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EINSTEIN MANIFOLDS AS AFFINE HYPERSURFACES

BANG-YEN CHEN

(Communicated by Kazım İLARSLAN)

Abstract. In this article we study Einstein manifolds which can be realized

either as centroaffine hypersurfaces or as graph hypersurfaces in some affine
space. We establish general inequalities for such affine hypersurfaces. We also

study Einstein centroaffine and graph hypersurfaces which satisfy the equality

case of the inequalities. As immediate applications we give some non-existence
results. Furthermore, we provide some examples to show that our inequalities

are sharp.

1. Introduction.

A hypersurface φ : M → Rn+1 is called centroaffine if the position vector is
always transversal to φ∗(TM) in Rn+1. In this case, for any vector fields X,Y
tangent to M , one can decompose DXφ∗(Y ) into its tangential and transverse
components. This is written as

(1.1) DXf∗(Y ) = φ∗(∇XY ) + h(X,Y )ξ,

where h is a symmetric tensor of type (0, 2) and the affine normal ξ is given by
−φ. In this article, we assume that h is non-degenerate, so it defines a Riemannian
metric on M , called the affine metric.

A Riemannian manifold (M, g) is called Einstein if its Ricci tensor Ric is pro-
portional to its metric tensor so that Ric = cg for some constant c. An Einstein
manifold M is said to be realized as an affine hypersurface if there exists a codi-
mension one affine immersion from M into some affine space such that the induced
affine metric is exactly the Einstein metric on M (cf. [7, page 333]). We simply
call such a hypersurface an Einstein affine hypersurface.

An affine hypersurface φ : M → Rn+1 is called a graph hypersurface if the affine
normal ξ is a constant transversal vector field. A result of [13] states that locally
M is affine equivalent to the graph immersion of a certain function F . For a graph
hypersurface we also have the decomposition (1.1). Again we assume that h is
non-degenerate, so it defines a Riemannian metric.

For an immersed hypersurface φ : M → Rn+1 in an affine (n + 1)-space Rn+1,
a transverse vector field ξ is said to be equiaffine if Dξ has its image in φ∗TpM ,
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where D is the canonical flat connection on Rn+1. With an equiaffine transversal
vector field ξ, one has an equiaffine structure (∇, θ) with ∇θ = 0, where θ is the
induced volume element (cf. [14, pp. 31-32]). An equiaffine transversal vector field
is sometimes called a relative normalization. Obviously, the transversal vector field
ξ of a centroaffine or a graph hypersurface is equiaffine.

Let ∇̂ denote the Levi-Civita connection of h and let K be the difference tensor
∇− ∇̂ on M . Then, for each X ∈ TpM ,

KX : Y 7→ K(X,Y )

is an endomorphism of TpM . By taking the trace of K, one obtains a so-called
Tchebychev form

(1.2) T (X) :=
1

n
trace {Y → K(X,Y ) }.

The Tchebychev vector field T# can then be defined by h(T#, X) = T (X).
The Tchebychev form and Tchebychev vector field play an important role in

centroaffine differential geometry, see for instance [3, 4, 15, 17]. In particular,
some general optimal inequalities involving Tchebychev vector field for graph and
centroaffine hypersurfaces have been discovered in [3, 4, 9]. A survey of global
properties of affine hyperspheres can be found in [12]. An interesting local result
on affine hyperspheres is given in [18].

For a Riemannian n-manifold (M, g) with Levi-Civita connection ∇, É. Cartan
and A. P. Norden studied non-degenerate affine immersions f : (M,∇) → Rn+1

with a transversal field ξ and with ∇ as its induced affine connection. The well-
known Cartan-Norden theorem states that if f is a such affine immersion, then
either ∇ is flat and f is a graph immersion or ∇ is not flat and Rn+1 admits a
parallel Riemannian metric relative to which f is an isometric immersion and ξ is
perpendicular to f(M) (cf. for instance, [14, p. 159]).

In this article, we study Riemannian manifolds in affine geometry from a view
point different from the view point of Cartan and Norden. More precisely, we
study Riemannian manifolds which can be realized either as centroaffine hypersur-
faces or as graph hypersurfaces such that their induced affine metrics h are exactly
the original Riemannian metrics. In section 3, we establish four general optimal
inequalities for Einstein manifolds which are realized as centroaffine hypersurfaces
or as graph hypersurfaces. We also establish the necessary and sufficient condi-
tions for an Einstein affine hypersurface to satisfy the equality case of one of the
inequalities. In section 4, we give some applications of our inequalities. In the last
section, we provide some examples of Einstein affine hypersurfaces to show that our
inequalities are sharp.

2. Preliminaries.

We recall some basic facts about affine hypersurfaces (cf. [7, 12, 14, 17]). The
main idea of this article is based on [2, 4, 5, 6, 7, 9, 10, 11, 13, 14, 16].

Assume that φ : M → Rn+1 is a centroaffine hypersurface with affine normal
given by ξ = −φ. Then the centroaffine structure equations are given by

DXφ∗(Y ) = φ∗(∇XY ) + h(X,Y )ξ,(2.1)

DXξ = −φ∗(X).(2.2)



EINSTEIN MANIFOLDS AS AFFINE HYPERSURFACES 35

Let us assume that h is positive definite so that h defines a Riemannian metric on
M . The corresponding equations of Gauss and Codazzi are given respectively by

R(X,Y )Z = h(Y, Z)X − h(X,Z)Y,(2.3)

(∇Xh)(Y,Z) = (∇Y h)(X,Z).(2.4)

By definition the cubic form C is the totally symmetric (0,3)-tensor field

C(X,Y, Z) = (∇Xh)(Y,Z).

The ∇-Ricci tensor is defined by

Ric(Y,Z) = trace {Z 7→ R(Z,X)Y }.
It follows from (2.3) that ∇ is projective flat:

Ric(X,Y ) = (n− 1)h(X,Y ).(2.5)

Let ∇̂, K̂, R̂, R̂ic and κ̂ be the Levi-Civita connection, the sectional curvature,
the curvature tensor and the normalized scalar curvature of h, respectively. The
difference tensor K is a symmetric (1, 2)-tensor field which is defined by

KXY = K(X,Y ) = ∇XY − ∇̂XY.(2.6)

The difference tensor K and the cubic form C are related by

C(X,Y, Z) = −2h(KXY,Z).(2.7)

The Tchebychev form T , the Tchebychev vector field T# and the Pick invariant J
are given by

T (X) =

(
1

n

)
traceKX ,(2.8)

h(T#, X) = T (X),(2.9)

h(C,C) = 4h(K,K) = 4n(n− 1)J.(2.10)

For centroaffine hypersurfaces we have

h(KXY,Z) = h(Y,KXZ),(2.11)

R̂(X,Y )Z = KYKXZ −KXKY Z + h(Y,Z)X − h(X,Z)Y,(2.12)

(∇̂K)(X,Y, Z) = (∇̂K)(Y, Z,X) = (∇̂K)(Z,X, Y ).(2.13)

Taking the trace once we obtain from (2.12) that

R̂ic(X,Y ) = α(X,Y )− nT (KXY ) + (n− 1)h(X,Y ),(2.14)

where α(X,Y ) = trace (KXKY ). By taking trace twice we find from (2.12) that

κ̂ = J + 1− n

n− 1
h(T#, T#).(2.15)

When T = 0 and if we consider the centroaffine hypersurface M as a hypersurface
of the equiaffine space, then M is a so-called proper affine hypersphere centered at
the origin. If the difference tensor K vanishes identically, then M is a hyper-
quadric centered at the origin. Because M is assumed to be positive definite, M is
an hyperellipsoid.

If M is a graph hypersurface in Rn+1, we also have the decomposition (2.1).
Again when h is positive definite, so it gives a Riemannian metric, called the Calabi
metric. When T = 0, if we consider the graph hypersurface M as a hypersurface



36 B.-Y. CHEN

of the equiaffine space in Rn+1, then M is a so-called improper affine hypersphere,
with Blaschke normal in the direction of ξ and the affine metric homothetic to the
Blaschke metric.

For graph hypersurfaces, equations (2.4), (2.6), (2.7), (2.8) and (2.10) hold as
well. On the other hand, equations (2.2), (2.3) and (2.9) shall be replaced respec-
tively by

DXξ = R(X,Y )Z = 0,(2.16)

R̂(X,Y )Z = KYKXZ −KXKY Z.(2.17)

If we choose ξ = (0, . . . , 0, 1), then we can assume locally that the graph hyper-
surface M is given by

xn+1 = F (x1, . . . , xn).

It turns out that the (x1, . . . , xn) are ∇-flat coordinates on M and that the Calabi
metric is given by

h

(
∂

∂xi
,
∂

∂xj

)
=

∂2F

∂xi∂xj
.(2.18)

Moreover, it is known that M is an improper affine hypersphere if and only if the

Hessian determinant det
(

∂2F
∂xi∂xj

)
is constant.

Let M1 and M2 be two improper affine hyperspheres defined by equations

xp+1 = F1(x1, . . . , xp), yq+1 = F2(y1, . . . , yq).

Then one can define a new improper affine hypersphere M in Rp+q+1 by

z = F1(x1, . . . , xp) + F2(y1, . . . , yq),(2.19)

where (x1, . . . , xp, y1, . . . , yq, z) are the coordinates on Rp+q+1. The affine normal
of M is given by (0, . . . , 0, 1). Obviously, the Calabi metric is the Riemannian
product metric. This composition is known as the Calabi composition of M1 and
M2 (see [10]).

Recall that a partition of a natural number n is a way of writing n as a sum of
positive integers.

We recall the following algebraic lemma from [1] for later use.

Lemma 2.1. Let a1, . . . , an be real numbers and let k be an integer in [2, n − 1].
Then, for any partition (n1, . . . , nk) of n, we have

(2.20)

∑
1≤i1<j1≤n1

ai1aj1 +
∑

n1+1≤i2<j2≤n1+n2

ai2aj2 + · · ·

+
∑

n1···+nk−1+1≤i1<j1≤n

aikajk

≥ 1

2k

{
(a1 + · · ·+ an)2 − k(a21 + · · ·+ a2n)

}
with the equality holding if and only if we have

a1 + · · ·+ an1 = · · · = an1+···+nk−1+1 + · · ·+ an.(2.21)
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3. Optimal inequalities for Einstein affine hypersurfaces.

Assume (M, ĝ) is a Riemannian n-manifold. Let e1, . . . , en be an orthonormal
basis of M . Then the sectional curvature of the 2-plane spanned by the orthonormal
vectors ei, ej is denoted by K̂(ei ∧ ej) = ĝ(R̂(ei, ej)ej , ei), where R̂ is the curvature

tensor of (M, ĝ). The Ricci tensor R̂ic of (M, ĝ) is given by

R̂ic(X,Y ) =

n∑
j=1

ĝ(R̂(ej , X)Y, ej).

Let p be a point in M , q a natural number ≤ n/2, and π1, . . . , πq mutually

orthogonal 2-plane sections in TpM . We define two invariants δ̂Ricq and δ̌Ricq on
(M, g) respectively by

δ̂Ricq (p) = sup
u∈T 1

pM

R̂ic(u, u)− 2

n
inf

π1⊥···⊥πq

{
K̂(π1) + · · ·+ K̂(πq)

}
,(3.1)

δ̌Ricq (p) = inf
u∈T 1

pM
R̂ic(u, u)− 2

n
sup

π1⊥···⊥πq

{
K̂(π1) + · · ·+ K̂(πq)

}
,(3.2)

where u runs over all unit vectors in TpM and π1, . . . , πq run over all mutually
orthogonal 2-plane sections in TpM . In particular, for an Einstein n-manifold M ,
we have

δ̂Ricq (p) = (n− 1)κ̂− 2

n
inf

π1⊥···⊥πq

{
K̂(π1) + · · ·+ K̂(πq)

}
,(3.3)

δ̌Ricq (p) = (n− 1)κ̂− 2

n
sup

π1⊥···⊥πq

{
K̂(π1) + · · ·+ K̂(πq)

}
,(3.4)

where κ̂ is the normalized scalar curvature of (M, ĝ).
For Einstein centroaffine hypersurfaces we have the following general optimal

inequalities.

Theorem 3.1. If an Einstein n-manifold M can be realized as a centroaffine hy-
persurface in an affine (n+ 1)-space Rn+1, then we have the following inequality:

δ̌Ricq ≥ n− 1− 2q

n
− n(n− q − 1)

n− q
h(T#, T#)(3.5)

for any natural number q < n/2.
The equality case of (3.5) holds identically if and only if M is realized as a

hyper-quadric centered at the origin. Hence M is realized as a hyperellipsoid.

Proof. Let q be a natural number satisfying q < n/2. Assume that M is an Einstein
n-manifold which can be realized as a centroaffine hypersurface in an affine (n+1)-
space Rn+1. Consider q mutually orthogonal plane sections π1, . . . , πq of M at p.
We choose an orthonormal basis {e1, . . . , en} of TpM such that πj is spanned by
e2j−1 and e2j for j = 1, . . . , q.

Let us put

(3.6) ψ̂ = n(n− 1)(1− κ̂) +
n2(q + 1− n)

n− q
h(T#, T#).

Then we obtain from (2.10), (2.13) and (3.6) that

n2h(T#, T#) = (n− q)
(
h(K,K) + ψ̂

)
.(3.7)
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Let us choose an orthonormal basis e∗1, . . . , e
∗
n of TpM so that e∗1 is in the direction

of the Tchebychev vector T# at p (when T# = 0 at a point p ∈M , we may choose
e∗1, . . . , e

∗
n to be any arbitrary orthonormal basis of TpM). Then we can express

(3.7) as

n2

n− q
h(T#, T#)−

n∑
s=1

(
K1∗

ss

)2
=

∑
1≤s6=t≤2k

(
K1∗

st

)2
+

n∑
r=2

n∑
s,t=1

(Kr∗

st )2+ ψ̂.(3.8)

Thus, by applying Lemma 2.1 to (3.8), we obtain

(3.9)

q∑
i=1

K1∗

2i−1 2i−1K
1∗

2i 2i ≥
1

2

n∑
j=2

n∑
s=1

(Kj∗

ss )2 +

n∑
j=1

∑
1≤s<t≤n

(
Kj∗

st

)2
+
ψ̂

2

with equality holding if and only if we have

K1∗

11 +K1∗

22 = · · · = K1∗

2q−1 2q−1 +K1∗

2q 2q = K1∗

2q+1 2q+1 = · · · = K1∗

nn.(3.10)

On the other hand, from (2.12) we have

K̂(es ∧ et) = 1− h(K(es, es),K(et, et)) + h(K(es, et),K(es, et)).(3.11)

Hence by applying (3.9) and (3.11) we find

(3.12)

q∑
i=1

K̂(e2i−1 ∧ e2i) = q −
q∑
i=1

n∑
j=1

{
Kj∗

2i−1 2i−1K
j∗

2i 2i − (Kj∗

2i−1 2i)
2
}

≤ q − ψ̂

2
− 1

2

n∑
j=2

n∑
s=1

(Kj∗

ss )2 −
n∑
j=1

∑
1≤s<t≤n

(
Kj∗

st

)2
−

q∑
i=1

n∑
j=2

Kj∗

2i−1 2i−1K
j∗

2i 2i +

q∑
i=1

n∑
j=1

(Kj∗

2i−1 2i)
2

≤ q − ψ̂

2
+

n∑
j=1

∑
s6=1,2

{
(Kj∗

1s )2 + (Kj∗

2s )2
}

+ · · ·

+

n∑
j=1

∑
s6=2q−1,2q

{
(Kj∗

2q−1s)
2 + (Kj∗

2qs)
2
}

+
1

2

n∑
j=2

{
(Kj∗

11 +Kj∗

22)2 + · · ·+ (Kj∗

2q−1 2q−1 +Kj∗

2q 2q)
2
}

≤ q − ψ̂

2
.

Therefore, after applying (3.6) and (3.12), we obtain

(3.13)

n

2
(n− 1)κ̂−

q∑
i=1

K̂(e2i−1 ∧ e2i) ≥
n

2
(n− 1)κ̂− q +

ψ̂

2

=
n(n− 1)− 2q

2
+
n2(q + 1− n)

2(n− q)
h(T#, T#),

which implies inequality (3.5).
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If the equality sign of (3.5) holds identically, then we have (3.10), Moreover, in
this case all of the inequalities in (3.12) become equalities. Hence the difference
tensor K satisfies

K(eα, eβ) = 0(3.14)

whenever {α, β} 6= {2i− 1, 2i} for i = 1, . . . , q and

K(e1, e1) +K(e2, e2) = · · · = k(e2q−1, e2q−1) +K(e2q, e2q)(3.15)

= K(e2q+1, e2q+1) = · · · = K(en, en)

= 2Φ

with Φ = nT#/(2(n− q)).
From (3.11), (3.14) and (3.15) we find

R̂ic(e2j−1, e2j−1) = n− 2 + K̂(πj)(3.16)

− 2(n− q − 1)h(K(e2j−1, e2j−1),Φ),

R̂ic(e2j , e2j) = n− 2 + K̂(πj)(3.17)

− 2(n− q − 1)h(K(e2j , e2j),Φ),

R̂ic(en, en) = n− 1− 4(n− q − 1)h(Φ,Φ),(3.18)

2h(K(e2j−1, e2j−1),K(e2j , e2j)) = 4h(Φ,Φ)(3.19)

− h(K(e2j−1, e2j−1),K(e2j−1, e2j−1))

− h(K(e2j , e2j),K(e2j , e2j)),

where K̂(πj) denotes the sectional curvature of the plane section spanned by the
orthonormal vectorse2j−1 and e2j .

Since M is Einsteinian, (3.16) and (3.17) imply that

h(K(e2j−1, e2j−1),Φ) = h(K(e2j , e2j),Φ).(3.20)

From (3.15) we also have

h(K(e2j−1, e2j−1),Φ) + h(K(e2j , e2j),Φ) = 2h(Φ,Φ).

Hence we obtain

h(K(e2j−1, e2j−1),Φ) = h(K(e2j , e2j),Φ) = h(Φ,Φ).(3.21)

Therefore, by applying (3.17), (3.18) and (3.20), we find

(3.22) K̂(πj) = 1− 2(n− q − 1)h(Φ,Φ).

On the other hand, (3.11) and (3.19) yield

K̂(πj) = 1− 2h(Φ,Φ) +
1

2
h(K(e2j−1, e2j−1),K(e2j−1, e2j−1))

+
1

2
h(K(e2j , e2j),K(e2j , e2j))

+ h(K(e2j−1, e2j),K(e2j−1, e2j)).

Since q < n/2, we may derive from (3.14), (3.15), (3.22) and (3.23) that K = 0.
Consequently, M can be realized as a hyper-quadric centered at the origin.

The converse is easy to verify. �

For even-dimensional Einstein manifolds we also have the following.
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Theorem 3.2. Let k be a natural number ≥ 2. If an Einstein 2k-manifold M can
be realized as a centroaffine hypersurface in an affine (2k + 1)-space R2k+1, then
we have the following inequality:

δ̌Rick ≥ 2(k − 1){1− h(T#, T#)}.(3.23)

The equality case of (3.23) holds identically if and only if, with respect a suitable
h-orthonormal basis e1, . . . , e2k, the difference tensor K satisfies

K(eα, eβ) = 0,(3.24)

K(e1, e1) +K(e2, e2) = · · · = K(e2k−1, e2k−1) +K(e2k, e2k),(3.25)

h(K(ei, ei), T
#) = h(T#, T#),(3.26)

where {α, β} 6= {2i− 1, 2i} and i = 1, . . . , k.

Proof. Let k be a natural number ≥ 2. Assume that M is an Einstein 2k-manifold
which is realized as a centroaffine hypersurface in an affine (2k + 1)-space R2k+1.
Let π1, . . . , πk be k mutually orthogonal 2-plane sections at p ∈ M . We choose an
orthonormal basis e1, . . . , e2k of TpM with

π1 = Span{e1, e2}, . . . , πk = Span{e2k−1, e2k}.

Let us put

(3.27) η̂ = 2k(2k − 1)(1− κ̂)− 4k(k − 1)h(T#, T#).

Then (2.10), (2.13) and (3.27) imply that

4k · h(T#, T#) = h(K,K) + η̂.(3.28)

Let us choose an orthonormal basis e∗1, . . . , e
∗
n of TpM so that e∗1 is in the direction

of the Tchebychev vector T# at p. If we put Kγ∗

αβ = h(K(eα, eβ), e∗γ), then (3.28)
can be expressed as

4kh(T#, T#)−
2k∑
s=1

(
K1∗

ss

)2
=

∑
1≤s6=t≤2k

(
K1∗

st

)2
+

2k∑
r=2

2k∑
s,t=1

(Kr∗

st )2+ η̂.(3.29)

If we apply Lemma 2.1 to the left-hand-side of (3.29), we find

(3.30) 2

k∑
i=1

K1∗

2i−1 2i−1K
1∗

2i 2i ≥
2k∑
j=2

2k∑
s=1

(Kj∗

ss )2 +

2k∑
j=1

∑
1≤s 6=t≤2k

(
Kj∗

st

)2
+ η̂

with equality holding if and only if we have

K1∗

11 +K1∗

22 = · · · = K1∗

2k−1 2k−1 +K1∗

2k 2k.(3.31)

By combining (3.11) and (3.30), we find

(3.32)

k∑
i=1

K̂(e2i−1 ∧ e2i) ≤ k −
η̂

2
− 1

2

2k∑
j=2

2k∑
s=1

(Kj∗

ss )2 −
2k∑
j=1

∑
1≤s<t≤2k

(
Kj∗

st

)2
−

k∑
i=1

2k∑
j=2

Kj∗

2i−1 2i−1K
j∗

2i 2i +

k∑
i=1

2k∑
j=1

(Kj∗

2i−1 2i)
2
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≤ k − η̂

2
+

2k∑
j=1

∑
s6=1,2

{
(Kj∗

1s )2 + (Kj∗

2s )2
}

+ · · ·

+

2k∑
j=1

∑
s6=2k−1,2k

{
(Kj∗

2k−1s)
2 + (Kj∗

2ks)
2
}

+
1

2

2k∑
j=2

{
(Kj∗

11 +Kj∗

22)2 + · · ·+ (Kj∗

2k−1 2k−1 +Kj∗

2k 2k)2
}

≤ k − η̂

2
.

Therefore, after applying (3.27) and (3.32), we derive that

(3.33) (2k − 1)κ̂− 1

k

k∑
i=1

K̂(e2i−1 ∧ e2i) ≥ 2(k − 1)− 2(k − 1)h(T#, T#).

Consequently, we obtain inequality (3.23) from (3.4) and (3.33).
If the equality sign of (3.23) holds identically, then we have (3.31), Moreover,

all of the inequalities in (3.32) become equalities. Hence the difference tensor K
satisfies (3.24), i.e.,

K(eα, eβ) = 0(3.34)

for {α, β} 6= {2i− 1, 2i} with i = 1, . . . , k. Also we find

K(e1, e1) +K(e2, e2) = · · · = k(e2k−1, e2k−1) +K(e2k, e2k) = 2T#,(3.35)

which gives (3.25).
Furthermore, we have

R̂ic(e2j−1, e2j−1) = 2(k − 1) + K̂(πj)(3.36)

− 2(k − 1)h(K(e2j−1, e2j−1), T#),

R̂ic(e2j , e2j) = 2(k − 1) + K̂(πj)(3.37)

− 2(k − 1)h(K(e2j , e2j), T
#),

where K̂(πj) denotes the sectional curvature of the plane section spanned by the
orthonormal vectors e2j−1 and e2j .

Since M is Einsteinian, (3.36) and (3.37) imply

h(K(e2j−1, e2j−1), T#) = h(K(e2j , e2j), T
#).(3.38)

Now, it follows from (3.35) that

h(K(e2j−1, e2j−1), T#) + h(K(e2j , e2j), T
#) = 2h(T#, T#).

Thus after combining (3.38) and (3.39) we find

h(K(e2j−1, e2j−1), T#) = h(K(e2j , e2j), T
#) = h(T#, T#)(3.39)

for j = 1, . . . , k. Consequently, we also obtain (3.26).

The converse can be verified by direct computation. �

For Einsteinian graph hypersurfaces we have the following.
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Theorem 3.3. If an Einstein n-manifold M can be realized as a graph hypersurface
in an affine (n+ 1)-space, then we have

δ̌Ricq ≥ n(q + 1− n)

n− q
h(T#, T#)(3.40)

for any natural number q < n/2.
The equality case of (3.40) holds identically if and only if M is realized as a

paraboloid centered at the origin.

Theorem 3.4. If an Einstein 2k-manifold M can be realized as a centroaffine
hypersurface in some affine (2k + 1)-space, then we have

δ̌Rick ≥ 2(1− k)h(T#, T#).(3.41)

If the equality sign of (3.41) holds identically, then M is an improper affine
hypersphere. Moreover, with respect a suitable h-orthonormal basis e1, . . . , e2k, the
difference tensor K satisfies

K(eα, eβ) = 0,(3.42)

K(e1, e1) +K(e2, e2) = · · · = k(e2k−1, e2k−1) +K(e2k, e2k),(3.43)

h(K(ej , ej), T
#) = h(T#, T#), j = 1, . . . , k,(3.44)

whenever {α, β} 6= {2j − 1, 2j}.

Theorem 3.3 and Theorem 3.4 can be proved in a similar way as that of Theorem
3.1 and Theorem 3.2.

4. Some immediate applications.

The following four corollaries are some immediate consequences of our results
obtained in Section 3.

Corollary 4.1. Let M be an Einstein n-manifold. If we have

δ̌Ricq (p) < n− 1− 2q

n
(4.1)

for some natural number q ≤ n/2 at some point p ∈M , then M cannot be realized
as an elliptic proper affine hypersphere in an affine space.

Corollary 4.2. Let M be an Einstein n-manifold. If we have

δ̌Ricq (p) < 0(4.2)

for some natural number q ≤ n/2 at some point p ∈M , then M cannot be realized
as an improper affine hypersphere in an affine space.

Corollary 4.3. Let M be a Riemannian n-manifold realized as a graph hypersurface
in an affine (n+ 1)-space which satisfies

δ̌Ricq (p) <
n(q + 1− n)

n− q
h(T#, T#)(p)(4.3)

for some natural number q ≤ n/2 at some point p ∈ M , the M is not an Einstein
manifold.
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Corollary 4.4. Let M be a Riemannian n-manifold realized as a centroaffine hy-
persurface in an affine (n+ 1)-space which satisfies

δ̌Ricq (p) < n− 1− 2q

n
− n(n− q − 1)

n− q
h(T#, T#)(p)(4.4)

for some natural number q ≤ n/2 at some point p ∈ M , the M is not an Einstein
manifold.

5. Example and remarks.

In this section we give some remarks and we also provide some simple examples
of Einstein manifolds which can be realized either as graph hypersurfaces or as
centroaffine hypersurfaces.

Example 5.1. The hyperellipsoid in Rn+1 provides an example of an Einstein
n-manifold satisfying

δRicq = n− 1− 2q

n
, q ≤ n

2
,

which can be realized as a centroaffine hypersurface.
This example shows that the conditions on δ̌Ricq given in Theorems 3.1 and 3.2

are sharp.

Remark 5.1. The hyperellipsoid also provides the simplest example showing that

the condition on δ̂Ricq mentioned in Corollary 4.1 is sharp.
The hyperboloids provide the simplest examples which illustrate that the condi-

tion on δ̂Ricq given in Corollary 4.2 is sharp as well.

Example 5.2. Let (M4, g) denote the Riemannian product N2
1 (c)×N2

2 (c) of two
surfaces of constant curvature c > 0. Then (M4, g) is an Einstein 4-manifold which
satisfies

R̂ic(X,Y ) = cg(X,Y ), δ̂Ric2 = c.(5.1)

Consider an immersion of M4 into the affine 5-space R5 defined by:

φ(x1, . . . , xn) =

(
x1, x2, x3, x4, ln

{(
1 + e2x

2
1+2x2

) 1
4c
(
1 + e2x

2
3+2x4

) 1
4c

})
.(5.2)

By applying (2.18), it is direct to show that this immersion is a realization of the
Einstein 4-manifold (N2

1 (c)×N2
2 (c), g) as a Einstein graph hypersurface in R5 with

the Blaschke normal given by ξ = (0, 0, 0, 0, 1).

Remark 5.2. By applying a straight-forward computation we may prove that the
Tchebychev vector field T# of the Einstein graph hypersurface given in Example
5.2 is non-trivial.

Remark 5.3. The author thanks Professor Luc Vrancken for his suggestions to
improve the original version of this article.
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