Conference Proceedings of Science and Technology, 2(1), 2019, 61–63

Conference Proceeding of 2th International Conference on Mathematical Advences and Applications (ICOMAA-2019).

Negative Coefficient of Starlike Functions of Order 1/2

ISSN: 2651-544X

http://dergipark.gov.tr/cpost

*Hasan ¸Sahin*1,[∗] *Ismet Yıldız*¹ *Umran Menek*¹

¹ *Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey, ORCID:0000-0002-5227-5300 * Corresponding Author E-mail: hasansahin13@gmail.com*

Abstract: A function $g(z)$ is said to be univalent in a domain D if it provides a one-to-one mapping onto its image, $g(D)$. Geometrically , this means that the representation of the image domain can be visualized as a suitable set of points in the complex plane. We are mainly interested in univalent functions that are also regular (analytic, holomorphik) in U . Without lost of generality we assume D to be unit disk $U = \{z : |z| < 1\}$. One of the most important events in the history of complex analysis is Riemann's mapping theorem, that any simply connected domain in the complex plane C which is not the whole complex plane, can be mapped by any analytic function univalently on the unit disk U . The investigation of analytic functions which are univalent in a simply connected region with more than one boundary point can be confined to the investigation of analytic functions which are univalent in U . The theory of univalent functions owes the modern development the amazing Riemann mapping theorem. In 1916, Bieberbach proved that for every $g(z)=z+\sum_{n=2}^{\infty}a_nz^n$ in class S , $|a_2|\leq 2$ with equality only for the rotation of Koebe function $k(z)=\frac{z}{(1-z)^2}$. We give an example of this univalent function with negative coefficients of order $\frac{1}{4}$ and we try to explain $B_{\frac{1}{4}}\left(1,\frac{\pi}{3},-1\right)$ with convex functions.

Keywords: Class s, Convex functions, Univalent functions.

1 Introduction

Let A denote the class of functions $f(z)$ of the form

$$
f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (n \in \mathbb{N} = \{1, 2, 3, ...\}).
$$

 $f(z)$ is a function in unit disk $U = \{z : |z| < 1\}$ and analytic.

Let $A(n)$ denote the subclass of A consisting of functions of form

$$
f(z) = z - \sum k = n + 1^{\infty} a_k z^k \quad (a_k \ge 0, \ n \in \mathbb{N} = \{1, 2, 3, ...\}).
$$

Let $T(n)$ denote the subclass of $A(n)$ consisting of functions which are univalent in U. Further a function in $T(n)$ is said to be starlike of order $\frac{1}{2}$ if and only if

$$
\frac{zf'(z)}{f(z)} > \frac{1}{2} \left(z \in U \right)
$$

and such a subclass of $A(n)$ consisting of all the starlike functions of order $\frac{1}{2}$ is denote by $T_{\frac{1}{2}}(n)$. Also, $f(z) \in T(n)$ is said to be convex of order $\frac{1}{2}$ if and only if satisfies

$$
\Re\Big(1+\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\Big)>\frac{1}{2}\,(z\in U)
$$

and the subclass by $C_{\frac{1}{2}}(n)$ [1][2][3][6].

2 For $n = 1$, these notations are usually used as $T_{\frac{1}{2}}(1) = T^* \left(\frac{1}{2} \right)$ 2 and $C_{\frac{1}{2}}(n) = C^* \left(\frac{1}{2} \right)$ 2 $\Big)$ [5].

Theorem 1. A function $f(z)$ in $A(n)$ is in $T_{\frac{1}{2}}(n)$ if and only if

$$
\sum_{k=n+1}^{\infty} (k - \frac{1}{2}) a_k \le 1 - \frac{1}{2} = \frac{1}{2} [1].
$$

Theorem 2. A function $f(z)$ in $A(n)$ is in $C_{\frac{1}{2}}(n)$ if and only if

$$
\sum_{k=n+1}^{\infty} \left(k - \frac{1}{2} \right) a_k \le 1 - \frac{1}{2} = \frac{1}{2} [1].
$$

We introduced the subclass $A(n,\theta)$ of A, and the subclass $T^*_{\frac{1}{2}}(n,\theta)$ and $C_{\frac{1}{2}}(n,\theta)$ of $A(n,\theta)$ in the following manner. Let $A(n,\theta)$ denote the subclass of A consisting of function of the form

$$
f(z) = z - \sum_{k=n+1}^{\infty} e^{i(k-1)\theta} a_k z^k \quad (a_k \ge 0, \ n \in \mathbb{N}) \ [4].
$$

We note that $A(n, \theta) = A(n)$, that is $A(n, 0)$ is the subclass of analytic functions with negative coefficients. We denote by $T^*_{\frac{1}{2}}(n, \theta)$ and $C_{\frac{1}{2}}(n,\theta)$ the subclass of $A(n,\theta)$ of starlike and convex functions of order $\frac{1}{2}$ in U.

Theorem 3. A function $f(z)$ in $A(n, \theta)$ is in $T_{\frac{1}{2}}^{*}(n, \theta)$ if and only if

$$
\sum_{k=n+1}^{\infty} \left(k - \frac{1}{2} \right) a_k \le 1 - \frac{1}{2} = \frac{1}{2} [4].
$$

Theorem 4. A function $f(z)$ in $A(n, \theta)$ is in $C_{\frac{1}{2}}(n, \theta)$ if and only if

$$
\sum_{k=n+1}^{\infty} k\left(k-\frac{1}{2}\right)a_k \le 1 - \frac{1}{2} = \frac{1}{2}[4].
$$

Theorem 5. $f(z) \in A_{\frac{1}{2}}(n, \theta, h)$, *then* $f(z) \in T_{\frac{1}{2}}^{*}(n, \theta)$.

Proof:

$$
\sum_{k=n+1}^{\infty} \left(k - \frac{1}{2}\right) a_{k,h} = \sum_{k=n+1}^{\infty} \left(k - \frac{1}{2}\right) \frac{\frac{1}{4}}{\left(k+h - \frac{1}{2}\right)\left(k+h + \frac{1}{2}\right)\left(k - \frac{1}{2}\right)}
$$

$$
= \frac{1}{4} \sum_{k=n+1}^{\infty} \left(\frac{2}{2k+2h-1} - \frac{2}{2k+2h+1}\right) = \frac{1}{4} \frac{1}{n+h + \frac{1}{2}} = \frac{1}{4n+4h+2}
$$

$$
= \begin{cases} \frac{(1/2)^2}{1/2} = \frac{1}{2}, & h = -n, \\ \frac{(1/2)^2}{n+h + 1/2} < \frac{(1/2)^2}{1/2} = \frac{1}{2}, & h > -n. \end{cases}
$$

Hence we know that $f(z)$ is an element of $T_{\frac{1}{2}}^*$ (n, θ) .

Theorem 6. *(Main theorem)* If $f(z) \in A_{\frac{1}{2}}\left(1, \frac{\pi}{3}\right)$ $(\frac{\pi}{3},0)$, then we have starlike function and $A_{\frac{1}{2}}\left(1,\frac{\pi}{3}\right)$ $\left(\frac{\pi}{3},0\right) \in S^*.$ √ √ √

$$
f(z) = z - \frac{1 + i\sqrt{3}}{45}z^{2} + \frac{1 - i\sqrt{3}}{45}z^{3} - \frac{2}{45}z^{4} - \frac{1 + i\sqrt{3}}{45}z^{5} - \dots
$$

Proof: Let $f(z) \in A_{\frac{1}{2}}\left(1, \frac{\pi}{3}\right)$ $\left(\frac{\pi}{3},0\right)$ denote the subclass of $A\left(1,\frac{\pi}{3}\right)$ 3 consisting of functions of the form

$$
f(z) = z - \sum_{k=n+1}^{\infty} e^{i(k-1)\theta} a_k z^k \quad (h \ge -n, \ n \in \mathbb{N} = \{1, 2, 3, \ldots\})
$$

where

$$
a_{k,h} = a_{2,0} = \frac{\left(1 - \frac{1}{2}\right)}{2\left(2 + 0 - \frac{1}{2}\right)\left(2 + 0 + 1 - \frac{1}{2}\right)\left(2 - \frac{1}{2}\right)} = \frac{\frac{1}{4}}{\frac{45}{8}} = \frac{2}{45}.
$$

$$
f(z) = z - \sum_{k=n+1}^{\infty} e^{i(k-1)\theta} \frac{2}{45} \quad (h \ge -n, n \in \mathbb{N}, n \ge 1)
$$

$$
= z - \frac{2\left(\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)}{45}z^2 + \frac{2\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)}{45}z^3 - \frac{-2}{45}z^4 - \dots
$$

$$
=z-\frac{2e^{\displaystyle i\frac{\pi}{3}}}{45}z^{2}+\frac{2e^{\displaystyle i\frac{\pi}{3}}}{45}z^{3}-\frac{2e^{\displaystyle i\frac{\pi}{3}}}{45}z^{4}-\frac{2e^{\displaystyle i\frac{\pi}{3}}}{45}z^{5}-\ldots \\ =z-\frac{1+i\sqrt{3}}{45}z^{2}+\frac{1-i\sqrt{3}}{45}z^{3}-\frac{2}{45}z^{4}-\frac{1+i\sqrt{3}}{45}z^{5}-\ldots
$$

We show the results we've achieved our proof. \Box

2 References

-
- [1] S. K. Chatterjea, *On starlike functions*, J. Pure Math. 1(1981), 23-26.
[2] S. Kiryakova, M. Saigo and S. Owa, *Distortion and characterization teorems for starlike and convex functions related to generalized fraction* Sci.1012(1997), 25-46.
- [3] T. Sekine, *On new generalized classes of analytic functions with negative coefficients*, Report Res. Inst. Sci. Tec. Nihon Univ. 35(1987), 1-26.
-
- [4] T. Sekine and S. Owa, *New problems of coefficients inequalities*, Publ. Res. Inst.Math. Sci. **1012**(1997), 164-176.
[5] H. Silverman, *Univalent functions with negative coefficients*, Proc. Amer. Math. Soc. **51**(1975)