

Sakarya University Journal of Science

ISSN 1301-4048 | e-ISSN 2147-835X | Period Bimonthly | Founded: 1997 | Publisher Sakarya University | http://www.saujs.sakarya.edu.tr/

Title: A New Class Of S-Type X(U,V;L_P(E)) Operators

Authors: Pınar Zengin Alp, Merve İlkhan Recieved: 2019-01-25 12:49:57

Accepted: 2019-03-25 22:00:11

Article Type: Research Article Volume: 23 Issue: 5 Month: October Year: 2019 Pages: 792-800

How to cite Pınar Zengin Alp, Merve İlkhan; (2019), A New Class Of S-Type X(U,V;L_P(E)) Operators. Sakarya University Journal of Science, 23(5), 792-800, DOI: 10.16984/saufenbilder.517762 Access link http://www.saujs.sakarya.edu.tr/issue/44066/517762

Sakarya University Journal of Science 23(5), 792-800, 2019

A New Class Of s-TYPE $X(u, v, l_p(E))$ Operators

Pınar Zengin Alp^{*1}, Merve İlkhan²

Abstract

In this paper, we define a new class of s-type $X(u, v; l_p(E))$ operators, $L_{u,v,E}$. Also we show that this class is a quasi-Banach operator ideal and we study on the properties of the classes which are produced via different types of s-numbers.

Keywords: operator ideals, s-numbers, block sequence spaces.

1. INTRODUCTION

Operator ideal theory is an important subject of functional analysis. There are many different ways of constructing operator ideals, one of them is using s-numbers. Some equivalents of snumbers are Kolmogorov numbers, Weyl numbers and approximation numbers. Pietsch defined in [1] the concept of s-number sequence to combine all s-numbers in one definition. After some revisions on this definition s-number sequence is presented in [2], [3].

In this paper, by \mathbb{N} and \mathbb{R}^+ we denote the set of all natural numbers and nonnegative real numbers, respectively.

A finite rank operator is a bounded linear operator whose dimension of the range space is finite [4].

Let X and Y be real or complex Banach spaces. The space of all bounded linear operators from X to Y and the space of all bounded linear operators between any two arbitrary Banach spaces are denoted by $\mathcal{L}(X, Y)$ and \mathcal{L} , respectively.

An s-number sequence is a map $s = (s_n): \mathcal{L} \to \mathbb{R}^+$ which assigns every operator $T \in \mathcal{L}$ to a nonnegative scalar sequence $(s_n(T)_{n \in \mathbb{N}})$ if the following conditions hold for all Banach spaces X, Y, X_0 and Y_0 :

 $(S1) ||T|| = s_1(T) \ge s_2(T) \ge \dots \ge 0$ for every $T \in \mathcal{L}(X, Y),$

^{*} Corresponding Author: pinarzenginalp@gmail.com

¹ Düzce University, Department of Mathematics, Düzce, Turkey. ORCID: 0000-0001-9699-7199

² Düzce University, Department of Mathematics, Düzce, Turkey. ORCID: 0000-0002-0831-1474

(S2) $s_{m+n-1}(S+T) \le s_m(T) + s_n(T)$ for every $S, T \in \mathcal{L}(X, Y)$ and $m, n \in \mathbb{N}$,

(S3) $s_n(RST) \le ||R|| s_n(S) ||T||$ for some $R \in \mathcal{L}(Y, Y_0)$, $S \in \mathcal{L}(X, Y)$ and $T \in \mathcal{L}(X_0, X)$, where X_0, Y_0 are arbitrary Banach spaces,

(S4) If $rank(T) \le n$, then $s_n(T) = 0$,

 $(S5) s_n(I: l_2^n \to l_2^n) = 1$, where *I* denotes the identity operator on the n-dimensional Hilbert space l_2^n , where $s_n(T)$ denotes the n-th s-number of the operator *T* [5].

As an example of s-numbers $a_n(T)$, the n-th approximation number, is defined as

$$a_n(T) = inf\{||T - A||: A \in \mathcal{L}(X, Y), rank(A) < n\},\$$

where $T \in \mathcal{L}(X, Y)$ and $n \in \mathbb{N}$ [6].

Let $T \in \mathcal{L}(X, Y)$ and $n \in \mathbb{N}$. The other examples of s-number sequences are given in the following, namely Gelfand number $(c_n(T))$, Kolmogorov number $(d_n(T))$, Weyl number $(x_n(T))$, Chang number $(y_n(T))$, Hilbert number $(h_n(T))$, etc. For the definitions of these sequences we refer to [4], [7]. In the sequel there are some properties of s-number sequences.

When any metric injection $J \in \mathcal{L}(Y, Y_0)$ is given and an s-number sequence $s = (s_n)$ satisfies $s_n(T) = s_n(JT)$ for all $T \in \mathcal{L}(X, Y)$ the snumber sequence is called injective [3].

Proposition 1. The number sequences $(c_n(T))$ and $(x_n(T))$ are injective [3].

When any metric surjection $S \in \mathcal{L}(X_0, X)$ is given and an s-number sequence $s = (s_n)$ satisfies $s_n(T) = s_n(TS)$ for all $T \in \mathcal{L}(X, Y)$ the s-number sequence is called surjective [3].

Proposition 2. The number sequences $(d_n(T))$ and $(y_n(T))$ are surjective [3].

Proposition 3. Let $T \in \mathcal{L}(X,Y)$. Then $h_n(T) \leq x_n(T) \leq c_n(T) \leq a_n(T)$ and $h_n(T) \leq y_n(T) \leq d_n(T) \leq a_n(T)$ [3].

Lemma 1. Let $S, T \in \mathcal{L}(X, Y)$, then $|s_n(T) - s_n(S)| \le ||T - S||$ for $n = 1, 2, \dots$ [1].

A sequence space is defines as any vector subspace of ω , where ω is the space of real valued sequences.

The Cesaro sequence space
$$ces_p$$
 is defined as
 $ces_p = \left\{ x = (x_k) \in \omega: \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |x_k| \right)^p < \infty \right\}$

where 1 [8], [9], [10].

If an operator $T \in \mathcal{L}(X, Y)$ satisfies $\sum_{n=1}^{\infty} (a_n(T))^p < \infty$ for 0 , it is definedas an l_p type operator in [6] by Pietsch. Then Constantin defined a new class named ces-p type operators, via Cesaro sequence spaces. If an operator $T \in \mathcal{L}(X, Y)$ satisfies $\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} a_n(T) \right)^p < \infty, \ 1 < p < \infty, \text{ it is}$ called ces-p type operator. The class of ces-p type operators includes the class of l_p type operators [11]. Later on Tita [12] proved that the class of l_p type operators and ces-p type operators are coincides. Some other generalizations of l_p type operators were examined in [4], [13], [14], [15].

Continuous linear functionals on X are compose the dual of X which is denoted by X'. Let $x' \in X'$ and $y \in Y$, then the map $x' \otimes y: X \to Y$ is defined by

$$(x' \otimes y)(x) = x'(x)y, x \in X.$$

A subcollection \Im of \mathcal{L} is called an operator ideal if every component $\Im(X, Y) = \Im \cap \mathcal{L}(X, Y)$ satisfies the following conditions:

i) if $x' \in X'$, $y \in Y$, then $x' \otimes y \in \mathfrak{I}(X, Y)$,

ii) if $S, T \in \mathfrak{I}(X, Y)$, then $S + T \in \mathfrak{I}(X, Y)$,

iii) if $S \in \mathfrak{I}(X, Y), T \in \mathcal{L}(X_0, X)$ and $R \in \mathcal{L}(Y, Y_0)$, then $RST \in \mathfrak{I}(X_0, Y_0)$ [2].

Let \mathfrak{I} be an operator ideal and $\alpha: \mathfrak{I} \to \mathbb{R}^+$ be a function on \mathfrak{I} . Then, if the following conditions satisfied:

i) If $x' \in X'$, $y \in Y$, then $\alpha(x' \otimes y) = ||x'|| ||y||$,

ii) there exists a constant $c \ge 1$ such that $\propto (S+T) \le c[\propto (S)+\propto (T)]$,

iii) if $S \in \mathfrak{I}(X, Y), T \in \mathcal{L}(X_0, X)$ and $R \in \mathcal{L}(Y, Y_0)$, then $\propto (RST) \le ||R|| \propto (S)||T||$

 α is called a quasi-norm on the operator ideal \Im [2].

For special case c = 1, \propto is a norm on the operator ideal \Im .

If \propto is a quasi-norm on an operator ideal \mathfrak{I} , it is denoted by $[\mathfrak{I}, \alpha]$. Also if every component $\mathfrak{I}(X, Y)$ is complete with respect to the quasinorm α , $[\mathfrak{I}, \alpha]$ is called a quasi-Banach operator ideal.

Let $[\mathfrak{I}, \alpha]$ be a quasi-normed operator ideal and $J \in \mathcal{L}(Y, Y_0)$ be a metric injection. If for every operator $T \in \mathcal{L}(X, Y)$ and $JT \in \mathfrak{I}(X, Y_0)$ we have $T \in \mathfrak{I}(X, Y)$ and $\alpha(JT) = \alpha(T)$, $[\mathfrak{I}, \alpha]$ is called an injective quasi-normed operator ideal. Furthermore, let $[\mathfrak{I}, \alpha]$ be a quasi-normed operator ideal and $Q \in \mathcal{L}(X_0, X)$ be a metric surjection. If for every operator $T \in \mathcal{L}(X, Y)$ and $\pi(TQ) = \alpha(T)$, $[\mathfrak{I}, \alpha]$ is called an $TQ \in \mathfrak{I}(X, Y_0)$ we have $T \in \mathfrak{I}(X, Y)$ and $\alpha(TQ) = \alpha(T)$, $[\mathfrak{I}, \alpha]$ is called an surjective quasi-normed operator ideal [2].

Let *T'* be the dual of *T*. An s-number sequence is called symmetric if $s_n(T) \ge s_n(T')$ for all $T \in \mathcal{L}$. If $s_n(T) = s_n(T')$ the s-number sequence is said to be completely symmetric [2].

For every operator ideal \Im , the dual operator ideal denoted by \Im' is defined as

 $\mathfrak{I}'(X,Y) = \{T \in \mathcal{L}(X,Y) \colon T' \in \mathfrak{I}(Y',X')\},\$

where T' is the dual of T and X' and Y' are the duals of X and Y, respectively.

An operator ideal \mathfrak{I} is called symmetric if $\mathfrak{I} \subset \mathfrak{I}'$ and is called completely symmetric if $\mathfrak{I} = \mathfrak{I}'[2]$.

Let $E = (E_n)$ be a partition of finite subsets of positive integers such that

$$maxE_n < maxE_{n+1}$$

for $n = 1, 2, \dots$ Foroutannia, in [16] defined the sequence space $l_p(E)$ as

$$l_p(E) = \left\{ x = (x_n) \in \omega : \sum_{n=1}^{\infty} \left| \sum_{j \in E_n} x_j \right|^p < \infty \right\},\,$$

where $(1 \le p < \infty)$ with the seminorm $|||x|||_{p,E}$ which defined in the following way:

$$|||x|||_{p,E} = \left(\sum_{n=1}^{\infty} \left|\sum_{j \in E_n} x_j\right|^p\right)^{\frac{1}{p}}$$

For example if $E_n = \{2n - 1, 2n\}$ for all *n*, then $x = (x_n) \in l_p(E)$ if and only if $\sum_{n=1}^{\infty} |x_{2n-1} + x_{2n}|^p < \infty$. It is obvious that $||| \cdot |||_{p,E}$ cannot be a norm, since if $x = (1, -1, 00, \cdots)$ and $E_n = \{2n - 1, 2n\}$ for all *n* then $|||x|||_{p,E} = 0$ while $x \neq \theta$. In the special case $E_n = \{n\}$ for $n = 1, 2, \cdots$, we have $l_p(E) = l_p$ and $|||x|||_{p,E} = ||x||_p$.

For more information about block sequence spaces we refer to [17], [18].

2. MAIN RESULTS

Let $u = (u_n)$ and $v = (v_n)$ be positive real number sequences. In this section we give the definition of the sequence space $X(u, v; l_p(E))$ as follows:

$$X(u,v;l_p(E)) = \left\{ x \in \omega : \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j x_j(T) \right)^p < \infty \right\}$$

An operator $T \in \mathcal{L}(X, Y)$ is in the class of $L_{u,v;E}(X, Y)$ if

$$\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(T) \right)^p < \infty, \quad (1 \le p < \infty)$$

The class of all s-type $X(u, v; l_p(E))$ operators are denoted by $L_{u,v;E}$.

Theorem 1. The class $L_{u,v;E}$ is an operator ideal for $1 \le p < \infty$ where $v_{2k-1} + v_{2k} \le Mv_k$, (M > 0) and $\sum_{n=1}^{\infty} (u_n)^p < \infty$.

Proof.

$$\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(x' \otimes y) \right)^p = (u_1 v_1 s_1(x' \otimes y))^p$$
$$= u_1^p v_1^p ||x' \otimes y||^p$$
$$= u_1^p v_1^p ||x'||^p ||y||^p < \infty$$

Since the rank of the operator $x' \otimes y$ is one, $s_n(x' \otimes y) = 0$ for $n \ge 2$. Therefore $x' \otimes y \in L_{u,v;E}$.

Let $S, T \in L_{u,v;E}$. Then

$$\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(S) \right)^p < \infty, \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(T) \right)^p < \infty$$

To show that $S + T \in L_{u,v;E}(X, Y)$, we begin with

$$\begin{split} \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j (S+T) \right)^p \\ &\leq \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_{2j-1} s_{2j-1} (S+T) \right. \\ &+ u_n \sum_{j \in E_n} v_{2j} s_{2j} (S+T) \right)^p \\ &\leq \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} (v_{2j-1} \\ &+ v_{2j}) s_{2j-1} (S+T) \right)^p \\ &\leq \sum_{n=1}^{\infty} \left(M u_n \sum_{j \in E_n} v_j (s_j (S) + s_j (T)) \right)^p \end{split}$$

By using Minkowski inequality;

$$\begin{split} \left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j (S+T)\right)^p\right)^{\frac{1}{p}} \\ &\leq M \left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j (S)\right)^p\right)^{\frac{1}{p}} \\ &+ M \left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j (T)\right)^p\right)^{\frac{1}{p}} < \infty \end{split}$$

Hence $S + T \in L_{u,v;E}(X,Y)$.

Let $R \in \mathcal{L}(Y, Y_0)$, $S \in L_{u,v;E}(X, Y)$ and $T \in \mathcal{L}(X_0, X)$

$$\begin{split} \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(RST) \right)^p &\leq \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} \|R\| \|T\| v_j s_j(S) \right)^p \\ &\leq \|R\|^p \|T\|^p \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(S) \right)^p < \infty \end{split}$$

So $RST \in L_{u,v;E}(X_0, Y_0)$.

Therefore $L_{u,v;E}$ is an operator ideal.

Theorem 2. $||T||_{u,v;E} = \frac{\left(\sum_{n=1}^{\infty} (u_n \sum_{j \in E_n} v_j s_j(T))^p\right)^{\frac{1}{p}}}{u_1 v_1}$ is a quasi-norm on the operator ideal $L_{u,v;E}$.

Proof.

$$\frac{\left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(x' \otimes y)\right)^p\right)^{\frac{1}{p}}}{u_1 v_1} = \frac{\left(u_1^p v_1^p \|x' \otimes y\|^p\right)^{\frac{1}{p}}}{u_1 v_1} = \|x' \otimes y\| = \|x'\|\|y\|.$$

Since rank of the operator $x' \otimes y$ is one, $s_n(x' \otimes y) = 0$ for $n \ge 2$. Therefore $\|x' \otimes y\|_{u,v;E} = \|x'\| \|y\|$.

Let $S, T \in L_{u,v;E}$. Then

$$\begin{split} \sum_{j \in E_n} v_j s_j (S+T) &\leq \sum_{j \in E_n} v_{2j-1} s_{2j-1} (S+T) + \sum_{j \in E_n} v_{2j} s_{2j} (S+T) \\ &\leq \sum_{j \in E_n} (v_{2j-1} + v_{2j}) s_{2j-1} (S+T) \\ &\leq M \sum_{j \in E_n} v_j \big(s_j (S) + s_j (T) \big) \end{split}$$

By using Minkowski inequality;

$$\begin{split} \left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j (S+T)\right)^p\right) \\ &\leq M \left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j (S)\right)^p\right)^{\frac{1}{p}} \\ &+ M \left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j (T)\right)^p\right)^{\frac{1}{p}} < \infty \end{split}$$

Hence $||S + T||_{u,v;E} \le M(||S||_{u,v;E} + ||T||_{u,v;E}).$

Let $R \in \mathcal{L}(Y, Y_0)$, $S \in L_{u,v;E}(X, Y)$ and $T \in \mathcal{L}(X_0, X)$

$$\begin{split} \left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(RST)\right)^p\right)^{\frac{1}{p}} \\ &\leq \left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} \|R\| \|T\| v_j s_j(S)\right)^p\right)^{\frac{1}{p}} \\ &\leq \|R\| \|T\| \left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(S)\right)^p\right)^{\frac{1}{p}} < \infty \end{split}$$

Hence

$$\|RST\|_{u,v;E} \le \|R\| \|T\| \|S\|_{u,v;E}.$$

Therefore $||T||_{u,v;E}$ is a quasi-norm on $L_{u,v;E}$.

Theorem 3. Let $1 \le p < \infty$. $[L_{u,v;E}, ||T||_{u,v;E}]$ is a quasi-Banach operator ideal.

Proof: Let X, Y be any two Banach spaces and $1 \le p < \infty$. The following inequality holds

$$\|T\|_{u,v;E} = \frac{\left(\sum_{n=1}^{\infty} (u_n \sum_{j \in E_n} v_j s_j(T))^p\right)^{\frac{1}{p}}}{u_1 v_1} \ge \|T\|$$

for $T \in L_{u,v;E}$.

Let (T_m) be a Cauchy in $L_{u,v;E}(X,Y)$. Then for every $\varepsilon > 0$ there exists $n_0 \in \mathbb{N}$ such that

$$\|T_m - T_l\|_{u,v;E} < \varepsilon \tag{2.1}$$

For all $m, l \ge n_0$. It follows that

$$\|T_m - T_l\| \le \|T_m - T_l\|_{u,v;E} < \varepsilon.$$

Then (T_m) is a Cauchy sequence in $\mathcal{L}(X, Y)$. $\mathcal{L}(X, Y)$ is a Banach space since Y is a Banach space. Therefore $||T_m - T|| \to 0$ as $m \to \infty$ for $T \in \mathcal{L}(X, Y)$. Now we show that $||T_m - T||_{u,v;E} \to 0$ as $m \to \infty$ for $T \in L_{u,v;E}(X, Y)$.

The operators $T_l - T_m, T - T_m$ are in the class $\mathcal{L}(X, Y)$ for $T_m, T_l, T \in \mathcal{L}(X, Y)$.

$$|s_n(T_l - T_m) - s_n(T - T_m)| \le ||T_l - T_m - (T - T_m)||$$

= ||T_l - T||

Since $T_l \to T$ as $l \to \infty$ that is $||T_l - T|| < \varepsilon$ we obtain

$$s_n(T_l - T_m) \to s_n(T - T_m) \text{ as } l \to \infty.$$
 (2.2)

It follows from (2.1) that the statement

$$\|T_m - T_l\|_{u,v;E} = \frac{\left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j (T_m - T_l)\right)^p\right)^{\frac{1}{p}}}{u_1 v_1} < \varepsilon$$

holds for all $m, l \ge n_0$. We obtain from (2.2) that

$$\frac{\left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j (T_m - T)\right)^p\right)^{\frac{1}{p}}}{u_1 v_1} < \varepsilon \text{ as } l \to \infty.$$

Hence we have $||T_m - T||_{u,v;E} < \varepsilon$ for all $m \ge n_0$.

Finally we show that $T \in L_{u,v;E}(X,Y)$,

$$\begin{split} \sum_{n=1}^{\infty} & \left(u_n \sum_{j \in E_n} v_j s_j(T) \right)^p \\ & \leq \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_{2j-1} s_{2j-1}(T) \\ & + u_n \sum_{j \in E_n} v_{2j} s_{2j}(T) \right)^p \\ & \leq \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} (v_{2j-1} \\ & + v_{2j}) s_{2j-1}(T - T_m + T_m) \right)^p \\ & \leq M \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j (s_j(T - T_m) + s_j(T_m)) \right)^p \end{split}$$

By using Minkowski inequality; since $T_m \in L_{u,v;E}(X,Y)$ for all m and $||T_m - T||_{u,v;E} \to 0$ as $m \to \infty$, we have

$$M\left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j \left(s_j (T - T_m) + s_j (T_m)\right)\right)^p\right)^{\frac{1}{p}}$$
$$\leq M\left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j \left(s_j (T - T_m)\right)\right)^p\right)^{\frac{1}{p}}$$
$$+ M\left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j \left(s_j (T_m)\right)\right)^p\right)^{\frac{1}{p}} < \infty$$

which means that $\in L_{u,v;E}(X, Y)$.

Proposition 1. The inclusion $L^p_{u,v;E} \subseteq L^q_{u,v,E}$ holds for 1 .

Proof: Since $l_p \subseteq l_q$ for $1 we have <math>L^p_{u,v;E} \subseteq L^q_{u,v,E}$.

Let $\mu = (\mu_n(T))$ be one of the sequences $a = (a_n(T))$, $c = (c_n(T))$, $d = (d_n(T))$, $x = (x_n(T))$, $y = (y_n(T))$ and $h = (h_n(T))$. Then we define the space $L_{u,v;E}^{(\mu)}$ and the norm $||T||_{u,v;E}^{(\mu)}$ as follows:

$$L_{u,v;E}^{(\mu)}(X,Y) = \left\{ T \in \mathcal{L}(X,Y) \colon \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j (\mu_j(T)) \right)^p < \infty \right\},$$
$$(1$$

and

$$||T||_{u,v,E}^{(\mu)} = \frac{\left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j \mu_j(T)\right)^p\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty} (u_n)^p\right)^{\frac{1}{p}} v_1}.$$

Theorem 4. Let $1 . The quasi-Banach operator ideal <math>[L_{u,v,E}^{(s)}, ||T||_{u,v,E}^{(s)}]$ is injective, if snumber sequence is injective.

Proof. Let $1 and <math>T \in \mathcal{L}(X, Y)$ and $I \in \mathcal{L}(Y, Y_0)$ be any metric injection. Suppose that $IT \in L_{u,v,E}^{(s)}(X, Y_0)$. Then

$$\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j (lT) \right)^p < \infty$$

Since $s = (s_n)$ is injective, we have

$$s_n(T) = s_n(IT)$$
 for all $T \in \mathcal{L}(X, Y), n = 1, 2,$
(2.3)

Hence we get

$$\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(T) \right)^p = \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(IT) \right)^p < \infty$$

Thus $T \in L_{u,v,E}^{(s)}(X, Y)$ and we have from (2.3)

$$\|IT\|_{u,v,E}^{(s)} = \frac{\left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(IT)\right)^p\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty} (u_n)^p\right)^{\frac{1}{p}} v_1}$$
$$= \frac{\left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(T)\right)^p\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty} (u_n)^p\right)^{\frac{1}{p}} v_1} = \|T\|_{u,v,E}^{(s)}$$

Hence the operator ideal $\left[L_{u,v,E}^{(s)}, \|T\|_{u,v,E}^{(s)}\right]$ is injective.

Corollary 1. Since the number sequences $(c_n(T))$ and $(x_n(T))$ are injective, the quasi-

Banach operator ideals $\begin{bmatrix} L_{u,v,E}^{(c)}, \|T\|_{u,v,E}^{(c)} \end{bmatrix}$ and $\begin{bmatrix} L_{u,v,E}^{(x)}, \|T\|_{u,v,E}^{(x)} \end{bmatrix}$ are injective [3].

Theorem 5. Let $1 . The quasi-Banach operator ideal <math>[L_{u,v,E}^{(s)}, ||T||_{u,v,E}^{(s)}]$ is surjective, if s-number sequence is surjective.

Proof. Let $1 and <math>T \in \mathcal{L}(X, Y)$ and $S \in \mathcal{L}(X_0, X)$ be any metric injection. Suppose that $TS \in L_{u,v,E}^{(s)}(X_0, Y)$. Then

$$\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(TS) \right)^p < \infty.$$

Since $s = (s_n)$ is surjective, we have

$$s_n(T) = s_n(TS)$$
 for all $T \in \mathcal{L}(X, Y), n = 1, 2,$
(2.4)

Hence we get

$$\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(T) \right)^p = \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(TS) \right)^p < \infty.$$

Thus $T \in L_{u,v,E}^{(s)}(X, Y)$ and we have from (2.4)

$$\begin{split} \|TS\|_{u,v,E}^{(s)} &= \frac{\left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(TS)\right)^p\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty} (u_n)^p\right)^{\frac{1}{p}} v_1} \\ &= \frac{\left(\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(T)\right)^p\right)^{\frac{1}{p}}}{\left(\sum_{n=1}^{\infty} (u_n)^p\right)^{\frac{1}{p}} v_1} = \|T\|_{u,v,E}^{(s)}. \end{split}$$

Hence the operator ideal $\left[L_{u,v,E}^{(s)}, \|T\|_{u,v,E}^{(s)}\right]$ is surjective.

Corollary 2. Since the number sequences $(d_n(T))$ and $(y_n(T))$ are surjective, the quasi-Banach operator ideals $\left[L_{u,v,E}^{(d)} ||T||_{u,v,E}^{(d)}\right]$ and $\left[L_{u,v,E}^{(y)}, ||T||_{u,v,E}^{(y)}\right]$ are surjective [3]. **Theorem 6.** Let 1 . Then the following inclusion relations hold:

i.
$$L_{u,v,E}^{(a)} \subseteq L_{u,v,E}^{(c)} \subseteq L_{u,v,E}^{(x)} \subseteq L_{u,v,E}^{(h)}$$

ii. $L_{u,v,E}^{(a)} \subseteq L_{u,v,E}^{(d)} \subseteq L_{u,v,E}^{(y)} \subseteq L_{u,v,E}^{(h)}$.

Proof. Let $T \in L_{u,v,E}^{(a)}$. Then

$$\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j s_j(T) \right)^p < \infty$$

where 1 . And from Proposition 3, we have;

$$\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j h_j(T) \right)^p \leq \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j x_j(T) \right)^p$$
$$\leq \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j c_j(T) \right)^p$$
$$\leq \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j a_j(T) \right)^p$$
$$< \infty$$

and

$$\begin{split} \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j h_j(T) \right)^p &\leq \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j y_j(T) \right)^p \\ &\leq \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j d_j(T) \right)^p \\ &\leq \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j a_j(T) \right)^p \\ &< \infty. \end{split}$$

So it is shown that the inclusion relations are satisfied.

Theorem 7. The operator ideal $L_{u,v,E}^{(a)}$ is symmetric and the operator ideal $L_{u,v,E}^{(h)}$ is completely symmetric for 1 .

Proof. Let 1 .

Firstly, we prove that the inclusion $L_{u,v,E}^{(a)} \subseteq \left(L_{u,v,E}^{(a)}\right)'$ holds. Let $T \in L_{u,v,E}^{(a)}$. Then

$$\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j a_j(T) \right)^p < \infty$$

It follows from [2] $a_n(T') \le a_n(T)$ for $T \in \mathcal{L}$. Hence we get

$$\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j a_j(T') \right)^p \leq \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j a_j(T) \right)^p < \infty.$$

Therefore $T \in (L_{u,v,E}^{(a)})'$. Thus $L_{u,v,E}^{(a)}$ is symmetric.

Now we prove that the equation $L_{u,v,E}^{(h)} = (L_{u,v,E}^{(h)})'$ holds. It follows from [3] that $h_n(T') = h_n(T)$ for $T \in \mathcal{L}$. Then we can write

$$\sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j h_j(T') \right)^p = \sum_{n=1}^{\infty} \left(u_n \sum_{j \in E_n} v_j h_j(T) \right)^p.$$

Hence $L_{u,v,E}^{(h)}$ is completely symmetric.

Theorem 8 Let $1 . The equation <math>L_{u,v,E}^{(c)} = (L_{u,v,E}^{(d)})'$ and the inclusion relation $L_{u,v,E}^{(d)} \subseteq (L_{u,v,E}^{(c)})'$ holds. Also, the equation $L_{u,v,E}^{(d)} = (L_{u,v,E}^{(c)})'$ holds for any compact operators.

Proof. Let $1 . For <math>T \in \mathcal{L}$ we have from [3] that $c_n(T) = d_n(T')$ and $c_n(T') \le d_n(T)$. Also, if *T* is a compact operator, then the equality $c_n(T') = d_n(T)$ holds. Thus the proof is clear.

Theorem 9 $L_{u,v,E}^{(x)} = \left(L_{u,v,E}^{(y)}\right)'$ and $L_{u,v,E}^{(y)} = \left(L_{u,v,E}^{(x)}\right)'$ hold.

Proof. Let $1 . For <math>T \in \mathcal{L}$ we have from [3] that $x_n(T) = y_n(T')$ and $y_n(T) = x_n(T')$. Thus the proof is clear.

3. REFERENCES

[1] A. Pietsch, "s-Numbers of operators in Banach spaces," Studia Mathematica, vol. 51, no. 3, pp. 201-223,1974.

[2] A. Pietsch, "Operator Ideals," VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.

[3] A. Pietsch, "Eigenvalues and s-numbers," Cambridge University Press, New York, 1986.

[4] A. Maji, P.D. Srivastava, "On operator ideals using weighted Cesàro sequence space," Journal of the Egyptian Mathematical Society, vol. 22, no. 3, pp. 446-452, 2014.

[5] B. Carl, A. Hinrichs, "On s-numbers and Weyl inequalities of operators in Banach spaces," Bulletin of the London Mathematical Society, vol. 41, no. 2, pp. 332-340, 2009.

[6] A. Pietsch, "Einigie neu Klassen von Kompakten linearen Abbildungen," Romanian Journal of Pure and Applied Mathematics , vol. 8, pp. 427-447, 1963.

[7] J. Burgoyne, "Denseness of the generalized eigenvectors of a discrete operator in a Banach space," Journal of Operator Theory,vol.33, pp. 279-297, 1995.

[8] S. Saejung, "Another look at Cesaro sequence spaces," Journal of Mathematical Analysis and Applications, vol. 366, no. 2, pp. 530–537, 2010.

[9] J. S. Shiue, "On the Cesaro sequence spaces," Tamkang Journal of Mathematics, vol. 1, no. 1, pp. 19–25, 1970.

[10] N. Şimşek, V. Karakaya, H. Polat, "Operators ideals of generalized modular spaces of Cesaro type defined by weighted means," Journal of Computational Analysis and Applications, vol. 19, no. 1, pp. 804-811, 2015.

[11] G. Constantin "Operators of ces-p-type," Atti Della Academia Nazionale dei Lincei Rendiconticlasse di Scienze Fisiche-Mathematiche & Naturali, vol. 52, no. 6, pp.875-878, 1973. [12] N. Tita, "On Stolz mappings," Mathematica Japonica, vol. 26, no. 4, pp. 495–496, 1981.

[13] E. E. Kara, M. İlkhan, "On a new class of stype operators," Konuralp Journal of Mathematics, vol. 3, no. 1, pp. 1-11, 2015.

[14] A. Maji, P.D. Srivastava, "Some class of operator ideals," International Journal of Pure and Applied Mathematics, vol. 83, no. 5, pp. 731-740, 2013.

[15] A. Maji, P.D. Srivastava, "Some results of operator ideals on s –type |A, p| operators," Tamkang Journal of Mathematics, vol. 45, no. 2, pp. 119-136, 2014.

[16] D. Foroutannia, "On the block sequence space lp (E) and related matrix transformations," Turkish Journal of Mathematics, vol. 39, pp. 830-841, 2015.

[17] H Roopaei, D Foroutannia, "The norm of certain matrix operators on new difference sequence spaces," Jordan Journal of Mathematics and Statistics, vol. 8, no. 3, pp. 223 - 237, 2015.

[18] H. Roopaei, D Foroutannia, "A new sequence space and norm of certain matrix operators on this space," Sahand Communications in Mathematical Analysis (SCMA), vol. 3, no. 1, pp. 1-12, 2016.