$$
\chi(Q)=\inf\left\{\varepsilon>0:Q\text{ has a finite }\varepsilon\text{-net in }X\right\}.
$$

The function $\chi : M_X \to [0, \infty)$ is called the Hausdorff measure of noncompactness [5].

If X and Y are normed spaces, $\mathcal{B}(X, Y)$ states the set of all bounded linear operators from X to Y and is also a normed space according to the norm $||L|| = \sup_{x \in S_X} ||L(x)||$, where S_X is a unit sphere in X, i.e., $S_X = \{x \in X : ||x|| = 1\}$. Further, a lineer operator $L: X \to Y$ is said to be compact if the sequence $(L(x_n))$ has convergent subsequence in Y for every bounded sequence $x = (x_n) \in X$. By $\mathcal{C}(X, Y)$ we denote the set of such operators.

The following results are need to compute Hausdorff measure of noncompactness.

c CPOST 2019 2008 2019 2010 2021 2032 2040 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2059 2059 2059 20

Conference Proceeding of 8th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2019).

Compact Operators in the Class $\left(\mathit{bv}_{k}^{\theta}, \mathit{bv}\right)$ sessi 2651-544X

*M. Ali Sarıgöl*1,[∗]

¹ *Department of Mathematics Pamukkale University TR-20007 Denizli TURKEY ORCID:0000-0002-4107-4669*

** Corresponding Author E-mail: msarigol@pau.edu.tr*

Abstract: The space bv of bounded variation sequence plays an important role in the summability. More recently this space has been generalized to the space bv_k^{θ} and the class $\left(bv_k^{\theta},bv\right)$ of infinite matrices has been characterized by Hazar and Sarıgöl [2]. In the present paper, for $1 < k < \infty$, we give necessary and sufficient conditions for a matrix in the same class to be compact, where θ is a sequence of positive numbers.

Keywords: Matrix transformations, Sequence spaces, bv^{θ}_k spaces.

1 Introduction

Let ω be the set of all complex sequences, ℓ_k and c be the set of k-absolutely convergent series and convergent sequences. In [2], the space bv_k^{ℓ} has been defined by

$$
b v_k^{\theta} = \left\{ x = (x_k) \in w : \sum_{n=0}^{\infty} \theta_n^{k-1} |\Delta x_n|^k < \infty, x_{-1} = 0 \right\},\,
$$

which is a BK space for $1 \le k < \infty$, where (θ_n) is a sequence of nonnegative terms and $\Delta x_n = x_n - x_{n-1}$ for all n.

Also, in the special case $\theta_n = 1$ for all n, it is reduced to bv^k , studied by Malkowsky, Rakočević and Živković [1], and $bv_1^{\theta} = bv$.

Let U and V be subspaces of w and $A = (a_{nv})$ be an arbitrary infinite matrix of complex numbers. By $A(x) = (A_n(x))$, we denote the A-transform of the sequence $x = (x_v)$, i.e.,

$$
A_n(x) = \sum_{v=0}^{\infty} a_{nv} x_v,
$$

provided that the series are convergent for $v, n \ge 0$. Then, A defines a matrix transformation from U into V, denoted by $A \in (U, V)$, if the sequence $Ax = (A_n(x)) \in V$ for all sequence $x \in U$.

Lemma 1.1 ([6]). Let $1 < k < \infty$ and $1/k + 1/k^* = 1$. Then, $A \in (\ell_k, \ell)$ if and only if

$$
||A||'_{(\ell_k, \ell)} = \left\{ \sum_{\nu=0}^{\infty} \left(\sum_{n=0}^{\infty} |a_{nv}| \right)^{k^*} \right\}^{1/k^*} < \infty
$$

and there exists $1 \leq \xi \leq 4$ such that $||A||'_{(\ell_k, \ell)} = \xi ||A||_{(\ell_k, \ell)}$

 $1/k^*$

If S and H are subsets of a metric space (X, d) and $\varepsilon > 0$, then S is called an ε -net of H, if, for every $h \in H$, there exists an $s \in S$ such that $d(h, s) < \varepsilon$; if S is finite, then the ε -net S of H is called a finite ε -net of H. By M_X , we denote the collection of all bounded subsets of X. If $Q \in M_X$, then the Hausdorff measure of noncompactness of Q is defined by

Conference Proceedings of Science and Technology, 2(3), 2019, 185–188

http://dergipark.gov.tr/cpost

Lemma 1.2 ([4]). Let X and Y be Banach spaces, $L \in \mathcal{B}(X, Y)$. Then, Hausdorff measure of noncompactness of L, denoted by $\|L\|_{\chi}$, is defined by

$$
\left\|L\right\|_{\chi} = \chi\left(L\left(S_X\right)\right),\,
$$

and

$$
L \in \mathcal{C}(X, Y) \text{ iff } ||L||_{\chi} = 0.
$$

Lemma 1.3 ([5]). Let Q be a bounded subset of the normed space X where $X = \ell_k$ for $1 \le k < \infty$. If $P_r : X \to X$ is the operator defined by $P_r(x) = (x_0, x_1, ..., x_r, 0, ...)$ for all $x \in X$, then

$$
\chi(Q) = \lim_{r \to \infty} \sup_{x \in Q} \left\| \left(I - P_r\right)(x) \right\|,
$$

where I is the identity operator on X .

Lemma 1.4 ([4]). Let X be normed sequence space, χ_T and χ denote Hausdorff measures of noncompactness on M_{χ_T} and M_X , the collections of all bounded sets in X_T and X, respectively. Then,

$$
\chi_{\scriptscriptstyle T}(Q)=\chi(T(Q))\text{ for all }Q\in M_{_{X_{\scriptscriptstyle T}}},
$$

where T is an infinite triangle matrix.

2 Compact operators on the space bv^{θ}_{k}

More recently the class $\left(bv^{\theta}_k,bv\right), 1 < k < \infty$, has been characterized by Hazar and Sarıgöl [2] in the following form. In the present paper, by computing Hausdorff measure of noncompactness, we characterize compact operators in the same class.

Theorem 2.1. Let $A = (a_{nv})$ be an infinite matrix of complex numbers for all $n, v \ge 0$ and $1 < k < \infty$. Then, $A \in (bv_k^{\theta}, bv)$ if and only if

$$
\lim_{n \to \infty} \sum_{j=\nu}^{\infty} a_{nj} \text{ exists for each } v \tag{2.1}
$$

$$
\sup_{m} \sum_{\nu=0}^{m} \left| \theta_{\nu}^{-1/k^*} \sum_{j=\nu}^{m} a_{nj} \right|^{k^*} < \infty \text{ for each } n
$$
\n(2.2)

$$
\sum_{\nu=0}^{\infty} \left(\sum_{n=0}^{\infty} \left| \theta_{\nu}^{1/k^*} \sum_{j=\nu}^{\infty} \left(a_{nj} - a_{n-1,j} \right) \right| \right)^{k^*} < \infty.
$$
\n(2.3)

Also, for special case $\theta_v = 1$, it is reduced to the following result of [1].

Corollary 2.2. Let $A = (a_{nv})$ be an infinite matrix of complex numbers for all $n, v \ge 0$ and $1 < k < \infty$. Then, $A \in (bv^k, bv)$ if and only if (2.1) holds,

$$
\sup_{m} \sum_{\nu=0}^{m} \left| \sum_{j=\nu}^{m} a_{nj} \right|^{k^*} < \infty \text{ for each } n,
$$

$$
\sum_{\nu=0}^{\infty} \left(\sum_{n=0}^{\infty} \left| \sum_{j=\nu}^{\infty} (a_{nj} - a_{n-1,j}) \right| \right)^{k^*} < \infty.
$$

Now we give the following theorem.

Theorem 2.3. Let $1 < k < \infty$ and $\theta = (\theta_n)$ be a sequence of positive numbers. If $A \in (bv_k^{\theta}, bv)$, then there exists $1 \le \xi \le 4$ such that

$$
||A||_{\chi} = \frac{1}{\xi} \lim_{r \to \infty} \left\{ \sum_{n=r+1}^{\infty} \left(\sum_{v=0}^{\infty} |d_{nv}| \right)^{k^*} \right\}^{1/k^*},
$$
\n(2.4)

and $A \in \mathcal{C}\left(bv_k^{\theta}, bv\right)$ if and only if

$$
\lim_{r \to \infty} \sum_{n=r+1}^{\infty} \left(\sum_{v=0}^{\infty} |d_{nv}| \right)^{k^*} = 0 \tag{2.5}
$$

where

$$
d_{nj} = \theta_j^{-1/k^*} \sum_{v=j}^{\infty} (a_{nv} - a_{n-1,v})
$$

Proof. Define $T_1 : bv_k^{\theta} \to \ell_k$ and $T_2 : bv \to \ell$ by $T_1(x) = \theta_v^{1/k^*}(x_v - x_{v-1})$ and $T_2(x) = x_v - x_{v-1}$, $x_{-1} = 0$. Then, it clear that T_1 and T_2 are isomorhism preseving norms, *i.e.*, $||x||_{bv_k^{\theta}} = ||T_1(x)||_{\ell_k}$ and $||x||_{bv} = ||T_2(x)||_{\ell}$. So, bv_k^{θ} and bv are isometrically isomorhic to ℓ_k and ℓ , respectively, *i.e.*, $bv_k^{\theta} \simeq \ell_k$ and $bv \simeq \ell$. Now let $T_1(x) = y$ for $x \in bv_k^{\theta}$. Then, $x = T_1^{-1}(y) \in S_{bv_k^{\theta}}$ if and only if $y \in S_{\ell_k}$, where $S_X = \left\{ x \in X : \|x\|_X = 1 \right\}$. Also, it is seen easily (see [3]) that $T_2AT_1^{-1} = D$ and $A \in \left(bv_k^{\theta}, bv \right)$ iff $D \in (\ell_k, \ell)$. Further, by Lemma 1.1, there exists $1 \leq \xi \leq 4$ such that

$$
||A||_{(bv_k^{\theta},bv)} = \sup_{x \neq \theta} \frac{||A(x)||_{bv}}{||x||_{bv_k^{\theta}}} = \sup_{x \neq \theta} \frac{||T_2^{-1}DT_1(x)||_{bv}}{||x||_{bv_k^{\theta}}}
$$

=
$$
\sup_{x \neq \theta} \frac{||D(y)||_{\ell}}{||y||_{\ell_k}} = ||D||_{(\ell_k, \ell)}
$$

=
$$
\frac{1}{\xi} ||D||'_{(\ell_k, \ell)}
$$

and so, by Lemmas 1.2, 1.3 and 1.4, we have

$$
||A||_{\chi} = \chi \left(AS_{bv_k^{\theta}} \right) = \chi(T_2AS_{bv_k^{\theta}})
$$

\n
$$
= \chi(DT_1S_{bv_k^{\theta}}) = \lim_{r \to \infty} \sup_{y \in S_{\ell_k}} || (I - P_r) D(y) ||_{\ell}
$$

\n
$$
= \lim_{r \to \infty} \sup_{y \in S_{\ell_k}} || D^{(r)}(y) || = \lim_{r \to \infty} || D^{(r)} ||_{(\ell_k, \ell)}
$$

\n
$$
= \frac{1}{\xi} \lim_{r \to \infty} \left\{ \sum_{n=r+1}^{\infty} \left(\sum_{v=0}^{\infty} |d_{nv}| \right)^{k^*} \right\}^{1/k^*}
$$

\n
$$
= (y_0, y_1, \dots, y_r, 0, \dots), \text{ and}
$$

where $P_r : \ell \to \ell$ is defined by $P_r (y) = (y_0, y_1, ..., y_r, 0, ...)$,

$$
d_{nv}^{(r)} = \begin{cases} 0, & 0 \le n \le r \\ d_{nv}, & n > r \end{cases}
$$

So the proof is completed by Lemma 1.2.

In the special case $\theta_n = 1$, the following result is immediate.

Corollary 2.4. Let $1 < k < \infty$. If $A \in (bv^k, bv)$, then there exists $1 \le \xi \le 4$ such that

$$
||A||_x = \frac{1}{\xi} \lim_{r \to \infty} \left\{ \sum_{n=r+1}^{\infty} \left(\sum_{v=0}^{\infty} |d_{nv}| \right)^{k^*} \right\}^{1/k^*}
$$

and

where

$$
A \in \mathcal{C} (bv_k, bv) \text{ iff } \lim_{r \to \infty} \sum_{n=r+1}^{\infty} \left(\sum_{v=0}^{\infty} |d_{nv}| \right)^{k^*} = 0
$$

$$
d_{nj} = \sum_{v=j}^{\infty} (a_{nv} - a_{n-1,v})
$$

c CPOST 2019 2019

Acknowledgement

The present paper was supported by the scientific and research center of Pamukkale University, Project No. 2019KKP067 (2019KRM004).

3 References

- [1] E. Malkowsky, V. Rakočević, S. Živković, *Matrix transformations between the sequence space bv^k and certain BK spaces, Bull. Cl. Sci. Math. Nat. Sci. Math., 123(27) (2002),* 33–46*.*
- [2] G. C. Hazar, M. A. Sangöl, *The space bv_k* and matrix transformations, 8th International Eurasian Converence on Mathematical Sciences and Applications (IECMSA 2019), 2019 (in press).
- [3] G. C. Hazar, M. A. Sarıgöl, *On absolute Nörlund spaces and matrix operators*, Acta Math. Sin. (Engl. Ser.) 34(5) (2018), 812-826.
- [4] E. Malkowsky, V. Rakočević, *An introduction into the theory of sequence space and measures of noncompactness, Zb. Rad. (Beogr) 9(17) (2000), 143-234.
[5] V. Rakočević, <i>Measures of noncompactness and some applications*
-
-
- [7] M. Stieglitz, H. Tietz, *Matrixtransformationen von Folgenraumen Eine Ergebnisüberischt,* Math Z., 154 (1977), 1-16*.*