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Abstract 

In this work, some estimates for the Bieberbach polynomial approximation of the conformal mapping of inside the 

finite simple connected region with simultaneously cusps onto the disc in the complex plane are obtained. 

Moreover, the speed of the approximation depends on the boundary property of the region.  
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Sıfır Açılı Bölgelerin içinde Bieberbach Polinomları ile Konform 

Dönüşümlerin Yaklaşımı 
 

 

Öz 

Bu çalışmada, kompleks düzlemin; sonlu, basit bağlantılı ve aynı zamanda hem iç sıfır açı hem de dış sıfır açıya 

sahip bölgelerin içerisinde konform dönüşümlere Bieberbach polinomlarıyla yaklaşımı için bazı hesaplamalar elde 

edimiştir. Ayrıca yaklaşımın hızı bölgenin sınır özelliğine bağlıdır.  

 
Anahtar kelimeler: Konform dönüşümler, yarıkonform eğri, Bieberbach Polinomları. 

 
1. Introduction 

 

1.1. Statement of the Problem 

 

For convenience, let us denote by G that  is a Jordan region in the z plane, which is bounded by 

rectifiable Jordan curve : G    and let 𝑧0 belongs to G. We know that there is a unique conformal 

function  0
;w z z  acting from G to the disk 

0
(0; )D r  normalized by  0 0

; 0,z z    0 0
; 1z z  . 

Let us also represent  by 
n

  the class of  all polynomials 
n

p with degree not exceeding n and satisfies 

the conditions 𝑝𝑛(𝑧0; 𝑧0) = 0, 𝑝՛𝑛(𝑧0; 𝑧0) = 1. The Bieberbach polynomials  0
;

n
z z  are solution of 

the extremal problem in the Bergman space. Furthermore, it is clear that Bieberbach polynomial has 

also a property for the minimization of the norm ‖𝜑՛ − 𝑝՛𝑛‖𝐿2(𝐺)  in the class 
n

 . 

 Let 𝑧0 ∈ 𝐵 an arbitrary closed disk subset of G. It  is obvious that if G  is a Caratheodory region, 

then ‖𝜑՛ − 𝑝՛𝑛‖𝐿2(𝐺) tends to zero as n , and so the Bieberbach sequence   0 1
;

n n
z z




goes 

uniformly convergence to 𝜑(𝑧; 𝑧0)  on compact subset of G . Therefore, all 
0

,z z B  

  

      
0

0 0
,

: sup ; ; 0.
n n

z z B

B z z z z  


     (1.1) 
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Keldych [15] was the first to investigate the uniform convergence of the Bieberbach 

polynomials in the region G . Furthermore, the improvements in such the extremal problem has been 

studied in [2,4,5,9-14,18,20-22] and the others. In the approximation theory, the rate of approximation 

of a given function in the region G  is better than the rate of the approximation in G . For which regions 

are this property valid with respect to the approximations by Bieberbach polynomials. Firstly, Suetin 

[21] studied this problem for regions G  with  1,C p   , 0, 0 1p     and obtained the 

following estimation for (1.1): 

 

    
   2 3 2

, .
p p

n
B c dist B n




   
      (1.2) 

 

Then, this research was investigated by [6,16] in various regions of the complex plane. In this work, we 

propose to study the assessment 

        , , ,q

n n
B c B B dist B       (1.3) 

 

where c is a constant, 0q  and 0,
n

   as n  in a different region. 

 The purpose of this study is to apply the problem (1.3) to the class of  𝑃�̃�(𝐾, 𝛼, 𝛽) defined in 
[3,7]. 

 

2. Main Theorems 

 

The next theorems are our main outcomes of this study:  
 

Theorem 2.1.  Let 𝐺 ∈ 𝑃�̃�(𝐾, 𝛼, 𝛽)  for some 1, 0 1 3K     and  0 1 3 2 .      Then there 

exists constant  c c   for any 2n   

    

1 3

2
3 1

ln
n

B c B
n






 




  
  

 
. 

 

Theorem 2.2.  Let  𝐺 ∈ 𝑃�̃�(𝐾, 𝛼, 0) for some 1K   and 0 1 2  . Then there exists constant 

 c c   for any 2n   

    

1 2

2
3 1

ln
n

B c B
n





 



  
  

 
 .  

 

Theorem 2.3.  Let  𝐺 ∈ 𝑃�̃�(𝐾, 0, 𝛽)  for some 1K  . Then there exists constant  c c   for any 2n   

     
2

1

5 213
2

1
ln

K

n
B c B n

n



 
  

  
 

 .  

 

3. Some Auxiliary Facts 

 

In this section, we need some auxiliary facts to obtain the main results. Throughout this study 

1 2 3
, , , ,...c c c c  denote positively fixed numbers and 

1 2 3
, , ,...    are small enough positively fixed. 

Moreover, positive constants are not necessarily the same at different places. The notation 𝑎 ≼ 𝑏 means 

that 
1

a c b for 
1

c , which is independent of a and .b  The symbol a b indicates that 
3 4

,c b a c b 

where 
3 4
,c c  does not depend on a and .b  
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For an arbitrary 
0

,z B  let  0 0
;w z z  be conformal mapping acting from G to the unit disc 

with the conditions    0 0 0 0 0 0
; 0, ; 0.z z z z    Whenever we write  0

w z , it will be understood 

that  0 0
;w z z  for a constant point 

0
.z   

Let  w z  be a conformal function acting from : extG   to  : : 1w w   , with the 

conditions    , 0
z

lim z z


     . We first need to convene on some notations for 0,   

 

Γ𝛿 ≔ {𝑧: |𝜑0(𝑧; 𝑧0)| = 𝛿,   𝛿 < 1} ,   Γ𝛿 ≔ {𝑧: |Φ(z)| = 𝛿,   𝛿 > 1} 

Γ1 = Γ ,   𝐺𝛿 ≔ 𝑖𝑛𝑡( Γδ),   Ω𝛿 ≔ 𝑒𝑥𝑡( Γδ) 
  

 We know that if   be a K  quasiconformal curve, then there is a  * .  quasiconformal 

reflection. By using the events in [8, p.76], it could be found  a  C K quasiconformal reflection   * .  

such that the next conditions   

 

 

 

  *

* * * 1

2
* * * 2 1

2 2
* * *

, ; 1, ,

, ; , ,

, ; : 1.

z z

z z z

z z

z z z

z z z

z z J


       

    

     



 

       

   

      

                      (3.1)  

 

are held in some neighborhood of Γ [1].  

 From now on, we will choose for simplicity the cusps of the class 𝑃�̃�(𝐾, 𝛼, 𝛽)  as in [7]. Thus, 
it could be obtained from [7, Lemma 2.1] 

 

d(z, Γ) ≼ (|φ0(z; z0)| − 1)K−2
;  

 |z − 1| ≼ |φ0(z; z0) − φ0(1; z0)|K−2
, |z + 1| > ε1 (3.2) 

d(z, Γ) ≼ (|Φ(z)| − 1)K−2
; 

|z + 1| ≼ |Φ(z) − Φ(−1)|K−2
, |z − 1| > ε2. 

 

Lemma 3.1. [7] Let 𝐺 ∈ 𝑃�̃�(𝐾, 𝛼, 𝛽)  for some 1, 0 1, 0K       and  t t  . Then  

 ‖𝐹𝛾
՛ ‖

𝐿2(𝐺)
≼ 𝑙

1−𝛼

2  

 

Lemma 3.2. [7] Let 𝐺 ∈ 𝑃�̃�(𝐾, 0, 𝛽)  for some 1, 0K    and    lnt t t





  . Then  

 ‖𝐹𝛾
՛ ‖

𝐿2(𝐺)
≼ 𝑙

1

2|𝑙𝑛𝑙|𝛽 

 

Lemma 3.3. [7] Let 𝐺 ∈ 𝑃�̃�(𝐾, 𝛼, 𝛽)  for some 1, 0, 0K     . Then for all ,G z    the 

following holds: 

   0 0 0 0
; ;z z z   ≼  

 
1

221

2

1

2

ln ; 0

; 0

z z
B

z



  


 




   


  

 

 

4. Approximation by Bieberbach Polynomials in the Bergman Space: 

 

Let us assume that a region 𝐺 ∈ 𝑃�̃�(𝐾, 𝛼, 𝛽), 𝐾 > 1, 𝛼 ≥ 0, 𝛽 > 0  is got as in [7]. Each , 1, 2j j   

is a
j

K  quasiconformal arc and  * .
j

  is a quasiconformal reflection across 
j . We also establish: 
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11 1 2

1

12 1 2

1

1 * 3 4

2 1

2 * 3 4

2 2

2
: : 1 ;

3

2
: : 1 ;

3

2
: : 1 ln 1 ;

3

2
: : 1 ln 1 .

3

c c
z x iy y x

c c
z x iy y x

c c
z x iy y x x

c c
z x iy y x x













 

 









 
     
 

 
     
 

 
       

 

 
       

 

 

Let 11 .R cn    It is also chosen points  , , 1,2i

j
z i j  such that these points are combined  

R
  

with i

j
 are  in the first such points in  

1

: : Im 0R R
z z    or 

2 1

: \R RR
    . These points divide 

R
  

into four parts:  1 1 1 1

1 2
: ,

R R
z z    with the endpoints 

1

1
z  and 

1

2
z ,  2 2 2 2

2 1
: , ,

R R
z z    3 3 2 1

1 1
: , ,

R R
z z    

 4 4 1 2

2 2
: ,

R R
z z      and 

4

1

: .j

R R
j

    Furthermore,  j

i
R  is a subset of 

j

i
  combining  ±1  with 

j

i
z ;  

   1 2
:j j j j

R R
L R R     and  : int .j j

j R
U L    

 

The conformal mapping 
0

  is extended to as follows: 

 

  
 

  

0 0

0 0 *

0 0

; ;
; :

; ; , 1,2
j j

z z z G
z z

o z z z U j




 

 
 

 

 (4.1) 

 

 Applying the Cauchy-Pompeiu’s formula [17, p.148] to the conformal mapping  0
z  we 

obtain for z G  

  
   

1 2
1 2

0,0 0 0

0 0

; ;1 1
; .

2
R R

U UL L

z z
z z d d

i z z





   
  

   

  
 

 

 

 Now consider above the notation we get  

 

 

 
      

 

 

1 2

2 0 0 0
0

0 0
, 1

00,

; 1;1 1
;

2 2

;1
,

j
R i

j

i j R

U U

zg z z
z z d d

i z i z

z
d

i z







  
  

   

 


 





 
   

 

 


 (4.2) 

where  

  

 

 

 

1 2

0 0

3

0 0 0

4

0 0

; ;

; : 1; ;

1; ;

R R

R

R

z

g z z

z

  

  

 

  


 
  

. 

 

Lemma 4.1.   Le 𝐺 ∈ 𝑃�̃�(𝐾, 𝛼, 𝛽)  for some 1, 0 1, 0K      . Then for any 2,n  we have 

  

    
 2

0 0
; ;

n L G
z z z z   ≼  

1
1

2
2

1

ln
B

n
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Lemma 4.2.   Let 𝐺 ∈ 𝑃�̃�(𝐾, 0, 𝛽)  for some 1, 0K   . Then for any 2,n   small enough 0   we 

have 

    
 2

0 0
; ;

n L G
z z z z   ≼   

2

1
1 3 2
2 2

1
ln

K

B n
n








  
 
 

 

 

Proof. The proof of the lemmas 4.1 and 4.2 will be made together, because there is no difference in their 
proofs. Furthermore, we use the standard method as in [5,9]. Since the first expression on the right hand 

of (4.2) is analytic in G , there exists a polynomial  n
p z [20, p.142] such that  

|
1

2𝜋𝑖
∫

g(ζ; z0)

(ζ − z)2
dζ − p՛n(z; z0)

 

Γ𝑅

| ≼
1

𝑛
  , z ∈ G̅                                                    (4.3) 

  

Thus from (4.3), we obtain    
 

   
 2

0 0 0
; ;

n L G
z z p z z  ≼ 

    
  

 

 

 
 

1 2

2
2

2 50 0 0 00,1

2 2
, 1 1

; 1 ; 1
:

j
i

j

k
i j kU UR

L G
L G

z z
n d d J

nz z






    
 

 



 

 
     

 
               (4.4) 

   

According to (3.1) and Lemma 3.3, we have for 1,2j   

                     *

0 0 0 0 0 0
; 1 ; 1

j
z z         ≼    

1 1

2 2
1

1 , jB R   


  ; 

        *

0 0 0 0 0 0
; 1 ; 1

j
z z           ≼      

1 1

2 22
2

1 ln 1 , .jB R


    


                (4.5) 

  

Then, we get from Lemma 3.1 and Lemma 3.2, with  ,
, , 1,2.i

j i j
l mes R i j   

 
   

  
 1

2

0 0 0

2

; 1

j
R

L G

z
d

z

  








≼  

1 1

2 2
1,

, 0 1, 0
i

B l


  




    (4.6) 

 
   

  
 2

2

0 0 0

2

; 1

j
R

L G

z
d

z

  




 



≼  

1 1

2 2
2, 2,

ln , 0, 0
i i

B l


  


   (4.7) 

 

and combining (4.4), (4.6) and (4.7), we get 

 
4

1
k

k

J


 ≼  

1

2
1,

1 1 1

2 2 2
1, 2, 2,

1

1

2
2, 2,

;0 1, 0

. ln ;0 1, 0

ln ; 0, 0.

i

n

i i i i
i

i i

l

B l l l X

l l








 

  

 









  


   


  


 (4.8) 

Moreover, from [7, Lemma 2.1] and (3.2), we get  2
,j jd z  ≼ 

2

1

Kn




 for arbitrary small 𝜀 > 0. 

Now, we use the qualities of the conformal mappings    0 0
, ;w z w z z   in a certain  

neighborhood of the cusp points and from (3.1) and [7, Lemma 2.3], we obtain 

 

𝑙𝑗,𝑖 ≼ |zj
i − (−1)j+1| ≼ {

(lnn)−α−1
; i = 1,2,   j = 1,   α > 0

d(z2, Γj) (−lnd(z2, Γj))
β

≼ (lnn)βn
ε−1
K2 ; i = 1,2,   j = 2,   β > 0.

     (4.9) 
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Then with the help of (4.6) and (4.7), we get  

 

 
   

  
 1

2

0 0 0

2

; 1

j
R

L G

z
d

z

  








≼   

1 1

2 2ln , 0 1, 0B n


  


    (4.10) 

 
   

  
 2

2

0 0 0

2

; 1

j
R

L G

z
d

z

  




 



≼   

2

1
1 3 2
2 2

1
ln , 0, 0

K

B n
n




  



  
  

 
. (4.11) 

 

Combining (4.10) and (4.11), we obtain 

 

 
4

1
k

k

J


 ≼  
 

 
2

1

2
1

2 1

3 2
2

ln ;0 1

.
1

ln ; 0, 0.
K

n

B

n
n












 







 


    

  

 (4.12) 

 

It is known that the Hilbert transformation is bounded linear operator and (3.1) yields 

 
5

J ≼   
1

2 2
*

0 0
1

,
j

j

mes U z 


 
 

 
 (4.13) 

Let us define the following statements  

  

      
1

* *

1 2 1
: : 1 ln , : \ , 1, 2, 0.j j j

j j j j
V U c n V U V j


    


        

   1: : 1 ; : , 1,2, 0.
j j

U V U U j            

 
Thus, from [2, Lemma 3.4] and (4.13), we get 

  0 1

jmes V ≼      
1

1 * 1

0 0
ln ; ,

j j
B n mes V z


  

 ≼    2

1
1

KB n





  

  * 1\
j j j

mes U V  ≼    2

1
1

KB n





  

Therefore, by (4.13) 

 
5

J ≼  
 

2

1

2
1

1

2

ln ; 0

; 0K

n
B

n




















 

 (4.14) 

 

Consequently, from (4.4), (4.12) and (4.14), we obtain for small enough 0    

 

 
 2

0 n L G
p  ≼  

 

    2

1

1 2

2

3 1

2 2

ln ;0 1, 0

ln 0, 0.K

n
B

n n





 

 


 








  


  

 (4.15) 

 

Now letting            0 0 0 0 0 0 0 0 0 0
; : ; ; ; ; ,

n n n n
p z z p z z p z z z z p z z z z       then 

 0 0
; 0,

n
p z z   0 0

; 1
n

p z z  and according to means value theorem, we get  

    
 2

0 0 0
; ;

n L G
z z p z z  ≼       

 2

1

0 0 0 0
1 ; ;

n L G
z z z p z z      (4.16) 

Since 
0 0

r   where    
1

0 0 0 0 0
,r z z z 



    , we let 
0

:
n n

s r p . Thus (4.16) yields 
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 2

0 0
; ;

n L G
z z s z z  ≼  

 

    2

1

1 2

2

3 1

2 2

ln ;0 1, 0

ln 0, 0.K

n
B

n n





 

 


 








  


  

 

Thus, by extremely property of the Bieberbach polynomials  0
,

n
z z , Lemmas 4.1 and 4.2 

are proved.  

 

5. The Proofs of the Main Theorems 2.1-2.3 
 

In this part, we implement a known process given in [16] to the proofs of the main results. 

 

Lemma 5.1. [16] let      
  

2

2

0 0
: sup ., ., : ,

n n o L G
B z z z B G      Ğ then  

 

 n
B ≼    2

0 n
z B  . 

 
 Now, the proofs of Theorems 2.1- 2.3 are got easily follow from Lemma 5.1 and Lemmas 4.1-

4.2, depending on the statement of the cusps.  
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