Conference Proceedings of Science and Technology, 2(1), 2019, 22-26

Conference Proceeding of 2nd International Conference on Mathematical Advances and Applications (ICOMAA 2019).

Amalgam Spaces With Variable Exponent

ISSN: 2651-544X

http://dergipark.gov.tr/cpost

Ismail Aydın¹ Cihan Unal^{2,*}

¹ Department of Mathematics, Faculty of Science and Arts, Sinop University, Sinop, Turkey, ORCID:0000-0001-8371-3185

² Department of Mathematics, Faculty of Science and Arts, Sinop University, Sinop, Turkey, ORCID:0000-0002-7242-393X * Corresponding Author E-mail: cihanunal88@gmail.com

Abstract: Let $1 \le s < \infty$ and $1 \le r(.) \le \infty$ where r(.) is a variable exponent. In this study, we consider the variable exponent amalgam space $(L^{r(.)}, \ell^s)$. Moreover, we present some examples about inclusion properties of this space. Finally, we obtain that the space $(L^{r(.)}, \ell^s)$ is a Banach Function space.

Keywords: Amalgam space, Banach space, Variable exponent.

1 Introduction

The amalgam of L^p and l^q on the real line is the space (L^p, l^q) (\mathbb{R}) (or briefly (L^p, l^q)) consisting of functions f which are locally in L^p and have l^q behavior at infinity. Several authors studied special cases of amalgams on some sets including \mathbb{R} and a locally compact abelian group G. The first appearance of amalgam spaces can be traced to Wiener [13]. A generalization Wiener's definition was given by Feichtinger in [6], and it can be found a good summary of some results about amalgam spaces in [10], [11]. For a historical background of classical amalgams we refer [7]. The variable exponent Lebesgue spaces $L^{p(.)}$ and the classical Lebesgue spaces L^p have many common properties but a significant difference between these spaces is that $L^{p(.)}$ is not invariant under translation in general, see [4], [12]. Recently, there are many interesting and important papers appeared in variable exponent amalgam space $(L^{r(.)}, \ell^s)$ such as Aydin [1], Aydin and Gurkanli [3], Gurkanli and Aydin [9].

2 Main results

Definition 1. For a measurable function $r(.) : \mathbb{R} \to [1, \infty)$ (called a variable exponent on \mathbb{R}), we put

$$r^- = \underset{x \in \mathbb{R}}{essinfr(x)}, \quad r^+ = \underset{x \in \mathbb{R}}{esssupr(x)}.$$

Also the convex modular function $\varrho_{r(.)}$ is defined as

$$\varrho_{r(.)}(f) = \int_{\mathbb{R}} |f(x)|^{r(x)} dx.$$

The variable exponent Lebesgue space $L^{r(.)}(\mathbb{R})$ is defined as the set of all measurable functions f on \mathbb{R} such that $\varrho_{r(.)}(\lambda f) < \infty$ for some $\lambda > 0$, equipped with the Luxemburg norm

$$||f||_{r(.)} = \inf \left\{ \lambda > 0 : \varrho_{r(.)}\left(\frac{f}{\lambda}\right) \le 1 \right\}.$$

Let $r^+ < \infty$. Then $f \in L^{r(.)}(\mathbb{R})$ if and only if $\varrho_{r(.)}(f) < \infty$, that is, the norm topology is equivalent to modular topology. The space $L^{r(.)}(\mathbb{R})$ is a Banach space with respect to $\|.\|_{r(.)}$. Moreover, it is well known that if we take r(.) = r (const.), then the space $L^{r(.)}(\mathbb{R})$ coincides with the classical Lebesgue space $L^{r}(\mathbb{R})$, see [12]. In this paper, we will assume that $r^+ < \infty$.

Definition 2. Let $1 \le r(.), s < \infty$ and $J_k = [k, k+1), k \in \mathbb{Z}$. The variable exponent amalgam space $(L^{r(.)}, \ell^s)$ is a normed space defined as

$$\left(L^{r(.)},\ell^{s}\right) = \left\{f \in L^{r(.)}_{loc}\left(\mathbb{R}\right) : \left\|f\right\|_{\left(L^{r(.)},\ell^{s}\right)} < \infty\right\},\$$

where

$$\|f\|_{(L^{r(.)},\ell^{s})} = \left(\sum_{k\in\mathbb{Z}} \|f\chi_{J_{k}}\|_{r(.)}^{s}\right)^{\frac{1}{s}}.$$

It is well known that $(L^{r(.)}, \ell^s)$ does not depend on the particular choice of J_k . This follows J_k can be equal to [k, k+1), [k, k+1] or (k, k+1). Thus, we have same amalgam spaces $(L^{r(.)}, \ell^s)$.

Theorem 1. The space $(L^{r(.)}, \ell^s)$ is a Banach space with respect to the norm $\|.\|_{(L^{r(.)}, \ell^s)}$.

Proof: Let $\{f_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence in $(L^{r(.)}, \ell^s)$. Then given $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n, m \ge N$, then we have

$$\|f_n - f_m\|_{\left(L^{r(\cdot)},\ell^s\right)} = \left(\sum_{k\in\mathbb{Z}} \|f_n - f_m\|_{r(\cdot),J_k}^s\right)^{\frac{1}{s}} < \varepsilon.$$

$$\tag{1}$$

Hence, for any fixed k, we get

$$\|f_n - f_m\|_{r(.),J_k} < \varepsilon \ (n,m \ge N)$$

Thus $\{f_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $L^{r(.)}(J_k)$ for $k \in \mathbb{Z}$. Let us define $f = \sum_{k \in \mathbb{Z}} f^k \chi_{J_k}$ where $f^k \in L^{r(.)}(J_k)$. Now, we will show that $f \in (L^{r(.)}, \ell^s)$. Using Fatou's Lemma (applied to the right-hand series viewed as integral over the integers), we obtain

$$\|f\|_{(L^{r(\cdot)},\ell^{s})}^{s} = \sum_{k\in\mathbb{Z}} \left\|f^{k}\right\|_{r(\cdot),J_{k}}^{s} = \sum_{k\in\mathbb{Z}} \lim_{n\to\infty} \|f_{n}\|_{r(\cdot),J_{k}}^{s}$$
$$\leq \lim_{n\to\infty} \inf \|f_{n}\|_{(L^{r(\cdot)},\ell^{s})}^{s}.$$
(2)

Since $\{f_n\}_{n\in\mathbb{N}}$ is a Cauchy sequence (hence $\{f_n\}_{n\in\mathbb{N}}$ is bounded in norm), the last quantity is finite. Therefore, the left side of (2) is finite, that is, $f \in (L^{r(.)}, \ell^s)$. By (1), we have

$$||f_m - f||_{r(.),J_k}^s = \lim_{n \to \infty} ||f_m - f_n||_{r(.),J_k}^s$$

and

$$\|f_m - f\|^{s}_{(L^{r(.)},\ell^{s})} = \sum_{k \in \mathbb{Z}} \lim_{n \to \infty} \|f_m - f_n\|^{s}_{r(.),J_k}$$
$$\leq \lim_{n \to \infty} \inf \sum_{k \in \mathbb{Z}} \|f_m - f_n\|^{s}_{r(.),J_k}$$
$$< \varepsilon$$

for $m \geq N$. Thus the Cauchy sequence $\{f_n\}_{n \in \mathbb{N}}$ converges to f, which is desired result.

Now, we will show that $L^{r(.)} \neq (L^{r(.)}, \ell^s)$ and that these two spaces are not translation invariant in general. Also, we will prove new two examples which are associated with this.

Example 1. Let $r(.) : \mathbb{R} \to [0, \infty)$ be a function such that for $k \in \mathbb{Z}$

$$r(x) = \begin{cases} 1, & x \in A_k = [2k - 1, 2k) \\ 2, & x \in B_k = [2k - 2, 2k - 1) \end{cases}$$

Hence, we have $r^+ < \infty$ and $A_k \cap B_k = \phi$ for all $k \in \mathbb{Z}$. Also let us define a function f as

$$f(x) = \begin{cases} 0, & x \in A_k, k \in \mathbb{N} \\ \frac{1}{k}, & x \in B_k, k \in \mathbb{N}, (k \neq 0) \\ 0, & x < 0 \ (x \notin A_k \cup B_k) \end{cases}$$

Therefore, we have

$$\varrho_{r(.)}(f) = \int_{\mathbb{R}} |f(x)|^{r(x)} dx = \sum_{k=1}^{\infty} \int_{J_k} |f(x)|^{r(x)} dx$$
$$= \sum_{k=1}^{\infty} \int_{J_k \cap B_k} |f(x)|^{r(x)} dx$$
$$= \sum_{k=1}^{\infty} \int_{B_k} \frac{1}{k^2} dx = \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty.$$

This follows that $f \in L^{r(.)}(\mathbb{R})$. Now, we will show that $f \notin (L^{r(.)}, \ell^1)$. By using the definition of $\|.\|_{(L^{r(.)}, \ell^1)}$, we obtain

$$\begin{split} \|f\|_{\left(L^{r(.)},\ell^{1}\right)} &= \sum_{k\in\mathbb{Z}} \left\|f\chi_{[k,k+1)}\right\|_{r(.)} = \sum_{k=1}^{\infty} \left\|f\chi_{[2k-2,2k-1)}\right\|_{r(.)} \\ &= \sum_{k=1}^{\infty} \left\|f\chi_{[2k-2,2k-1)}\right\|_{2} \\ &= \sum_{k=1}^{\infty} \left(\int_{2k-2}^{2k-1} \frac{1}{k^{2}} dx\right)^{\frac{1}{2}} = \sum_{k=1}^{\infty} \frac{1}{k} = \infty. \end{split}$$

Therefore, we have $f \notin (L^{r(.)}, \ell^1)$.

Example 2. Let $r(.) : \mathbb{R} \to [0, \infty)$ be a function such that for $k \in \mathbb{Z}$

$$r(x) = \begin{cases} 1, & x \in A_k = [2k+1, 2(k+1)) \\ 2, & x \in B_k = [2k, 2k+1) \end{cases}$$

Then, we define the space as

$$L^{r(.)}(\mathbb{R}) = \left\{ f: f = f_1 + f_2, \ f_1 \in L^1(\mathbb{R}), f_2 \in L^2(\mathbb{R}), supp f_1 = \bigcup_{k \in \mathbb{Z}} A_k \text{ and } supp f_2 = \bigcup_{k \in \mathbb{Z}} B_k \right\}.$$

If we denote $T_1 f$ as the translation of given any function $f \in L^{r(.)}(\mathbb{R})$, then we obtain

$$T_{1}f(x) = \begin{cases} f(x+1) = f_{2}(x), & x \in A_{k} \\ f(x+1) = f_{1}(x), & x \in B_{k} \end{cases}$$

It is easy to see that $T_1 f \notin L^{r(.)}(\mathbb{R})$. That means the space $L^{r(.)}(\mathbb{R})$ is not translation invariant. Now, we quote this idea to the amalgam space. To show this we take same function r(.) and same space $L^{r(.)}(\mathbb{R})$. Let p > 1. Let us define a function f as

$$f(x) = \begin{cases} 0, & x \in A_k \\ \frac{1}{(k+1)^p}, & x \in B_k \\ 0, & x < 0 \ (x \notin A_k \cup B_k) \end{cases}$$

Then, we obtain

$$\|f\|_{\left(L^{r(.)},\ell^{1}\right)} = \left\{ \sum_{k \in \mathbb{Z}} \left\{ \int_{k}^{k+1} |f(x)|^{2} dx \right\}_{0,}^{\frac{1}{2}} = \sum_{k=1}^{\infty} \frac{1}{(k+1)^{p}} < \infty, \quad x \in B_{k} \\ 0, \qquad x \in A_{k} \right\}$$

Therefore we have $f \in \left(L^{r(.)}, \ell^1\right)$. By the definition of $T_1 f$, we get

$$T_{1}f(x) = \begin{cases} f(x+1) = \frac{1}{(k+1)^{p}}, & x \in A_{k} \\ 0, & x \in B_{k} \end{cases}$$

This follows that

$$\|T_1 f\|_{\left(L^{r(.)},\ell^1\right)} = \begin{cases} \sum_{k \in \mathbb{Z}} \begin{cases} k+1 \\ \int_k^{k+1} |f(x+1)| \, dx \\ k \end{cases} = \sum_{k=1}^{\infty} \frac{1}{(k+1)^p} < \infty, \quad x \in A_k \\ 0, \qquad \qquad x \in B_k \end{cases}$$

Therefore, we have $T_1 f \in (L^{r(.)}, \ell^1)$. This follows that the space $(L^{r(.)}, \ell^1)$ is translation invariant. As an alternative method, it is easy to see that $(L^1, \ell^1) = L^1$ or $(L^2, \ell^1) \subset L^1$ and the space L^1 is translation invariant. Therefore, the same result is satisfied.

Remark 1. If we consider the Theorem 3.3 in [8], then $L^{r(.)} = (L^{r(.)}, \ell^s)$ holds for some special cases. Therefore, the amalgam space $(L^{r(.)}, \ell^s)$ is not translation invariant in general.

Definition 3. $L_c^{r(.)}(\mathbb{R})$ denotes the functions f in $L^{r(.)}(\mathbb{R})$ such that $supp f \subset \mathbb{R}$ is compact, that is,

$$L_{c}^{r(.)}(\mathbb{R}) = \left\{ f \in L^{r(.)}(\mathbb{R}) : suppf \ compact \right\}.$$

Now, let $K \subset \mathbb{R}$ be given. The cardinality of the set

$$S(K) = \{J_k : J_k \cap K \neq \emptyset\}$$

is denoted by |S(K)| where $\{J_k\}_{k\in\mathbb{Z}}$ is a collection of intervals $J_k = [k, k+1] = k + [0, 1]$, and also cover \mathbb{R} .

The following proposition was proved by Aydin [2].

Proposition 1. If $g \in L_c^{r(.)}(\mathbb{R})$ and K is the compact support of g, then we have

 $\begin{array}{l} (i) \; \|g\|_{\left(L^{r(.)},\ell^{s}\right)} \leq |S(K)|^{\frac{1}{s}} \, \|g\|_{r(.)} \, \textit{for} \, 1 \leq s < \infty. \\ (ii) \; \|g\|_{\left(L^{r(.)},\ell^{\infty}\right)} \leq |S(K)| \, \|g\|_{r(.)} \, . \end{array}$

Moreover, we have $L_{c}^{r(.)}(\mathbb{R}) \subset \left(L^{r(.)}(\mathbb{R}), \ell^{s}\right)$ for $1 \leq s \leq \infty$.

The main result of this study is to show that the space $(L^{r(.)}, \ell^s)$ be a special case of Banach function space, in other words, the norm of $(L^{r(.)}, \ell^s)$ satisfies the following properties, where f, g, f_n in $(L^{r(.)}, \ell^s)$ for all $n \in \mathbb{N}$, $\lambda \ge 0$ and E is any measurable subset of \mathbb{R} $(|E| < \infty)$:

1. $||f||_{(L^{r(.)},\ell^s)} \ge 0$ 2. $||f||_{(L^{r(.)},\ell^s)} = 0$ if and only if f = 0 a.e. in \mathbb{R} 3. $||\lambda f||_{(L^{r(.)},\ell^s)} = \lambda ||f||_{(L^{r(.)},\ell^s)}$ 4. $||f + g||_{(L^{r(.)},\ell^s)} \le ||f||_{(L^{r(.)},\ell^s)} + ||g||_{(L^{r(.)},\ell^s)}$ 5. If $|g| \le |f|$ a.e. in \mathbb{R} , then $||g||_{(L^{r(.)},\ell^s)} \le ||f||_{(L^{r(.)},\ell^s)}$ 6. If $0 \le f_n \uparrow f$ a.e. in \mathbb{R} , then $||f_n||_{(L^{r(.)},\ell^s)} \uparrow ||f||_{(L^{r(.)},\ell^s)}$ 7. $||\chi_E||_{(L^{r(.)},\ell^s)} < \infty$ 8. $\int_E |f| \, dx \le C (r(.), E) \, ||f||_{(L^{r(.)},\ell^s)}$ for some C > 0.

Theorem 2. The space $(L^{r(.)}, \ell^s)$ is a Banach Function space with respect to the norm $\|.\|_{(L^{r(.)}, \ell^s)}$.

Proof: We have to prove the properties (1)-(8). The first three properties follow directly from the definition of the norm $\|.\|_{(L^{r(.)},\ell^s)}$.

Proof of Property 4. Let $f, g \in (L^{r(.)}, \ell^s)$ be given. It is well known that $f, g \in (L^{r(.)}, \ell^s)$ if and only if $\{\|f\|_{r(.),J_k}\}_{k\in\mathbb{Z}}, \{\|g\|_{r(.),J_k}\}_{k\in\mathbb{Z}} \in \ell^s(\mathbb{Z}).$ Then we have

$$\begin{split} \|f + g\|_{(L^{r(.)},\ell^{s})} &= \left\| \|f + g\|_{r(.),J_{k}} \right\|_{\ell^{s}} \\ &\leq \left\| \|f\|_{r(.),J_{k}} + \|g\|_{r(.),J_{k}} \right\|_{\ell^{s}} \\ &\leq \left\| \|f\|_{r(.),J_{k}} \right\|_{\ell^{s}} + \left\| \|g\|_{r(.),J_{k}} \right\|_{\ell^{s}} \\ &= \|f\|_{(L^{r(.)},\ell^{s})} + \|g\|_{(L^{r(.)},\ell^{s})} \,. \end{split}$$

Proof of Property 5. Let $|g| \le |f|$. Then we obtain

$$\|g\|_{(L^{r(.)},\ell^{s})} = \|\|g\|_{r(.),J_{k}}\|_{\ell^{s}}$$

$$\leq \|\|f\|_{r(.),J_{k}}\|_{\ell^{s}} = \|f\|_{(L^{r(.)},\ell^{s})}.$$

Proof of Property 6. It is well known that $L^{r(.)}$ is a BF-space by Proposition 1.3 in [5]. Since $0 \le f_n \uparrow f$ a.e. in \mathbb{R} , then $||f_n||_{r(.),J_k} \uparrow ||f||_{r(.),J_k}$. If we consider this property for ℓ^s , we have

$$\|f_n\|_{(L^{r(.)},\ell^s)} = \left\|\|f_n\|_{r(.),J_k}\right\|_{\ell^s} \uparrow \left\|\|f\|_{r(.),J_k}\right\|_{\ell^s} = \|f\|_{(L^{r(.)},\ell^s)}$$

Proof of Property 7. Since $|E| < \infty$ and $\operatorname{supp} \chi_E = \overline{E} \subset \mathbb{R}$ is compact, then $\chi_E \in L_c^{r(.)}(\mathbb{R})$ and

$$\|\chi_E\|_{(L^{r(.)},\ell^s)} \le |S(E)|^{\frac{1}{s}} \|\chi_E\|_{r(.),E} < \infty$$

by Proposition 1.

Proof of Property 8. By Hölder's inequality for variable exponent amalgam spaces (see, Corollary 2.4, [3]), we get

$$\int_{E} |f| \, dx = \int_{\mathbb{R}} |f\chi_{E}| \, dx \le c \, \|f\|_{\left(L^{r(.)}, \ell^{s}\right)} \, \|\chi_{E}\|_{\left(L^{r'(.)}, \ell^{s'}\right)}$$

$$\le C\left(r(.), E\right) \, \|f\|_{\left(L^{r(.)}, \ell^{s}\right)}$$

for some C > 0 where $\frac{1}{r(.)} + \frac{1}{r'(.)} = \frac{1}{s} + \frac{1}{s'} = 1$ and $C = C(r(.), E) = c \|\chi_E\|_{(L^{r'(.)}, \ell^{s'})}$.

3 References

- I. Aydin, On variable exponent amalgam spaces, Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica 20(3) (2012), 5-20. [1]
- I. Aydin, On vector-valued classical and variable exponent amalgam spaces, Commun.Fac. Sci. Univ. Ank. Series A1 **66**(2) (2017), 100-114. I. Aydin, A. T. Gurkanli, Weighted variable exponent amalgam spaces $W(L^{p(x)}; L^q_w)$, Glasnik Matematicki **47**(67) (2012), 165-174. L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(.)}$, Mathematical Inequalities and Applications **7** (2004), 245-253. [2]
- [3]
- [4]
- D. Edmunds, J. Lang, A. Nekvinda, On L^{p(x)} norms, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 455 (1999), 219-225. [5] [6]
- [7]
- D. Lammus, J. Lamg, A. INEKVINGA, On L¹ Controls, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 455 (1999), 219-225.
 H. G. Feichtinger, Banach convolution algebras of Wiener type, In: Functions, Series, Operators, Proc. Conf. Budapest 38, Colloq. Math. Soc. Janos Bolyai (1980), 509-524.
 J. J. Fournier, J. Stewart, Amalgams of L^P and l^Q, Bull. Amer. Math. Soc. 13 (1985), 1-21.
 A. T. Gurkanli, The amalgam spaces W(L^{P(x)}; L^{Pn}) and boundedness of Hardy-Littlewood maximal operators, Current Trends in Analysis and Its Applications: Proceedings of the 9th ISAAC Congress, Krakow (2013). [8]
- [9]
- A. T. Gurkanli, I. Aydin, On the weighted variable exponent amalgam space $W(L^{p(x)}, L^{q}_{m})$, Acta Mathematica Scientia **34B**(4) (2014), 1-13. C. Heil, An introduction to weighted Wiener amalgams, In: Wavelets and their applications (Chennai, January 2002), Allied Publishers, New Delhi (2003), 183-216. [10]
- [11] F. Holland, Harmonic analysis on amalgams of L^p and l^q , J. London Math. Soc. 2(10) (1975), 295-305. [12] O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41(116)(4) (1991), 592-618.
- [13] N. Wiener, On the representation of functions by trigonometrical integrals, Math. Z. 24 (1926), 575-616.