Araştırma Makalesi
BibTex RIS Kaynak Göster

Photodynamic action of chlorin e6 against methicillin resistant staphylococcus aureus with the aid of ethanol

Yıl 2020, Cilt: 5 Sayı: 3, 100 - 105, 15.12.2020
https://doi.org/10.25000/acem.740365

Öz

Aim: The random use of antimicrobials for years has led to bacterial DNA mutation and a result of that, bacteria have become resistant to antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) is among these types of resistant bacteria that can easily infect when the immune system of the host is suppressed, and it significantly delays the wound healing. Different treatment methods are being investigated to overcome this problem. Antimicrobial photodynamic therapy is a candidate to become an alternative treatment for the destruction of MRSA. The aim of this study was to investigate the effect of chlorin e6 for the photoinactivation of MRSA and the synergetic role of ethanol in this mechanism.
Methods: 655 nm laser light and Chlorin e6 as photosensitizer were examined for the photoinactivation of MRSA. Besides, 20% ethanol was used to increase the total antimicrobial efficacy with lower light energy densities and photosensitizer concentrations. The colony counting method was used to determine viable bacterial cells after each application.
Results: 25 J/cm2 energy density with 20 μM Chlorin e6 and 50 J/cm2 energy density with 10 μM Chlorin e6 showed the highest bactericidal activity. When 20% ethanol was used as an adjuvant, 25 J/cm2 energy dose with 2 μM Chlorin e6 resulted in a better killing effect.
Conclusion: Chlorin e6-mediated photodynamic therapy was successful to destroy MRSA and the addition of ethanol provided the opportunity to obtain higher antibacterial activity with lower light intensities and photosensitizer concentrations.

Destekleyen Kurum

İzmir Katip Çelebi University Scientific Research Projects

Proje Numarası

2015-ÖNP-MÜMF-0017

Teşekkür

The authors thank Nesrin Horzum Polat, Melike Çağan, Fatma İbiş and Nur Çobanoğlu for their help and valuable opinions.

Kaynakça

  • Saïd-Salim B, Mathema B, Kreiswirth BN. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging pathogen. Infect Control Hosp Epidemiol. 2003; 24: 451-455.
  • Dulon M, Haamann F, Peters C, Schablon A, Nienhaus A. MRSA prevalence in European healthcare settings: a review. BMC Infect Dis. 2011; 11: 138.
  • Miller LG, Diep BA. Colonization, fomites, and virulence: rethinking the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis. 2008; 46: 752-760.
  • Wenzel RP, Perl TM. The significance of nasal carriage of Staphylococcus aureus and the incidence of postoperative wound infection. J Hosp Infect. 1995; 31: 13-24.
  • Kucera J, Sojka M, Pavlik V, Szuszkiewicz K, Velebny V, Klein P. Multispecies biofilm in an artificial wound bed—A novel model for in vitro assessment of solid antimicrobial dressings. J Microbiol Methods. 2014; 103: 18-24.
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012; 12: 252-264.
  • Khan AA, Morrison A, Hanley DA, Felsenberg D, McCauley LK, O'Ryan F, et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res. 2015; 30: 3-23.
  • Tverdek FP, Crank CW, Segreti J. Antibiotic therapy of methicillin-resistant Staphylococcus aureus in critical care. Crit Care Clin. 2008; 24: 249-260.
  • Nau R, Eiffert H. Modulation of release of proinflammatory bacterial compounds by antibacterials: potential impact on course of inflammation and outcome in sepsis and meningitis. Clin Microbiol Rev. 2002; 15: 95-110.
  • Mai B, Wang X, Liu Q, Leung AW, Wang X, Xu C, et al. The antibacterial effect of sinoporphyrin sodium photodynamic therapy on Staphylococcus aureus planktonic and biofilm cultures. Lasers Surg Med. 2016; 48: 400-408.
  • Fu XJ, Fang Y, Yao M. Antimicrobial photodynamic therapy for methicillin-resistant Staphylococcus aureus infection. Biomed Res Int. 2013; 2013.
  • Benveniste RAOUL, Davies J. Mechanisms of antibiotic resistance in bacteria. Annu Rev Biochem. 1973; 42: 471-506.
  • Klein E, Smith DL, Laxminarayan R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg Infect Dis. 2007; 13: 1840.
  • Lowy, FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest. 2003; 111: 1265-1273.
  • Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998; 339: 520-532.
  • Peacock Jr JE, Moorman DR, Wenzel RP, Mandell GL. Methicillin-resistant Staphylococcus aureus: microbiologic characteristics, antimicrobial susceptibilities, and assessment of virulence of an epidemic strain. J Infect Dis. 1981; 144: 575-582.
  • Yılmaz EŞ, Aslantaş Ö. Antimicrobial resistance and underlying mechanisms in Staphylococcus aureus isolates. Asian Pac J Trop Biomed. 2017; 10: 1059-1064.
  • Capparelli R, Parlato M, Borriello G, Salvatore P, Iannelli D. Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother. 2007; 51: 2765-2773.
  • Liu Y, Qin R, Zaat SA, Breukink E, Heger M. Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. J Clin Transl Res. 2015; 1: 140.
  • Mai B, Gao Y, Li M, Wang X, Zhang K, Liu Q, et al. Photodynamic antimicrobial chemotherapy for Staphylococcus aureus and multidrug-resistant bacterial burn infection in vitro and in vivo. Int J Nanomedicine. 2017; 12: 5915.
  • Čunderlı́ková B, Gangeskar L, Moan J. Acid–base properties of chlorin e6: relation to cellular uptake. J Photochem and Photobiol B. 1999; 53: 81-90.
  • Sheyhedin I, Okunaka T, Kato H, Yamamoto Y, Sakaniwa N, Konaka C, Aizawa K. Localization of experimental submucosal esophageal tumor in rabbits by using mono‐L‐aspartyl chlorin e6 and long‐wavelength photodynamic excitation. Lasers in Surgery and Medicine. 2000; 26(1): 83-89.
  • George S, Kishen A. Photophysical, photochemical, and photobiological characterization of methylene blue formulations for light-activated root canal disinfection. J Biomed Opt. 2007; 12: 034029.
  • Price PB. Reevaluation of ethyl alcohol as a germicide. Arch Surg. 1950; 60: 492-502.
  • McDonnell G., Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999; 12: 147-179.
  • Prochnow EP, Martins MR, Campagnolo CB, Santos RC, Villetti MA, Kantorski KZ. Antimicrobial photodynamic effect of phenothiazinic photosensitizers in formulations with ethanol on Pseudomonas aeruginosa biofilms. Photodiagnosis Photodyn Ther. 2016; 13: 291-296.
  • Topaloglu N, Gulsoy M, Yuksel S. Antimicrobial photodynamic therapy of resistant bacterial strains by indocyanine green and 809-nm diode laser. Photomed Laser Surg. 2013;31:155-62.

Klorin e6’nın Etanol yardımıyla Metisiline Dirençli Stafilokok aureus üzerindeki Fotodinamik Etkisi

Yıl 2020, Cilt: 5 Sayı: 3, 100 - 105, 15.12.2020
https://doi.org/10.25000/acem.740365

Öz

Amaç: Antibiyotiklerin uzun yıllar boyunca kontrolsüz bir şekilde kullanılması bakteriyel DNA mutasyonuna yol açmıştır ve bunun sonucunda bakteriler antibiyotiklere dirençli hale gelmiştir. Metisiline dirençli Stafilokok aureus (MRSA) bakterileri, bu tür dirençli bakteriler arasında olup vücudun bağışıklık sisteminin düşmesi sonucu kolayca enfeksiyona sebep olabilmekte ve yara iyileşmesini önemli ölçüde geciktirmektedirler. Bu sorunun üstesinden gelmek için farklı tedavi yöntemleri araştırılmaktadır. Antimikrobiyal fotodinamik tedavi enfeksiyonların yok edilmesine yönelik alternatif bir tedavi olmaya adaydır. Bu çalışmanın amacı ise klorin e6’nın MRSA’nın fotoinaktivasyonu üzerindeki etkisini ve bu mekanizmada etanolün sinerjik rolünü araştırmaktır.
Yöntemler: Bu çalışmada MRSA'nın fotoinaktivasyonu için 655 nm lazer ışığı ve fotosensitizan olarak Klorin e6 incelenmiştir. Ayrıca, % 20 etanol kullanımıyla mekanizmanın antimikrobiyal etkinliği düşük ışık enerjisi yoğunlukları ve fotosensitizan konsantrasyonları ile arttırılmaya çalışılmıştır. Her uygulamadan sonra canlı bakteri hücre sayısını belirlemek için koloni sayma yöntemi kullanılmıştır.
Bulgular: Uygulamalar arasında 20 μM Klorin e6 ile 25 J/cm2 enerji yoğunluğu ve 10 μM Klorin e6 ile 50 J/cm2 enerji yoğunluğu en yüksek bakterisidal aktiviteyi sağlamıştır. %20 etanolün mekanizmaya eklenmesiyle en etkili fotosensitizan konsantrasyonu 2 μM’a düşürülerek 25 J/cm2 enerji yoğunluğu ile birlikte daha etkili bir sonuç elde edilebilmiştir.
Sonuç: Klorin e6 aracılı fotodinamik tedavi, MRSA'yı yok etmekte başarılı olmuştur ve etanol ilavesi, daha düşük ışık yoğunluğu ve fotosensitizan konsantrasyonu ile fotodinamik tedavide daha yüksek antibakteriyel aktivite elde etme fırsatı sağlamıştır.

Proje Numarası

2015-ÖNP-MÜMF-0017

Kaynakça

  • Saïd-Salim B, Mathema B, Kreiswirth BN. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging pathogen. Infect Control Hosp Epidemiol. 2003; 24: 451-455.
  • Dulon M, Haamann F, Peters C, Schablon A, Nienhaus A. MRSA prevalence in European healthcare settings: a review. BMC Infect Dis. 2011; 11: 138.
  • Miller LG, Diep BA. Colonization, fomites, and virulence: rethinking the pathogenesis of community-associated methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis. 2008; 46: 752-760.
  • Wenzel RP, Perl TM. The significance of nasal carriage of Staphylococcus aureus and the incidence of postoperative wound infection. J Hosp Infect. 1995; 31: 13-24.
  • Kucera J, Sojka M, Pavlik V, Szuszkiewicz K, Velebny V, Klein P. Multispecies biofilm in an artificial wound bed—A novel model for in vitro assessment of solid antimicrobial dressings. J Microbiol Methods. 2014; 103: 18-24.
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012; 12: 252-264.
  • Khan AA, Morrison A, Hanley DA, Felsenberg D, McCauley LK, O'Ryan F, et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res. 2015; 30: 3-23.
  • Tverdek FP, Crank CW, Segreti J. Antibiotic therapy of methicillin-resistant Staphylococcus aureus in critical care. Crit Care Clin. 2008; 24: 249-260.
  • Nau R, Eiffert H. Modulation of release of proinflammatory bacterial compounds by antibacterials: potential impact on course of inflammation and outcome in sepsis and meningitis. Clin Microbiol Rev. 2002; 15: 95-110.
  • Mai B, Wang X, Liu Q, Leung AW, Wang X, Xu C, et al. The antibacterial effect of sinoporphyrin sodium photodynamic therapy on Staphylococcus aureus planktonic and biofilm cultures. Lasers Surg Med. 2016; 48: 400-408.
  • Fu XJ, Fang Y, Yao M. Antimicrobial photodynamic therapy for methicillin-resistant Staphylococcus aureus infection. Biomed Res Int. 2013; 2013.
  • Benveniste RAOUL, Davies J. Mechanisms of antibiotic resistance in bacteria. Annu Rev Biochem. 1973; 42: 471-506.
  • Klein E, Smith DL, Laxminarayan R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg Infect Dis. 2007; 13: 1840.
  • Lowy, FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest. 2003; 111: 1265-1273.
  • Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998; 339: 520-532.
  • Peacock Jr JE, Moorman DR, Wenzel RP, Mandell GL. Methicillin-resistant Staphylococcus aureus: microbiologic characteristics, antimicrobial susceptibilities, and assessment of virulence of an epidemic strain. J Infect Dis. 1981; 144: 575-582.
  • Yılmaz EŞ, Aslantaş Ö. Antimicrobial resistance and underlying mechanisms in Staphylococcus aureus isolates. Asian Pac J Trop Biomed. 2017; 10: 1059-1064.
  • Capparelli R, Parlato M, Borriello G, Salvatore P, Iannelli D. Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother. 2007; 51: 2765-2773.
  • Liu Y, Qin R, Zaat SA, Breukink E, Heger M. Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. J Clin Transl Res. 2015; 1: 140.
  • Mai B, Gao Y, Li M, Wang X, Zhang K, Liu Q, et al. Photodynamic antimicrobial chemotherapy for Staphylococcus aureus and multidrug-resistant bacterial burn infection in vitro and in vivo. Int J Nanomedicine. 2017; 12: 5915.
  • Čunderlı́ková B, Gangeskar L, Moan J. Acid–base properties of chlorin e6: relation to cellular uptake. J Photochem and Photobiol B. 1999; 53: 81-90.
  • Sheyhedin I, Okunaka T, Kato H, Yamamoto Y, Sakaniwa N, Konaka C, Aizawa K. Localization of experimental submucosal esophageal tumor in rabbits by using mono‐L‐aspartyl chlorin e6 and long‐wavelength photodynamic excitation. Lasers in Surgery and Medicine. 2000; 26(1): 83-89.
  • George S, Kishen A. Photophysical, photochemical, and photobiological characterization of methylene blue formulations for light-activated root canal disinfection. J Biomed Opt. 2007; 12: 034029.
  • Price PB. Reevaluation of ethyl alcohol as a germicide. Arch Surg. 1950; 60: 492-502.
  • McDonnell G., Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999; 12: 147-179.
  • Prochnow EP, Martins MR, Campagnolo CB, Santos RC, Villetti MA, Kantorski KZ. Antimicrobial photodynamic effect of phenothiazinic photosensitizers in formulations with ethanol on Pseudomonas aeruginosa biofilms. Photodiagnosis Photodyn Ther. 2016; 13: 291-296.
  • Topaloglu N, Gulsoy M, Yuksel S. Antimicrobial photodynamic therapy of resistant bacterial strains by indocyanine green and 809-nm diode laser. Photomed Laser Surg. 2013;31:155-62.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Orjinal Makale
Yazarlar

Nermin Topaloğlu Avşar 0000-0001-7001-8327

Emel Bakay 0000-0002-3042-810X

Aziz Kolkıran 0000-0002-7440-5428

Proje Numarası 2015-ÖNP-MÜMF-0017
Yayımlanma Tarihi 15 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 5 Sayı: 3

Kaynak Göster

Vancouver Topaloğlu Avşar N, Bakay E, Kolkıran A. Photodynamic action of chlorin e6 against methicillin resistant staphylococcus aureus with the aid of ethanol. Arch Clin Exp Med. 2020;5(3):100-5.