If X and Y are normed spaces, $\mathcal{B}(X, Y)$ states the set of all bounded linear operators from X to Y and is also a normed space according to the norm $||L|| = \sup_{x \in S_X} ||L(x)||$, where S_X is a unit sphere in X, *i.e.*, $S_X = \{x \in X : ||x|| = 1\}$. Further, a lineer operator $L : X \to Y$ is said to be compact if the sequence $(L(x_n))$ has convergent subsequence in Y for every bounded sequence $x = (x_n) \in X$. By $\mathcal{C}(X, Y)$ we denote the set of such operators.

The following results are need to compute Hausdorff measure of noncompactness.

Conference Proceedings of Science and Technology, 2(3), 2019, 185-188

Conference Proceeding of 8th International Eurasian Conference on Mathematical Sciences and Applications (IECMSA-2019).

Compact Operators in the Class $(bv_k^{ heta}, bv)$

M. Ali Sarıgöl^{1,*}

¹ Department of Mathematics Pamukkale University TR-20007 Denizli TURKEY ORCID:0000-0002-4107-4669

* Corresponding Author E-mail: msarigol@pau.edu.tr

Abstract: The space bv of bounded variation sequence plays an important role in the summability. More recently this space has been generalized to the space bv_k^{θ} and the class (bv_k^{θ}, bv) of infinite matrices has been characterized by Hazar and Sarıgöl [2]. In the present paper, for $1 < k < \infty$, we give necessary and sufficient conditions for a matrix in the same class to be compact, where θ is a sequence of positive numbers.

Keywords: Matrix transformations, Sequence spaces, bv_k^{θ} spaces.

Introduction 1

Let ω be the set of all complex sequences, ℓ_k and c be the set of k-absolutely convergent series and convergent sequences. In [2], the space bv_k^{θ} has been defined by

$$bv_k^{\theta} = \left\{ x = (x_k) \in w : \sum_{n=0}^{\infty} \theta_n^{k-1} \left| \triangle x_n \right|^k < \infty, \ x_{-1} = 0 \right\},$$

which is a BK space for $1 \le k < \infty$, where (θ_n) is a sequence of nonnegative terms and $\Delta x_n = x_n - x_{n-1}$ for all n.

Also, in the special case $\theta_n = 1$ for all n, it is reduced to bv^k , studied by Malkowsky, Rakočević and Živković [1], and $bv_1^{\theta} = bv$.

Let U and V be subspaces of w and $A = (a_{nv})$ be an arbitrary infinite matrix of complex numbers. By $A(x) = (A_n(x))$, we denote the A-transform of the sequence $x = (x_v)$, i.e.,

$$A_n\left(x\right) = \sum_{v=0}^{\infty} a_{nv} x_v,$$

provided that the series are convergent for $v, n \ge 0$. Then, A defines a matrix transformation from U into V, denoted by $A \in (U, V)$, if the sequence $Ax = (A_n(x)) \in V$ for all sequence $x \in U$.

Lemma 1.1 ([6]). Let $1 < k < \infty$ and $1/k + 1/k^* = 1$. Then, $A \in (\ell_k, \ell)$ if and only if

$$||A||'_{(\ell_k,\ell)} = \left\{ \sum_{\nu=0}^{\infty} \left(\sum_{n=0}^{\infty} |a_{n\nu}| \right)^{k^*} \right\}^{1/k^*} < \infty$$

and there exists $1 \le \xi \le 4$ such that $||A||'_{(\ell_k,\ell)} = \xi ||A||_{(\ell_k,\ell)}$

If S and H are subsets of a metric space (X, d) and $\varepsilon > 0$, then S is called an ε -net of H, if, for every $h \in H$, there exists an $s \in S$ such that $d(h,s) < \varepsilon$; if S is finite, then the ε -net S of H is called a finite ε -net of H. By M_X , we denote the collection of all bounded subsets of X. If $Q \in M_X$, then the Hausdorff measure of noncompactness of Q is defined by

 $\chi(Q) = \inf \left\{ \varepsilon > 0 : Q \text{ has a finite } \varepsilon \text{-net in } X \right\}.$

The function $\chi: M_X \to [0, \infty)$ is called the Hausdorff measure of noncompactness [5].

http://dergipark.gov.tr/cpost

ISSN: 2651-544X

Lemma 1.2 ([4]). Let X and Y be Banach spaces, $L \in \mathcal{B}(X, Y)$. Then, Hausdorff measure of noncompactness of L, denoted by $||L||_{\chi}$, is defined by

$$\left\|L\right\|_{\chi} = \chi\left(L\left(S_X\right)\right),$$

and

$$L \in \mathcal{C}(X, Y)$$
 iff $||L||_{\chi} = 0.$

Lemma 1.3 ([5]). Let Q be a bounded subset of the normed space X where $X = \ell_k$ for $1 \le k < \infty$. If $P_r : X \to X$ is the operator defined by $P_r(x) = (x_0, x_1, ..., x_r, 0, ...)$ for all $x \in X$, then

$$\chi(Q) = \lim_{r \to \infty} \sup_{x \in Q} \left\| (I - P_r) (x) \right\|,$$

where I is the identity operator on X.

Lemma 1.4 ([4]). Let X be normed sequence space, χ_T and χ denote Hausdorff measures of noncompactness on M_{χ_T} and M_X , the collections of all bounded sets in X_T and X, respectively. Then,

$$\chi_{\scriptscriptstyle T}(Q) = \chi(T(Q)) \text{ for all } Q \in M_{_{X_{_T}}},$$

where T is an infinite triangle matrix.

2 Compact operators on the space bv_k^{θ}

More recently the class (bv_k^{θ}, bv) , $1 < k < \infty$, has been characterized by Hazar and Sarıgöl [2] in the following form. In the present paper, by computing Hausdorff measure of noncompactness, we characterize compact operators in the same class.

Theorem 2.1. Let $A = (a_{nv})$ be an infinite matrix of complex numbers for all $n, v \ge 0$ and $1 < k < \infty$. Then, $A \in (bv_k^{\theta}, bv)$ if and only if

$$\lim_{n \to \infty} \sum_{j=\nu}^{\infty} a_{nj} \text{ exists for each } v$$
(2.1)

$$\sup_{m} \sum_{\nu=0}^{m} \left| \theta_{\nu}^{-1/k^*} \sum_{j=\nu}^{m} a_{nj} \right|^{k^*} < \infty \text{ for each } n$$

$$(2.2)$$

$$\sum_{\nu=0}^{\infty} \left(\sum_{n=0}^{\infty} \left| \theta_{\nu}^{1/k^*} \sum_{j=\nu}^{\infty} \left(a_{nj} - a_{n-1,j} \right) \right| \right)^{k^*} < \infty.$$

$$(2.3)$$

Also, for special case $\theta_v = 1$, it is reduced to the following result of [1].

Corollary 2.2. Let $A = (a_{nv})$ be an infinite matrix of complex numbers for all $n, v \ge 0$ and $1 < k < \infty$. Then, $A \in (bv^k, bv)$ if and only if (2.1) holds,

$$\sup_{m} \sum_{\nu=0}^{m} \left| \sum_{j=\nu}^{m} a_{nj} \right|^{k^*} < \infty \text{ for each } n,$$
$$\sum_{\nu=0}^{\infty} \left(\sum_{n=0}^{\infty} \left| \sum_{j=\nu}^{\infty} \left(a_{nj} - a_{n-1,j} \right) \right| \right)^{k^*} < \infty$$

Now we give the following theorem.

Theorem 2.3.Let $1 < k < \infty$ and $\theta = (\theta_n)$ be a sequence of positive numbers. If $A \in (bv_k^{\theta}, bv)$, then there exists $1 \le \xi \le 4$ such that

$$||A||_{\chi} = \frac{1}{\xi} \lim_{r \to \infty} \left\{ \sum_{n=r+1}^{\infty} \left(\sum_{v=0}^{\infty} |d_{nv}| \right)^{k^*} \right\}^{1/k^*},$$
(2.4)

and $A\in\mathcal{C}\left(bv_{k}^{\theta},bv\right)$ if and only if

$$\lim_{r \to \infty} \sum_{n=r+1}^{\infty} \left(\sum_{v=0}^{\infty} |d_{nv}| \right)^{k^*} = 0$$
(2.5)

where

$$d_{nj} = \theta_j^{-1/k^*} \sum_{v=j}^{\infty} (a_{nv} - a_{n-1,v})$$

Proof. Define $T_1 : bv_k^\theta \to \ell_k$ and $T_2 : bv \to \ell$ by $T_1(x) = \theta_v^{1/k^*}(x_v - x_{v-1})$ and $T_2(x) = x_v - x_{v-1}$, $x_{-1} = 0$. Then, it clear that T_1 and T_2 are isomorhism preseving norms, *i.e.*, $\|x\|_{bv_k^\theta} = \|T_1(x)\|_{\ell_k}$ and $\|x\|_{bv} = \|T_2(x)\|_{\ell}$. So, bv_k^θ and bv are isometrically isomorhic to ℓ_k and ℓ , respectively, *i.e.*, $bv_k^\theta \simeq \ell_k$ and $bv \simeq \ell$. Now let $T_1(x) = y$ for $x \in bv_k^\theta$. Then, $x = T_1^{-1}(y) \in S_{bv_k^\theta}$ if and only if $y \in S_{\ell_k}$, where $S_X = \{x \in X : \|x\|_X = 1\}$. Also, it is seen easily (see [3]) that $T_2AT_1^{-1} = D$ and $A \in (bv_k^\theta, bv)$ iff $D \in (\ell_k, \ell)$. Further, by Lemma 1.1, there exists $1 \le \xi \le 4$ such that

$$\begin{split} \|A\|_{\left(bv_{k}^{\theta}, bv\right)} &= \sup_{x \neq \theta} \frac{\|A(x)\|_{bv}}{\|x\|_{bv_{k}^{\theta}}} = \sup_{x \neq \theta} \frac{\left\|T_{2}^{-1}DT_{1}(x)\right\|_{bv}}{\|x\|_{bv_{k}^{\theta}}} \\ &= \sup_{x \neq \theta} \frac{\|D(y)\|_{\ell}}{\|y\|_{\ell_{k}}} = \|D\|_{(\ell_{k}, \ell)} \\ &= \frac{1}{\xi} \|D\|'_{(\ell_{k}, \ell)} \end{split}$$

and so, by Lemmas 1.2, 1.3 and 1.4, we have

$$\begin{aligned} \|A\|_{\chi} &= \chi \left(AS_{bv_{k}^{\theta}} \right) = \chi (T_{2}AS_{bv_{k}^{\theta}}) \\ &= \chi (DT_{1}S_{bv_{k}^{\theta}}) = \lim_{r \to \infty} \sup_{y \in S_{\ell_{k}}} \|(I - P_{r}) D(y)\|_{\ell} \\ &= \lim_{r \to \infty} \sup_{y \in S_{\ell_{k}}} \left\| D^{(r)}(y) \right\| = \lim_{r \to \infty} \left\| D^{(r)} \right\|_{(\ell_{k},\ell)} \\ &= \frac{1}{\xi} \lim_{r \to \infty} \left\{ \sum_{n=r+1}^{\infty} \left(\sum_{v=0}^{\infty} |d_{nv}| \right)^{k^{*}} \right\}^{1/k^{*}} \end{aligned}$$

where $P_r: \ell \to \ell$ is defined by $P_r(y) = (y_0, y_1, ..., y_r, 0, ...)$, and

$$d_{nv}^{(r)} = \begin{cases} 0, & 0 \le n \le r \\ d_{nv}, & n > r \end{cases}$$

So the proof is completed by Lemma 1.2.

In the special case $\theta_n = 1$, the following result is immediate.

Corollary 2.4. Let $1 < k < \infty$. If $A \in (bv^k, bv)$, then there exists $1 \le \xi \le 4$ such that

$$\|A\|_{\chi} = \frac{1}{\xi} \lim_{r \to \infty} \left\{ \sum_{n=r+1}^{\infty} \left(\sum_{v=0}^{\infty} |d_{nv}| \right)^{k^*} \right\}^{1/k^*}$$

and

where

$$A \in \mathcal{C} (bv_k, bv) \text{ iff } \lim_{r \to \infty} \sum_{n=r+1}^{\infty} \left(\sum_{v=0}^{\infty} |d_{nv}| \right)^{k^*} = 0$$
$$d_{nj} = \sum_{v=j}^{\infty} \left(a_{nv} - a_{n-1,v} \right)$$

© CPOST 2019

Acknowledgement

The present paper was supported by the scientific and research center of Pamukkale University, Project No. 2019KKP067 (2019KRM004).

3 References

- E. Małkowsky, V. Rakočević, S. Živković, Matrix transformations between the sequence space buk and certain BK spaces, Bull. Cl. Sci. Math. Nat. Sci. Math., 123(27) (2002), [1] 33-46.
- G. C. Hazar, M. A. Sarıgöl, The space bv_k^{θ} and matrix transformations, 8th International Eurasian Converence on Mathematical Sciences and Applications (IECMSA 2019), [2] 2019 (in press).
- [3] G. C. Hazar, M. A. Sargöl, On absolute Nörlund spaces and matrix operators, Acta Math. Sin. (Engl. Ser.) 34(5) (2018), 812-826.
 [4] E. Malkowsky, V. Rakočević, An introduction into the theory of sequence space and measures of noncompactness, Zb. Rad. (Beogr) 9(17) (2000), 143-234.
 [5] V. Rakočević, Measures of noncompactness and some applications, Filomat, 12 (1998), 87-120.
 [6] M. A. Sarıgöl, Extension of Mazhar's theorem on summability factors, Kuwait Jour. Sci., 42(2) (2015), 28-35.
 [7] M. Stieglitz, H. Tietz, Matrixtransformationen von Folgenraumen Eine Ergebnisüberischt, Math Z., 154 (1977), 1-16.