Conference Proceedings of Science and Technology, 2(1), 2019, 18–19

Conference Proceeding of 2th International Conference on Mathematical Advences and Applications (ICOMAA-2019).

Stability of an Iterative Algorithm ISSN: 2651-544X

*Faik Gürsoy*1,[∗]

¹ *Department of Mathematics, Faculty of Science and Arts, Adiyaman University, Adiyaman, Turkey, ORCID:0000-0002-7118-9088 * Corresponding Author E-mail: faikgursoy02@hotmail.com*

Abstract: We prove that iterative algorithm (1.7) of [7] is weak w^2 –stable w.r.t. an operator T in the class of weak contraction mappings.

Keywords: Fixed point, Iterative algorithm, Stability.

1 Introduction

Let C be a nonempty closed convex subset of a Banach space X and $T: C \to C$ a mapping. An element x in C is said to be a fixed point of T if $Tx = x$.

Definition 1. *([1])* Let (M, d) be a metric space. A mapping $T : M \to M$ is said to be weak-contraction if there exist $\delta \in [0, 1)$ and $L \ge 0$ *such that* $d(Tx,Ty) \leq \delta d(x,y) + Ld(y,Tx)$, for all $x,y \in M$.

Theorem 1. ([1]) Let
$$
(M, d)
$$
 be a complete metric space and $T : M \to M$ a weak-contraction for which there exist $\delta \in [0, 1)$ and $L_1 \ge 0$ such that

$$
d(Tx, Ty) \le \delta d(x, y) + L_1 d(x, Tx), \text{ for all } x, y \in M. \tag{1}
$$

Then, T *has a unique fixed point.*

Definition 2. ([2]) Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be sequences in C. We say that these sequences are equivalent if $\lim_{n\to\infty}||x_n-y_n||=0$.

Definition 3. *([3])* Let $\{x_n\}_{n=1}^{\infty}$ be an iterative sequence produced by operator T

$$
\begin{cases}\nx_1 \in C, \\
x_{n+1} = f(T, x_n), n \in \mathbb{N},\n\end{cases}
$$

where f is a function. Assume that $\{x_n\}_{n=1}^{\infty}$ converges to a $p^* = Tp^*$. If for any equivalent sequence $\{y_n\}_{n=1}^{\infty} \subseteq C$ of $\{x_n\}_{n=1}^{\infty}$

$$
\lim_{n \to \infty} ||y_{n+1} - f(T, y_n)|| = 0 \Rightarrow \lim_{n \to \infty} y_n = p^*,
$$

then the iterative sequence $\{x_n\}_{n=1}^\infty$ *is said to be weak* w^2- *stable w.r.t.* T *.*

Over the past few decades, many research papers are devoted to the study of stability of various well-known iterative algorithms for different classes of operators, see, e.g. [3–6] and references therein.

Recently, Karakaya et al. [7] introduced a three-step iterative algorithm as follows:

$$
\begin{cases}\n x_1 \in C, \\
 x_{n+1} = Ty_n, \\
 y_n = (1 - \alpha_n) z_n + \alpha_n T z_n, \\
 z_n = Tx_n, n \in \mathbb{N},\n\end{cases}
$$
\n(2)

where $\{\alpha_n\}_{n=1}^{\infty}$ is a real sequence in [0, 1].

Karakaya et al. [7] showed that iterative algorithm (2) strongly converges to the fixed points of weak-contraction mappings. More precisely, they proved the following result.

Theorem 2. *([7])* Let C be a nonempty closed convex subset of a Banach space X and $T: C \to C$ a weak-contraction satisfying condition (1). Let $\{x_n\}_{n=1}^{\infty}$ be an iterative sequence generated by (2) with real sequence $\{\alpha_n\}_{n=1}^{\infty} \subseteq [0,1]$ satisfying $\sum_{n=1}^{\infty} \alpha_n = \infty$. Then, $\{x_n\}_{n=1}^{\infty}$ *converges to a unique fixed point* p ∗ *of* T*.*

http://dergipark.gov.tr/cpost

2 Main result

Here, we prove that iterative sequence generated by (2) is weak w^2 -stable w.r.t. a weak-contraction mapping T satisfying condition (1).

Theorem 3. Let C be a nonempty closed convex subset of a Banach space X and $T: C \to C$ with $p^* = Tp^*$ a weak-contraction satisfying *condition (1). Let* $\{x_n\}_{n=1}^{\infty}$ be an iterative sequence generated by (2) with real sequence $\{\alpha_n\}_{n=1}^{\infty} \subseteq [0,1]$ satisfying $\sum_{n=1}^{\infty} \alpha_n = \infty$. Let ${r_n}_{n=1}^{\infty}$ *be an equivalent sequence of* ${x_n}_{n=1}^{\infty}$ and $\epsilon_n = ||r_{n+1} - Ts_n||$, $s_n = (1 - \alpha_n)p_n + \alpha_n T p_n$, $p_n = Tr_n$ for all $n \in \mathbb{N}$. Suppose *that* $\lim_{n\to\infty} \epsilon_n = 0$. Then, the sequence $\{x_n\}_{n=1}^{\infty}$ is weak w^2 –stable w.r.t. T.

Proof: From (1) and (2), we have

$$
||r_{n+1} - p^*|| = ||r_{n+1} - x_{n+1}|| + ||x_{n+1} - p^*||
$$

\n
$$
\leq ||r_{n+1} - Ts_n|| + ||Ts_n - x_{n+1}|| + ||x_{n+1} - p^*||
$$

\n
$$
\leq \epsilon_n + ||Ts_n - Ty_n|| + ||x_{n+1} - p^*||
$$

\n
$$
\leq \epsilon_n + \delta ||s_n - y_n|| + L ||y_n - Ty_n|| + ||x_{n+1} - p^*||
$$

\n
$$
\leq \epsilon_n + \delta ||(1 - \alpha_n) (p_n - z_n) + \alpha_n (Tp_n - Tz_n)|| + L ||y_n - p^*||
$$

\n
$$
+ L ||p^* - Ty_n|| + ||x_{n+1} - p^*||
$$

\n
$$
\leq \epsilon_n + \delta \{ (1 - \alpha_n) ||p_n - z_n|| + \alpha_n ||Tp_n - Tz_n|| \}
$$

\n
$$
+ (1 + \delta) L ||y_n - p^*|| + ||x_{n+1} - p^*||
$$

\n
$$
\leq \epsilon_n + \delta \{ (1 - \alpha_n) ||T r_n - Tx_n|| + \alpha_n ||T p_n - Tz_n|| \}
$$

\n
$$
+ (1 + \delta) L ||(1 - \alpha_n) z_n + \alpha_n Tx_n - p^*|| + ||x_{n+1} - p^*||
$$

\n
$$
\leq \epsilon_n + \delta \{ (1 - \alpha_n) ||T r_n - Tx_n|| + \alpha_n ||T p_n - Tx_n|| \}
$$

\n
$$
+ (1 + \delta) L [1 - \alpha_n (1 - \delta)] ||z_n - p^*|| + ||x_{n+1} - p^*||
$$

\n
$$
\leq \epsilon_n + \delta^2 [1 - \alpha_n (1 - \delta)] ||r_n - x_n||
$$

\n
$$
+ \delta L \{ 1 - \alpha_n + (1 - \alpha_n) \delta + \alpha_n \delta + \alpha_n \delta^2 + \alpha_n \delta (1 + \delta) \} ||x_n - p^*||
$$

\n
$$
(1 + \delta) L [1 - \alpha_n (1 - \delta)] \delta ||x_n - p^*|| + ||x_{n+1} - p^*||
$$

\n
$$
(3)
$$

Since sequences ${x_n}_{n=1}^{\infty}$ and ${r_n}_{n=1}^{\infty}$ are equivalent, therefore we have $\lim_{n\to\infty} ||r_n - x_n|| = 0$. By Theorem 2, we have $\lim_{n\to\infty} ||x_n - p^*|| = 0$. Now taking limit on both sides of (3) and then using the assumption $\lim_{n\to\infty} \epsilon_n = 0$ leads to lim_{n→∞} $||r_{n+1} - p^*|| = 0$. Thus $\{x_n\}_{n=1}^{\infty}$ is weak w^2 –stable w.r.t. T.

3 References

- [1] V. Berinde, *On the approximation of fixed points of weak contractive mappings*, Carpathian J. Math., 19 (2003), 7-22.
- [2] T. Cardinali, P. Rubbioni, *A generalization of the Caristi fixed point theorem in metric spaces*, Fixed Point Theory, 11 (2010), 3-10.
- [3] I. Timis, *On the weak stability of Picard iteration for some contractive type mappings and coincidence theorems*, Int. J. Comput. Appl., 37 (2012), 9-13.
- [4] V. Berinde, *Summable almost stability of fixed point iteration procedures*, Carpathian J. Math., 19 (2003), 81-88.
- [5] A. R. Khan, F. Gürsoy, V. Kumar, Stability and data dependence results for Jungck–Khan iterative scheme, Turkish J. Math., 40 (2016), 631-640.
[6] L. Măruşter, Ş. Măruşter, *On the error estimation and T-stability of t*
-
- [7] V. Karakaya, Y. Atalan, K. Doğan, N. El Houda Bouzara, Some fixed point results for a new three steps iteration process in Banach spaces, Fixed Point Theory, 18 (2017), 625-640.