Conference Proceedings of Science and Technology, 2(1), 2019, 22–26

Conference Proceeding of 2nd International Conference on Mathematical Advances and Applications (ICOMAA 2019).

Amalgam Spaces With Variable Exponent ISSN: 2651-544X

http://dergipark.gov.tr/cpost

*Ismail Aydın*¹ *Cihan Unal*2,[∗]

¹ *Department of Mathematics, Faculty of Science and Arts, Sinop University, Sinop, Turkey, ORCID:0000-0001-8371-3185*

² *Department of Mathematics, Faculty of Science and Arts, Sinop University, Sinop, Turkey, ORCID:0000-0002-7242-393X * Corresponding Author E-mail: cihanunal88@gmail.com*

Abstract: Let $1 \le s < \infty$ and $1 \le r(.) \le \infty$ where $r(.)$ is a variable exponent. In this study, we consider the variable exponent amalgam space $\bigl(L^{r(.)},\ell^s\bigr)$. Moreover, we present some examples about inclusion properties of this space. Finally, we obtain that the space $\bigl(L^{r(.)},\ell^s\bigr)$ is a Banach Function space.

Keywords: Amalgam space, Banach space, Variable exponent.

1 Introduction

The amalgam of L^p and l^q on the real line is the space (L^p, l^q) (\mathbb{R}) (or briefly (L^p, l^q)) consisting of functions f which are locally in L^p and have l^q behavior at infinity. Several authors studied special cases of amalgams on some sets including $\mathbb R$ and a locally compact abelian group G. The first appearance of amalgam spaces can be traced to Wiener [13]. A generalization Wiener's definition was given by Feichtinger in [6], and it can be found a good summary of some results about amalgam spaces in [10], [11]. For a historical background of classical amalgams we refer [7]. The variable exponent Lebesgue spaces $L^{p(.)}$ and the classical Lebesgue spaces L^p have many common properties but a significant difference between these spaces is that $L^{p(.)}$ is not invariant under translation in general, see [4], [12]. Recently, there are many interesting and important papers appeared in variable exponent amalgam space $(L^{r(.)}, \ell^s)$ such as Aydin [1], Aydin and Gurkanli [3], Gurkanli and Aydin [9].

2 Main results

Definition 1. *For a measurable function* $r(.)$: $\mathbb{R} \to [1,\infty)$ *(called a variable exponent on* \mathbb{R} *), we put*

$$
r^{-} = \underset{x \in \mathbb{R}}{\text{essinf}} r(x), \qquad r^{+} = \underset{x \in \mathbb{R}}{\text{esssup}} r(x).
$$

Also the convex modular function $\varrho_{r(.)}$ is defined as

$$
\varrho_{r(.)}(f) = \int_{\mathbb{R}} |f(x)|^{r(x)} dx.
$$

The variable exponent Lebesgue space $L^{r(.)}(\mathbb{R})$ is defined as the set of all measurable functions f on $\mathbb R$ such that $\varrho_{r(.)}(\lambda f)<\infty$ for some λ > 0*, equipped with the Luxemburg norm*

$$
||f||_{r(.)} = \inf \left\{ \lambda > 0 : \varrho_{r(.)} \left(\frac{f}{\lambda} \right) \le 1 \right\}.
$$

Let $r^+<\infty$. Then $f\in L^{r(.)}(\mathbb R)$ if and only if $\varrho_{r(.)}(f)<\infty$, that is, the norm topology is equivalent to modular topology. The space $L^{r(.)}(\mathbb R)$ is a Banach space with respect to $\|.\|_{r(.)}$. Moreover, it is well known that if we take $r(.) = r$ (const.), then the space $L^{r(.)}(\R)$ coincides with the classical Lebesgue space $L^r(\mathbb{R}),$ see [12]. In this paper, we will assume that $r^+ < \infty.$

Definition 2. Let $1\leq r(.)$, $s<\infty$ and $J_k=[k,k+1)$, $k\in\mathbb{Z}$. The variable exponent amalgam space $(L^{r(.)},\ell^s)$ is a normed space defined *as*

$$
\left(L^{r(.)}, \ell^s\right) = \left\{f \in L_{loc}^{r(.)}\left(\mathbb{R}\right) : \|f\|_{\left(L^{r(.)}, \ell^s\right)} < \infty\right\},\
$$

where

$$
||f||_{\left(L^{r(\cdot)},\ell^s\right)} = \left(\sum_{k\in\mathbb{Z}}||f\chi_{J_k}||_{r(\cdot)}^s\right)^{\frac{1}{s}}.
$$

It is well known that $(L^{r(.)}, \ell^s)$ does not depend on the particular choice of J_k . This follows J_k can be equal to $[k, k+1)$, $[k, k+1]$ or $(k, k + 1)$. *Thus, we have same amalgam spaces* $(L^{r(\cdot)}, \ell^s)$.

Theorem 1. The space $(L^{r(.)}, \ell^s)$ is a Banach space with respect to the norm $\|.\|_{(L^{r(.)}, \ell^s)}$.

Proof: Let ${f_n}_{n \in \mathbb{N}}$ be a Cauchy sequence in $(L^{r(.)}, \ell^s)$. Then given $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that if $n, m \ge N$, then we have

$$
||f_n - f_m||_{(L^{r(\cdot)}, \ell^s)} = \left(\sum_{k \in \mathbb{Z}} ||f_n - f_m||_{r(\cdot), J_k}^s\right)^{\frac{1}{s}} < \varepsilon.
$$
\n(1)

Hence, for any fixed k , we get

$$
||f_n - f_m||_{r(.), J_k} < \varepsilon \ \ (n, m \ge N).
$$

Thus ${f_n}_{n\in\mathbb{N}}$ is a Cauchy sequence in $L^{r(.)}(J_k)$ for $k\in\mathbb{Z}$. Let us define $f=\sum_{k=1}^{\infty}$ $k\overline{\in}\mathbb{Z}$ $f^k \chi_{J_k}$ where $f^k \in L^{r(.)}$ (J_k) . Now, we will show that $f \in (L^{r(.)}, \ell^s)$. Using Fatou's Lemma (applied to the right-hand series viewed as integral over the integers), we obtain

$$
||f||_{(L^{r(\cdot)},\ell^{s})}^{s} = \sum_{k \in \mathbb{Z}} ||f^{k}||_{r(\cdot),J_{k}}^{s} = \sum_{k \in \mathbb{Z}} \lim_{n \to \infty} ||f_{n}||_{r(\cdot),J_{k}}^{s}
$$

$$
\leq \lim_{n \to \infty} \inf ||f_{n}||_{(L^{r(\cdot)},\ell^{s})}^{s}.
$$
 (2)

Since ${f_n}_{n\in\mathbb{N}}$ is a Cauchy sequence (hence ${f_n}_{n\in\mathbb{N}}$ is bounded in norm), the last quantity is finite. Therefore, the left side of (2) is finite, that is, $f \in \left(L^{r(.)}, \ell^s \right)$. By (1), we have

$$
||f_m - f||_{r(.), J_k}^s = \lim_{n \to \infty} ||f_m - f_n||_{r(.), J_k}^s
$$

and

$$
\|f_m - f\|_{(L^{r(\cdot)}, \ell^s)}^s = \sum_{k \in \mathbb{Z}} \lim_{n \to \infty} \|f_m - f_n\|_{r(\cdot), J_k}^s
$$

$$
\leq \lim_{n \to \infty} \inf \sum_{k \in \mathbb{Z}} \|f_m - f_n\|_{r(\cdot), J_k}^s
$$

$$
< \varepsilon
$$

for $m \ge N$. Thus the Cauchy sequence ${f_n}_{n \in \mathbb{N}}$ converges to f, which is desired result.

Now, we will show that $L^{r(.)} \neq (L^{r(.)}, \ell^s)$ and that these two spaces are not translation invariant in general. Also, we will prove new two examples which are associated with this.

Example 1. *Let* $r(.) : \mathbb{R} \to [0, \infty)$ *be a function such that for* $k \in \mathbb{Z}$

$$
r(x) = \begin{cases} 1, & x \in A_k = [2k - 1, 2k) \\ 2, & x \in B_k = [2k - 2, 2k - 1) \end{cases}
$$

Hence, we have $r^+ < \infty$ and $A_k \cap B_k = \phi$ for all $k \in \mathbb{Z}$. Also let us define a function f as

$$
f(x) = \begin{cases} 0, & x \in A_k, k \in \mathbb{N} \\ \frac{1}{k}, & x \in B_k, k \in \mathbb{N}, (k \neq 0) \\ 0, & x < 0 \ (x \notin A_k \cup B_k) \end{cases}
$$

Therefore, we have

$$
\varrho_{r(.)}(f) = \int_{\mathbb{R}} |f(x)|^{r(x)} dx = \sum_{k=1}^{\infty} \int_{J_k} |f(x)|^{r(x)} dx
$$

$$
= \sum_{k=1}^{\infty} \int_{J_k \cap B_k} |f(x)|^{r(x)} dx
$$

$$
= \sum_{k=1}^{\infty} \int_{B_k} \frac{1}{k^2} dx = \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty.
$$

This follows that $f \in L^{r(.)}(\mathbb{R})$. *Now, we will show that* $f \notin (L^{r(.)}, \ell^1)$. *By using the definition of* $\|.\|_{(L^{r(.)}, \ell^1)}$, *we obtain*

$$
||f||_{(L^{r(\cdot)}, \ell^{1})} = \sum_{k \in \mathbb{Z}} ||f \chi_{[k, k+1)}||_{r(.)} = \sum_{k=1}^{\infty} ||f \chi_{[2k-2, 2k-1)}||_{r(.)}
$$

$$
= \sum_{k=1}^{\infty} ||f \chi_{[2k-2, 2k-1)}||_{2}
$$

$$
= \sum_{k=1}^{\infty} \left(\int_{2k-2}^{2k-1} \frac{1}{k^{2}} dx \right)^{\frac{1}{2}} = \sum_{k=1}^{\infty} \frac{1}{k} = \infty.
$$

Therefore, we have $f \notin (L^{r(.)}, \ell^1)$.

Example 2. *Let* $r(.) : \mathbb{R} \to [0, \infty)$ *be a function such that for* $k \in \mathbb{Z}$

$$
r(x) = \begin{cases} 1, & x \in A_k = [2k+1, 2(k+1)) \\ 2, & x \in B_k = [2k, 2k+1) \end{cases}
$$

Then, we define the space as

$$
L^{r(.)}(\mathbb{R}) = \left\{ f : f = f_1 + f_2, \ f_1 \in L^1(\mathbb{R}), f_2 \in L^2(\mathbb{R}), \text{supp} f_1 = \cup_{k \in \mathbb{Z}} A_k \text{ and } \text{supp} f_2 = \cup_{k \in \mathbb{Z}} B_k \right\}.
$$

If we denote T_1f as the translation of given any function $f \in L^{r(.)}(\mathbb{R})$, then we obtain

$$
T_1 f(x) = \begin{cases} f(x+1) = f_2(x), & x \in A_k \\ f(x+1) = f_1(x), & x \in B_k \end{cases}
$$

.

.

.

.

It is easy to see that $T_1f \notin L^{r(.)}(\mathbb{R})$.That means the space $L^{r(.)}(\mathbb{R})$ is not translation invariant. Now, we quote this idea to the amalgam space. To show this we take same function $r(.)$ and same space $L^{r(.)}(\mathbb{R})$. Let $p>1$. Let us define a function f as

$$
f(x) = \begin{cases} 0, & x \in A_k \\ \frac{1}{(k+1)^p}, & x \in B_k \\ 0, & x < 0 \ (x \notin A_k \cup B_k) \end{cases}
$$

Then, we obtain

$$
||f||_{(L^{r(\cdot)}, \ell^1)} = \begin{cases} \sum_{k \in \mathbb{Z}} \left\{ \int_{k}^{k+1} |f(x)|^2 dx \right\}^{\frac{1}{2}} = \sum_{k=1}^{\infty} \frac{1}{(k+1)^p} < \infty, & x \in B_k \\ 0, & x \in A_k \end{cases}
$$

Therefore we have $f \in \left(L^{r(.)},\ell^{1} \right)$. By the definition of $T_{1}f$, we get

$$
T_1 f(x) = \begin{cases} f(x+1) = \frac{1}{(k+1)^p}, & x \in A_k \\ 0, & x \in B_k \end{cases}
$$

This follows that

$$
||T_1 f||_{(L^{r(\cdot)}, \ell^1)} = \begin{cases} \sum_{k \in \mathbb{Z}} \begin{cases} k+1 \\ k \end{cases} |f(x+1)| dx \end{cases} = \sum_{k=1}^{\infty} \frac{1}{(k+1)^p} < \infty, \quad x \in A_k
$$

 $x \in B_k$

Therefore, we have $T_1f\in \left(L^{r(\cdot)},\ell^1\right)$. This follows that the space $\left(L^{r(\cdot)},\ell^1\right)$ is translation invariant. As an alternative method, it is easy to see that $(L^1,\ell^1)=L^1$ or $(L^2,\ell^1)\subset L^1$ and the space L^1 is translation invariant. Therefore, the same result is satisfied.

Remark 1. If we consider the Theorem 3.3 in [8], then $L^{r(.)} = (L^{r(.)}, \ell^s)$ holds for some special cases. Therefore, the amalgam space $(L^{r(.)}, \ell^s)$ is not translation invariant in general.

Definition 3. $L_c^{r(.)}(\mathbb{R})$ denotes the functions f in $L^{r(.)}(\mathbb{R})$ such that supp $f \subset \mathbb{R}$ is compact, that is,

$$
L_c^{r(.)}(\mathbb{R}) = \left\{ f \in L^{r(.)}(\mathbb{R}) : \text{supp } f \text{ compact} \right\}.
$$

Now, let $K \subset \mathbb{R}$ *be given. The cardinality of the set*

$$
S(K) = \{J_k : J_k \cap K \neq \varnothing\}
$$

is denoted by $|S(K)|$ *where* ${J_k}_{k \in \mathbb{Z}}$ *is a collection of intervals* $J_k = [k, k + 1] = k + [0, 1]$ *, and also cover* R.

The following proposition was proved by Aydin [2].

Proposition 1. If $g \in L_c^{r(.)}(\mathbb{R})$ and K is the compact support of g, then we have

 (i) $||g||_{(L^{r(\cdot)},\ell^s)} \leq |S(K)|^{\frac{1}{s}} ||g||_{r(.)}$ for $1 \leq s < \infty$. (ii) $||g||_{(L^{r(.)},\ell^{\infty})} \leq |S(K)| ||g||_{r(.)}$.

Moreover, we have $L_c^{r(.)}(\mathbb{R}) \subset (L^{r(.)}(\mathbb{R}), \ell^s)$ for $1 \leq s \leq \infty$.

The main result of this study is to show that the space $(L^{r(.)}, \ell^s)$ be a special case of Banach function space, in other words, the norm of $(L^{r(.)}, \ell^s)$ satisfies the following properties, where f, g, f_n in $(L^{r(.)}, \ell^s)$ for all $n \in \mathbb{N}$, $\lambda \geq 0$ and E is any measurable subset of R $(|E| < \infty)$:

1. $||f||_{(L^{r(\cdot)},\ell^{s})} \geq 0$ 2. $||f||_{(L^{r(\cdot)},\ell^{s})}$ = 0 if and only if $f = 0$ a.e. in $\mathbb R$ 3. $\|\lambda f\|_{(L^{r(\cdot)},\ell^s)} = \lambda \|f\|_{(L^{r(\cdot)},\ell^s)}$ 4. $||f + g||_{(L^{r(\cdot)}, \ell^{s})} \leq ||f||_{(L^{r(\cdot)}, \ell^{s})} + ||g||_{(L^{r(\cdot)}, \ell^{s})}$
5. If $|g| \leq |f|$ a.e. in R, then $||g||_{(L^{r(\cdot)}, \ell^{s})} \leq ||f||_{(L^{r(\cdot)}, \ell^{s})}$ 6. If $0 \le f_n \uparrow f$ a.e. in \mathbb{R} , then $||\hat{f}_n||_{(L^{r(\cdot)},\ell^s)} \uparrow ||\hat{f}||_{(L^{r(\cdot)},\ell^s)}$ 7. $\|\chi_E\|_{(L^{r(\cdot)},\ell^s)} < \infty$ $8. \int$ E $|f|\,dx \leq C\left(r(.),E\right)\|f\|_{\left(L^{r(.)},\ell^s\right)}$ for some $C > 0$.

Theorem 2. The space $(L^{r(.)}, \ell^s)$ is a Banach Function space with respect to the norm $\|.\|_{(L^{r(.)}, \ell^s)}$.

Proof: We have to prove the properties (1)-(8). The first three properties follow directly from the definition of the norm $\|.\|_{(L^{r(\cdot)},\ell^s)}$.

Proof of Property 4. Let $f, g \in (L^{r(.)}, \ell^s)$ be given. It is well known that $f, g \in (L^{r(.)}, \ell^s)$ if and only if $\left\{ \left\Vert f\right\Vert _{r(.),J_{k}}\right\}$ $_{k\in Z}$, $\left\{ \|g\|_{r(.), J_k} \right\}$ $k \in \mathbb{Z} \in \ell^s(\mathbb{Z})$. Then we have

$$
||f + g||_{(L^{r(\cdot)}, \ell^s)} = ||||f + g||_{r(\cdot), J_k}||_{\ell^s}
$$

\n
$$
\leq ||||f||_{r(\cdot), J_k} + ||g||_{r(\cdot), J_k}||_{\ell^s}
$$

\n
$$
\leq ||||f||_{r(\cdot), J_k}||_{\ell^s} + ||||g||_{r(\cdot), J_k}||_{\ell^s}
$$

\n
$$
= ||f||_{(L^{r(\cdot)}, \ell^s)} + ||g||_{(L^{r(\cdot)}, \ell^s)}.
$$

Proof of Property 5. Let $|g| \leq |f|$. Then we obtain

$$
\|g\|_{(L^{r(\cdot)},\ell^s)} = \left\| \|g\|_{r(\cdot),J_k} \right\|_{\ell^s}
$$

$$
\leq \left\| \|f\|_{r(\cdot),J_k} \right\|_{\ell^s} = \|f\|_{(L^{r(\cdot)},\ell^s)}.
$$

Proof of Property 6. It is well known that $L^{r(\cdot)}$ is a BF-space by Proposition 1.3 in [5]. Since $0 \le f_n \uparrow f$ a.e. in \mathbb{R} , then $||f_n||_{r(\cdot),J_k} \uparrow$ $||f||_{r(.), J_k}$. If we consider this property for ℓ^s , we have

$$
||f_n||_{(L^{r(\cdot)},\ell^s)} = ||||f_n||_{r(\cdot),J_k}||_{\ell^s} \uparrow ||||f||_{r(\cdot),J_k}||_{\ell^s} = ||f||_{(L^{r(\cdot)},\ell^s)}.
$$

Proof of Property 7. Since $|E| < \infty$ and $\text{supp}\chi_E = \overline{E} \subset \mathbb{R}$ is compact, then $\chi_E \in L_c^{r(.)}(\mathbb{R})$ and

$$
\left\|\chi_E\right\|_{\left(L^{r(.)},\ell^s\right)} \le \left|S(E)\right|^{\frac{1}{s}} \left\|\chi_E\right\|_{r(.), E} < \infty
$$

by Proposition 1.

Proof of Property 8. By Hölder's inequality for variable exponent amalgam spaces (see, Corollary 2.4, [3]), we get

$$
\int_{E} |f| dx = \int_{\mathbb{R}} |f \chi_{E}| dx \leq c ||f||_{(L^{r(\cdot)}, \ell^{s})} ||\chi_{E}||_{(L^{r'(\cdot)}, \ell^{s'})}
$$
\n
$$
\leq C (r(\cdot), E) ||f||_{(L^{r(\cdot)}, \ell^{s})}
$$

for some $C > 0$ where $\frac{1}{r(.)} + \frac{1}{r'(.)} = \frac{1}{s} + \frac{1}{s'} = 1$ and $C = C(r(.), E) = c \|\chi_E\|_{(L^{r'(.)}, \ell^{s'})}$

.

3 References

- [1] I. Aydin, *On variable exponent amalgam spaces*, Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica 20(3) (2012), 5-20.
- [2] I. Aydin, *On vector-valued classical and variable exponent amalgam spaces*, Commun.Fac. Sci. Univ. Ank. Series A1 66(2) (2017), 100-114.

[3] I. Aydin, A. T. Gurkanli, Weighted variable exponent amalgam spaces $W(L^{p(x$
- [3] I. Aydin, A. T. Gurkanli, Weighted variable exponent amalgam spaces $W(L^{p(x)}; L^q_w)$, Glasnik Matematicki 47(67) (2012), 165-174.
[4] L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(x)}$, Mathematical Ine
-
- [5] D. Edmunds, J. Lang, A. Nekvinda, *On L^{p(x)} norms*, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 455 (1999), 219-225.
- [7] J. J. Fournier, J. Stewart, *Amalgams of* L^p and ℓ^q , Bull. Amer. Math. Soc. 13 (1985), 1-21.
- [6] H. G. Feichtinger, *Banach convolution algebras of Wiener type*, In: Functions, Series, Operators, Proc. Conf. Budapest **38**, Colloq. Math. Soc. Janos Bolyai (1980), 509-524.

[7] J. J. Fournier, J. Stewart, *Amalgams* [8] A. T. Gurkanli, *The amalgam spaces* $W(L^{p(x)}; L^{\{p_n\}})$ and boundedness of Hardy-Littlewood maximal operators, Current Trends in Analysis and Its Applications: Proceedings of the 9th ISAAC Congress, Krakow (2013).
-
- [9] A. T. Gurkanli, I. Aydin, *On the weighted variable exponent amalgam space* $W(L^{p(x)}, L^q_m)$, Acta Mathematica Scientia **34B**(4) (2014), 1-13.
[10] C. Heil, *An introduction to weighted Wiener amalgams*, In: Wavelets and
-
- [12] O. Kováčik, J. Rákosník, *On spaces* $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. 41(116)(4) (1991), 592-618. [13] N. Wiener, *On the representation of functions by trigonometrical integrals*, Math. Z. 24 (1926), 575-616.