j
(as)j qj(j−1)/2 (1/s)j qj(j−1)/2 (−qs; q)−j

=
1

s

∞∑
j=1

cj (−q/as; q)−j .



On the other hand, let G (s) has a series expansion as follow

G (s) = s−1
∞∑
j=1

cj
(
−q (as)−1 ; q

)
−j ,

where
∞∑
j=1

∣∣∣qj(j−1)/2cj

∣∣∣ <∞.
By the property (1.2) of (a; q)−j , we can write

G (s) =

∞∑
j=1

cja
jqj(j−1)/2 sj−1

(−as; q)j
.

For some s = s0, |s0| < 1
a

|G (s0)| =
∞∑
j=1

∣∣∣∣∣cjajqj(j−1)/2 sj−1
0

(−as0; q)j

∣∣∣∣∣ .
Since

|as0| < 1 and

∣∣∣∣∣ s−1
0

(−as0; q)j

∣∣∣∣∣ < ∣∣s−1
0 eq (−as0)

∣∣ ,
we have

|G (s0)| =
∣∣s−1

0 eq (−as0)
∣∣ ∞∑
j=1

∣∣∣cjqj(j−1)/2
∣∣∣ .

Therefore for absolute convergence
∞∑
j=1

∣∣∣qj(j−1)/2cj

∣∣∣ <∞.
Now on using the formula

Sq
{
ajqj(j−1)xj−1Eq

(
aqjx

)
/ (q; q)j−1 ; s

}
=

(−q/as; q)−j
s

,

we obtain

f (x) =

∞∑
j=1

cja
jqj(j−1) xj−1

(q; q)j−1

Eq
(
aqjx

)
.

This completes the proof.

3. Applications
As illustrations of the above theorems, we shall now give some examples. The following

result was obtained previously in [4]:

3.1. Example. Let

G (s) = eq (−as) =

∞∑
n=0

(−1)n an

(q; q)n
sn.

Then, 1
s
G
(
1
s

)
is analytic outside the circle |s| = |a| and its value is zero at ∞. Also, it

is easy to see that

D(n)
q (eq (−as)) =

an

(q − 1)n
eq (−as) .



If we set G (s) = G1 (s) = G2 (s) in Theorem 2.1, then we have

f (x) =

∞∑
n=0

an (1− q)n xn{
(q; q)n

}2
=

∞∑
n=0

an

(q − 1)n
(1− q)n xn{

(q; q)n
}2

= 2Φ1

[
0 0
q

; q,−ax
]

= J
(1)
0

(
2
√
ax; q

)
.

and

f (x) =

∞∑
n=0

bnq
n(n+1)/2 (1− q)n xn{

(q; q)n
}2

=

∞∑
n=0

an

(q − 1)n
qn(n+1)/2 (1− q)n xn{

(q; q)n
}2

= 1Φ1

[
0
q

; q,−ax
]

= J
(3)
0

(√
ax; q

)
where J(1)

0 (x; q) is the first kind q-Bessel function and J(3)
0 (x; q) is the third kind q-Bessel

function. Thus we have

Sq
{
J
(1)
0

(
2
√
ax; q

)
; s
}

= Sq
{
J
(3)
0

(√
ax; q

)
; s
}

= eq (−as) .

3.2. Example. Let

G1 (s) = Eq (bs)Eq (cs) ,

and

G2 (s) = eq (−bs) eq (−cs) .

Then, 1
s
G1

(
1
s

)
and 1

s
G2

(
1
s

)
are analytic outside the circle |s| = |a| and their value are

zero at ∞. If we write G1 (s) and G2 (s) in Theorem 2.2, respectively, then we have

f (x) =


∞∑
j=0

(−b)j qj(j−1)/2
(
qx
c

)j/2 J
(3)
j

(√
q−1cx;q

)
(q;q)j

, if a = c,

∞∑
j=0

(−c) qj(j−1)/2
(
qx
b

)j/2 J
(3)
j

(√
q−1bx;q

)
(q;q)j

, if a = b.

where

aj = lim
s→0

D(j)
q {eq (as)G1 (s)} =

{
(q − 1)−j qj(j−1)/2bj , if a = c,

(q − 1)−j qj(j−1)/2cj , if a = b.

f (x) =


∞∑
j=0

(−b)j
(
qx
c

)j/2 J
(3)
j

(√
qjcx;q

)
(q;q)j

, if a = c,

∞∑
j=0

(−c)j
(
qx
b

)j/2 J
(3)
j

(√
qjbx;q

)
(q;q)j

, if a = b.

where

bj = lim
s→0

D(j)
q {Eq (−as)G2 (s)} =

{
(q − 1)−j bj , if a = c,

(q − 1)−j cj , if a = b.



f (x) =


∞∑
j=0

(−b)j
(
x
c

)j/2 J
(1)
j (2

√
cx;q)

(q;q)j
, if a = c,

∞∑
j=0

(−c)j
(
x
b

)j/2 J
(1)
j (
√
2bx;q)

(q;q)j
, if a = b.

where

bj = lim
s→0

D(j)
q {Eq (−as)G2 (s)} =

{
(q − 1)−j bj , if a = c,

(q − 1)−j cj , if a = b.

f (x) =


∞∑
j=0

(−qb)j qj(j−1)
(
x
c

)j/2 J
(2)
j (2

√
cx;q)

(q;q)j
, if a = c,

∞∑
j=0

(−qc)j qj(j−1)
(
x
b

)j/2 J
(2)
j (
√
bx;q)

(q;q)j
, if a = b.

where

aj = lim
s→0

D(j)
q {eq (as)G1 (s)} =

{
(q − 1)−j qj(j−1)/2bj , if a = c,

(q − 1)−j qj(j−1)/2cj , if a = b.

3.3. Example. Let

G (s) = eq (y) /eq (s) = (s; q)∞ / (y; q)∞

=

∞∑
j=0

(s/y; q)j
(q; q)j

yj .

Then, 1
s
G
(
1
s

)
is analytic outside the circle |s| = 1 and its value is zero at∞. Furthermore,

it can be easily seen that

D(j)
q G (s) = (−1)j (1− q)−j qj(j−1)/2eq (y) /eq

(
qjs
)
.

If we write G (s) = G1 (s) = G2 (s) in Theorem 2.3, respectively, then we have

f (x) =

∞∑
j=0

aj q
−j(j−1)/2 (q − 1)j yj

2Φ1

(
q−j , 0; q; q, qjx/y

)
(q; q)j

=

∞∑
j=0

yj
2Φ1

(
q−j , 0; q; q, qjx/y

)
(q; q)j

,

and

f (x) =

∞∑
j=0

bj q
−j(j−1)/2 (q − 1)j yj

1Φ1

(
q−j ; q; q,−qj+1x/y

)
(q; q)j

=

∞∑
j=0

yj
1Φ1

(
q−j ; q; q,−qj+1x/y

)
(q; q)j

,

where

aj = bj = lim
s→yqj

D(j)
q G (s) = (−1)j (1− q)−j qj(j−1)/2.

Thus, we obtain

Sq

{
∞∑
j=0

yj
2Φ1

(
q−j , 0; q; q, qjx/y

)
(q; q)j

; s

}
= Sq

{
∞∑
j=0

yj
1Φ1

(
q−j ; q; q,−qj+1x/y

)
(q; q)j

; s

}
= eq (y) /eq (s) .
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