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SEMI-PARALLEL MERIDIAN SURFACES IN E*
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ABSTRACT. In the present article we study a special class of surfaces in the
four-dimensional Euclidean space, which are one-parameter systems of meridi-
ans of the standard rotational hypersurface. They are called meridian surfaces.
We classify semi-parallel meridian surfaces in 4-dimensional Euclidean space
E*.

1. INTRODUCTION

Let M be a submanifold of a n-dimensional Euclidean space E™. Denote by R
the curvature tensor of the Vander Waerden-Bortoletti connection V of M and by
h the second fundamental form of M in E™. The submanifold M is called semi-
parallel (or semi-symmetric [15]) if R-h = 0 [6]. This notion is an extrinsic analogue
for semi-symmetric spaces, i.e. Riemannian manifolds for which R- R = 0 and a
direct generalization of parallel submanifolds, i.e. submanifolds for which VA = 0.
In [6] J. Deprez showed the fact that the submanifold M C E™ is semi-parallel
implies that (M, g) is semi-symmetric. For references on semi-symmetric spaces,
see [18]; for references on parallel immersions, see [8]. In [6] J. Deprez gave a local
classification of semi-parallel hypersurfaces in Euclidean n-space E™.

Recently, the present authors considered the Wintgen ideal surfaces in Euclidean
n-space E™. They showed that Wintgen ideal surfaces in E" satisfying the semi-
parallelity condition

(1.1) R(X,Y) - h=0

are of flat normal connection [1]. Further, the same authors in [2] proved that
the tensor product surfaces in E* satisfying the semi-parallelity condition (1.1) are
totally umbilical.

In [13] Ganchev and Milousheva constructed special two dimensional surfaces
which are one-parameter of meridians of the rotation hypersurfaces in E* and called
these surfaces meridian surfaces. The geometric construction of the meridian sur-
faces is different from the construction of the standard rotational surfaces with two
dimensional axis in E* [9]. The same authors classified the meridian surfaces with
constant Gauss curvature (K # 0) and constant mean curvature H [13]. Recently,
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meridian surfaces with 1-type Gauss map were characterized by the present authors
and Milousheva in [3]. Further, meridian surfaces were studied in [10] as surfaces
in Minkowski 4-space. For more details see also [11], [12] and [17].

In the present study we consider the meridian surfaces in 4-dimensional Eu-
clidean space E*. We give a classification of this surfaces satisfying the semi-
parallelity condition (1.1).

2. Basic CONCEPTS

Let M be a smooth surface in n-dimensional Euclidean space E™ given with the
surface patch X (u,v) : (u,v) € D C E2. The tangent space to M at an arbitrary
point p = X (u,v) of M span {X,, X,}. In the chart (u,v) the coefficients of the
first fundamental form of M are given by

(2.1) E=(Xy,Xu),F=(Xy,,Xy),G= (X, Xy),

where (,) is the Euclidean inner product. We assume that W2 = EG — F? # 0, i.e.
the surface patch X (u,v) is regular. For each p € M, consider the decomposition
T,E" = T,M @ T;-M where T;-M is the orthogonal component of the tangent
plane T, M in E", that is the normal space of M at p.

Let x(M) and x-(M) be the space of the smooth vector fields tangent and
normal to M respectively. Denote by V and V the Levi-Civita connections on M
and E", respectively. Given any vector fields X; and X; tangent to M consider the
second fundamental map h : x(M) x x(M) — x*(M);

(2.2) WXi, X;) = Vx,X; = Vx, Xj5 1<, j <2

For any normal vector field N,, 1 < a <n — 2, of M, recall the shape operator
A x (M) x x(M) = x(M);
(2.3) An X =-Vn.Xi+ Dx,Ny; 1<i<2.

where D denotes the normal connection of M in E™ [4]. This operator is bilinear,
self-adjoint and satisfies the following equation:

(2.4) (AN, X, X;) = (h(Xi, Xj), Na), 1 <id,5 <2.
The equation (2.2) is called Gaussian formula, and
n—2
(2.5) h(Xi,X;) =Y h&iNe, 1<ij<2
a=1
where hg; are the coefficients of the second fundamental form h [4]. If h = 0
then M is called totally geodesic. M is totally umbilical if all shape operators are
proportional to the identity map. M is an isotropic surface if for each p in M,
[Ih(X,X)] is independent of the choice of a unit vector X in T, M.
If we define a covariant differentiation VA of the second fundamental form A on
the direct sum of the tangent bundle and normal bundle TM & T+M of M by

(2.6)  (Vx,h)(X;, Xy) = Dx, WX, Xi) — M(Vx, Xj, Xi) — M(X;, Vx, Xi),

for any vector fields X;,X;, X}, tangent to M, then we have the Codazzi equation
(2.7) (Vx.h) (X, Xi) = (Vx,;1)(Xi, Xi),

where V is called the Vander Waerden-Bortoletti connection of M [4].
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We denote by R and R* the curvature tensors associated with V and D respec-
tively;

(2.8) R(X:, Xj)Xx = Vx,Vx; Xk — Vx,Vx, X — Vix, x,;1 Xk,
(2.9) RH(X:, X;)Na = h(X;, Ay, X;) — WX, An, X0).
The equations of Gauss and Ricci are given respectively by

(2.10)  (R(Xi, X)X, Xp) = (h(Xi, Xi), h( X, X)) — (M(Xs, X)), h( X, X)),

(2.11) (RH(Xi, X;)Na, Ng) = ([An,, An,) X X;)

for the vector fields X;, X;, X tangent to M and N,, Ng normal to M [4].
Let us X; A X denote the endomorphism X, — (X, Xp) Xi— (Xi, Xi) Xj.
Then the curvature tensor R of M is given by the equation

n—2
(2.12) R(X:, X;)Xx = Y (AN, Xi A An, X;) X
a=1
It is easy to show that
(2.13) R(X;, X)) Xk = K (Xi N X;) Xk,
where K is the Gaussian curvature of M defined by
(2.14) K = {(h(X1, X1), h(Xa, X2)) = (X1, o)
(see [14]).
The normal curvature Ky of M is defined by (see [5])
. 1/2
2
(2.15) Ky =3¢ > (R“(X1,X3)Na, Np)
l=a<p

We observe that the normal connection D of M is flat if and only if Ky = 0,
and by a result of Cartan, this is equivalent to the diagonalisability of all shape
operators Ay, of M, which means that M is a totally umbilical surface in E".

3. SEMI-PARALLEL SURFACES

Let M be a smooth surface in n-dimensional Euclidean space E™. Let V be the
connection of Vander Waerden-Bortoletti of M. The product tensor R - h of the
curvature tensor R with the second fundamental form h is defined by

(R(Xi, X5) - h)(Xg, X1) = Vx,(Vx;h( Xk, X1)) = Vi, (Vx, (X, X))

_V[Xi,Xj]h(XkH Xl))

for all X;, X;, Xi, X tangent to M.
The surface M is said to be semi-parallel if R-h = 0, i.e. R(X;, X;)-h =0 ([15],
[6], [7], [16]). It is easy to see that

(31) (R(XZ7X]) h)(kaxl) = RL(XlaX])h(XkHXl)
-h(R(Xi, X5)Xp, X1)-h(Xp, R(X;, X;)X)).
This notion is an extrinsic analogue for semi-symmetric spaces, i.e. Riemannian

manifolds for which R- R = 0 and a generalization of parallel surfaces, i.e. Vi =0
[8].
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Substituting (2.5) and (2.4) into (2.9) we get
(3.2)  RY(X1, Xo)Na = hS (h(X1, X1) — h(Xa, Xa) + (A — h%)h(X1, Xa).
Further, by the use of (2.13) we get
(3.3) R(X1, X2) X1 = —K Xo, R(X1, X2)Xs = K X,.
So, substituting (3.2) and (3.3) into (3.1) we obtain

(R(X1, X2) - h)(X1, X1) = <an h$y (hgy — h$y) + 2K> h(X1, Xo)
+an Wy hSy (R(X 1, X1) — h(X2, X)),
(34) (R(X1,X2) - h)(X1, X2) = <anh‘fz( 22 — h‘ﬁ)) (X1, X2)
+(anh§’z 12~ ) (A(X1, X1)-h(X2, X2)),
(R(X1, X2) - h)(X2, Xa) = <an hgy(hgy — h$y) — 2K> h(X1, Xo)

n—2
+ D MGy (h(X1, X1) — h(Xa, X3)).
a=1

Semi-parallel surfaces in E™ are classified by J. Deprez [6]:

Theorem 3.1. [6] Let M a surface in n-dimensional Fuclidean space E™. Then M
is semi-parallel if and only if locally;

i) M is equivalent to a 2-sphere, or

ii) M has trivial normal connection, or

iii) M is an isotropic surface in B> C E™ satisfying |H|” = 3K.

4. MERIDIAN SURFACES IN E4

In the following sections, we will consider the meridian surfaces in E* which
were first defined by Ganchev and Milousheva [9]. The meridian surfaces are one-
parameter systems of meridians of the standard rotational hypersurface in E*.

Let {e1, e, e3,e4} be the standard orthonormal frame in E*, and S?(1) be a 2-
dimensional sphere in E3 = span{ey, 2, e3}, centered at the origin O. We consider
a smooth curve C' : 7 = r(v), v € J, J C R on S%(1), parameterized by the arc-
length (||()2(v)|| = 1). We denote ¢ = 7' and consider the moving frame field
{t(v),n(v),r(v)} of the curve C on S?(1). With respect to this orthonormal frame
field the following Frenet formulas hold good:

r =1t
(4.1) ' =kn-—r;
n = —kt,

where x is the spherical curvature of C.
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Let f = f(u), g = g(u) be smooth functions, defined in an interval I C R, such
that

(4.2) (f)?(u) + (¢)*(u) =1, uel.

In [9] Ganchev and Milousheva constructed a surface M2 in E* in the following
way:

(4.3) M?: X(u,v) = f(u)r(v) +g(u)es, uwel, vel

The surface M? lies on the rotational hypersurface M? in E* obtained by the
rotation of the meridian curve o : u — (f(u),g(u)) around the Oey-axis in E*.
Since M? consists of meridians of M3, we call M? a meridian surface [9]. We
denote by k, the curvature of meridian curve «, i.e.,

1
4.4 ko = fl(u)g" (u) — f"(u uzi_f(u) .
(4.4) fu)g" (w) — 7 (u)g(u) ()

We consider the following orthonormal moving frame fields, X7, X5, N1, Ny on
the meridian surface M?2 such that X, Xy are tangent to M? and N;, Ny are normal

to M2. The tangent space of M? is spanned by the vector fields:

_ 98X _ 19X
X1=%0 Xe=35%
(4.5)
Ny =n(v), Nz=—g'(u)r(v)+ f'(u)es.
By a direct computation we have the components of the second fundamental
forms as;

h%l = h%? = h%l =0, h%Z = %7

hiy = ko hiy=h3; =0, h3,= 97~

Therefore the shape operator matrices of M? are of the form

(4.6)

0 0 Ko O
N )
and hence we have

K = K“}_g,7
(4.8) Ky =0,

which implies that the meridian surface M2 is totally umbilical surface in E*.

In [13] Ganchev and Milousheva constructed three main classes of meridian sur-
faces:

I. k = 0; i.e. the curve C is a great circle on S?(1). In this case Ny = const.
and M? is a planar surface lying in the constant 3-dimensional space spanned by
{X1, X2, No}. Particularly, if in addition x, = 0, i.e. the meridian curve is a part of
a straight line, then M? is a developable surface in the 3-dimensional space spanned
by {Xl, XQ, NQ}

II. ko = 0, i.e. the meridian curve is a part of a straight line. In such a case M?
is a developable ruled surface. If in addition xk = const., i.e. C is a circle on S?(1),
then M? is a developable ruled surface in a 3-dimensional space. If k # const.,i.e.
C is not a circle on S2?(1), then M? is a developable ruled surface in E*.
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L. kak # 0, ie. C is not a circle on S%(1) and « is not a straight line. In
this general case the parametric lines of M? given by (4.3) are orthogonal and
asymptotic.

We prove the following Theorem.

Theorem 4.1. Let M? be a meridian surface in E* given with the parametrization
(4.3). Then M? is semi-parallel if and only if one of the following holds:

i) M? is a developable ruled surface in E3 or E4,

ii) the curve C is a circle on S?(1) with non-zero constant spherical curvature
and the meridian curve is determined by

fu) = £V u? — 2au + 2b; g(u):—\/Qb—a21n<u—a—\/u2—2au—|—2b),

where a = const,b = const. In this case M? is a planar surface lying in 3-
dimensional space spanned by { X1, Xo, No}.

Proof. Let M? be a meridian surface in E* given with the parametrization (4.3).
Then by the use of (2.5) with (4.6) we see that

(4.9) h(X1,Xs) = 0,

h(X1, X1) — h(Xa, Xa) = —?Nl T </<;a - ?) Ny.

Further, substituting (4.9) and (4.6) into (3.4) and after some computation one can
get

(R(X1,X2) - h)(X1,X1) = 0,
(R(X1,X2) - h)(X1,Xa2) = —-K (—’;Nl + (;-;a - i”) N2> :
(R(X1, X2) - h)(X2, X2) = 0.

Suppose that M? is semi-parallel. Then by definition

(R(X17X2) . h)(XZ,XJ) = O? 1 S 27.] S 27

is satisfied. So, we get

K (—;N1 + (;m — ?) N2> — 0.

Hence, two possible cases occur: K =0 or k =0 and ko — 97/ = 0. For the first case

ke = 0, i.e. the meridian curve is a part of a straight line. In such a case M? is
a developable ruled surface given in the Case II. For the second case k = 0 means

that the curve c is a great circle on S?(1). In this case M? lies in the 3-dimensional

space spanned by {X;, Xa, No}. Further, using (4.4) the equation ks — gT/ =0 can

be rewritten in the form

which has the solution
(4.10) fu) = £vu? — 2au + 2b.
Consequently, by substituting (4.10) into (4.2) one can get

o) = ~V2b—ln (u—a— v —20u+ ).

This completes the proof of the theorem. O
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