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Abstract: The space bv of bounded variation sequence plays an important role in the summability. More recently this space has
been generalized to the space bvθk and the class

(
bvθk, bv

)
of infinite matrices has been characterized by Hazar and Sarıgöl [2]. In

the present paper, for 1 < k <∞, we give necessary and sufficient conditions for a matrix in the same class to be compact, where
θ is a sequence of positive numbers.
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1 Introduction

Let ω be the set of all complex sequences, `k and c be the set of k-absolutely convergent series and convergent sequences. In [2] , the space bvθk
has been defined by

bvθk =

{
x = (xk) ∈ w :

∞∑
n=0

θk−1n |4xn|k <∞, x−1 = 0

}
,

which is a BK space for 1 ≤ k <∞, where (θn) is a sequence of nonnegative terms and4xn = xn − xn−1 for all n.
Also, in the special case θn = 1 for all n, it is reduced to bvk, studied by Malkowsky, Rakočević and Živković [1] , and bvθ1 = bv.
Let U and V be subspaces of w and A = (anv) be an arbitrary infinite matrix of complex numbers. By A(x) = (An (x)) , we denote the

A-transform of the sequence x = (xv), i.e.,

An (x) =

∞∑
v=0

anvxv,

provided that the series are convergent for v, n ≥ 0. Then, A defines a matrix transformation from U into V, denoted by A ∈ (U, V ) , if the
sequence Ax = (An(x)) ∈ V for all sequence x ∈ U .

Lemma 1.1 ([6]) . Let 1 < k <∞ and 1/k + 1/k∗ = 1. Then, A ∈ (`k, `) if and only if

‖A‖′(`k,`) =


∞∑
ν=0

( ∞∑
n=0

|anv|

)k∗
1/k∗

<∞

and there exists 1 ≤ ξ ≤ 4 such that ‖A‖′(`k,`) = ξ ‖A‖(`k,`)
If S and H are subsets of a metric space (X, d) and ε > 0, then S is called an ε-net of H , if, for every h ∈ H, there exists an s ∈ S such

that d (h, s) < ε; if S is finite, then the ε-net S of H is called a finite ε-net of H . By MX , we denote the collection of all bounded subsets of
X. If Q ∈MX , then the Hausdorff measure of noncompactness of Q is defined by

χ(Q) = inf {ε > 0 : Q has a finite ε-net in X} .

The function χ :MX → [0,∞) is called the Hausdorff measure of noncompactness [5].

If X and Y are normed spaces, B (X,Y ) states the set of all bounded linear operators from X to Y and is also a normed space according to
the norm ‖L‖ = supx∈SX ‖L(x)‖ , where SX is a unit sphere in X, i.e., SX = {x ∈ X : ‖x‖ = 1} . Further, a lineer operator L : X → Y
is said to be compact if the sequence (L (xn)) has convergent subsequence in Y for every bounded sequence x = (xn) ∈ X. By C (X,Y ) we
denote the set of such operators.

The following results are need to compute Hausdorff measure of noncompactness.
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Lemma 1.2 ([4]). Let X and Y be Banach spaces, L ∈ B (X,Y ). Then, Hausdorff measure of noncompactness of L, denoted by ‖L‖χ ,
is defined by

‖L‖χ = χ (L (SX)) ,

and

L ∈ C (X,Y ) iff ‖L‖χ = 0.

Lemma 1.3 ([5]). Let Q be a bounded subset of the normed space X where X = `k for 1 ≤ k <∞.If Pr : X → X is the operator defined
by Pr (x) = (x0, x1, ..., xr, 0, ...) for all x ∈ X, then

χ(Q) = lim
r→∞

sup
x∈Q
‖(I − Pr) (x)‖ ,

where I is the identity operator on X .

Lemma 1.4 ([4]). LetX be normed sequence space, χT and χ denote Hausdorff measures of noncompactness onM
XT

andMX , the collections
of all bounded sets in XT and X , respectively. Then,

χT (Q) = χ(T (Q)) for all Q ∈M
XT

,

where T is an infinite triangle matrix.

2 Compact operators on the space bvθk

More recently the class
(
bvθk, bv

)
, 1 < k <∞, has been characterized by Hazar and Sarıgöl [2] in the following form. In the present paper,

by computing Hausdorff measure of noncompactness, we characterize compact operators in the same class.

Theorem 2.1. Let A = (anv) be an infinite matrix of complex numbers for all n, v ≥ 0 and 1 < k <∞. Then, A ∈
(
bvθk, bv

)
if and

only if

lim
n→∞

∞∑
j=ν

anj exists for each v (2.1)

sup
m

m∑
ν=0

∣∣∣∣∣∣θ−1/k∗ν

m∑
j=ν

anj

∣∣∣∣∣∣
k∗

<∞ for each n (2.2)

∞∑
ν=0

 ∞∑
n=0

∣∣∣∣∣∣θ1/k∗ν

∞∑
j=ν

(
anj − an−1,j

)∣∣∣∣∣∣
k

∗

<∞. (2.3)

Also, for special case θv = 1, it is reduced to the following result of [1].

Corollary 2.2. Let A = (anv) be an infinite matrix of complex numbers for all n, v ≥ 0 and 1 < k <∞. Then, A ∈
(
bvk, bv

)
if and

only if (2.1) holds,

sup
m

m∑
ν=0

∣∣∣∣∣∣
m∑
j=ν

anj

∣∣∣∣∣∣
k∗

<∞ for each n,

∞∑
ν=0

 ∞∑
n=0

∣∣∣∣∣∣
∞∑
j=ν

(
anj − an−1,j

)∣∣∣∣∣∣
k

∗

<∞.

Now we give the following theorem.
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Theorem 2.3.Let 1 < k <∞ and θ = (θn) be a sequence of positive numbers. If A ∈
(
bvθk, bv

)
, then there exists 1 ≤ ξ ≤ 4 such that

‖A‖χ =
1

ξ
lim
r→∞


∞∑

n=r+1

( ∞∑
v=0

|dnv|

)k∗
1/k∗

, (2.4)

and A ∈ C
(
bvθk, bv

)
if and only if

lim
r→∞

∞∑
n=r+1

( ∞∑
v=0

|dnv|

)k∗
= 0 (2.5)

where

dnj = θ
−1/k∗
j

∞∑
v=j

(
anv − an−1,v

)
Proof. Define T1 : bvθk → `k and T2 : bv → ` by T1(x) = θ

1/k∗

v (xv − xv−1) and T2(x) = xv − xv−1, x−1 = 0. Then, it clear that T1
and T2 are isomorhism preseving norms, i.e., ‖x‖bvθk = ‖T1(x)‖`k and ‖x‖bv = ‖T2(x)‖` . So, bvθk and bv are isometrically isomorhic to

`k and `, respectively, i.e., bvθk ' `k and bv ' `. Now let T1(x) = y for x ∈ bvθk. Then, x = T−11 (y) ∈ Sbvθk if and only if y ∈ S`k , where

SX =
{
x ∈ X : ‖x‖X = 1

}
. Also, it is seen easily (see [3]) that T2AT−11 = D andA ∈

(
bvθk, bv

)
iffD ∈ (`k, `) . Further, by Lemma 1.1,

there exists 1 ≤ ξ ≤ 4 such that

‖A‖(bvθk,bv) = sup
x 6=θ

‖A(x)‖bv
‖x‖bvθk

= sup
x 6=θ

∥∥∥T−12 DT1(x)
∥∥∥
bv

‖x‖bvθk

= sup
x6=θ

‖D(y)‖`
‖y‖`k

= ‖D‖(`k,`)

=
1

ξ
‖D‖′(`k,`)

and so, by Lemmas 1.2, 1.3 and 1.4, we have

‖A‖χ = χ
(
ASbvθk

)
= χ(T2ASbvθk

)

= χ(DT1Sbvθk
) = lim

r→∞
sup
y∈S`k

‖(I − Pr)D(y)‖`

= lim
r→∞

sup
y∈S`k

∥∥∥D(r)(y)
∥∥∥ = lim

r→∞

∥∥∥D(r)
∥∥∥
(`k,`)

=
1

ξ
lim
r→∞


∞∑

n=r+1

( ∞∑
v=0

|dnv|

)k∗
1/k∗

where Pr : `→ ` is defined by Pr (y) = (y0, y1, ..., yr, 0, ...) , and

d
(r)
nv =

{
0, 0 ≤ n ≤ r
dnv, n > r

So the proof is completed by Lemma 1.2.

In the special case θn = 1, the following result is immediate.

Corollary 2.4. Let 1 < k <∞. If A ∈
(
bvk, bv

)
, then there exists 1 ≤ ξ ≤ 4 such that

‖A‖χ =
1

ξ
lim
r→∞


∞∑

n=r+1

( ∞∑
v=0

|dnv|

)k∗
1/k∗

and

A ∈ C (bvk, bv) iff lim
r→∞

∞∑
n=r+1

( ∞∑
v=0

|dnv|

)k∗
= 0

where

dnj =

∞∑
v=j

(
anv − an−1,v

)
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