Derleme
BibTex RIS Kaynak Göster

Ortodontide Sonlu Elemanlar Analizi Uygulamaları

Yıl 2021, Cilt: 7 Sayı: 1, 33 - 44, 01.04.2021

Öz

Kompleks yapılı cisimlerin kuvvet gibi dış etkenlere karşı oluşturdukları tepkilerin bütün olarak incelenebilmesi için, oluşturulan denklemlerin geleneksel matematiksel analitik yöntemlerle çözmek zor ve karmaşık olduğundan, bu tip incelemelerde sonlu elemanlar analizi gibi yöntemlerle ara değerler elde edilebilmektedir. Sonlu elemanlar analizi ile cismin tamamının değerlendirilmesi yerine, cismi daha küçük ve değerlendirmesi daha kolay olan sonlu elemanlara ayırarak, uygulanan etkinin her bir sonlu elemanda ve sonlu elemanların birbirleri arasında oluşturduğu etkileri incelenir. Bu yöntem ağız içi mekaniğinin ve uygulanan sabit ve fonksiyonel apareyler ve etkilerinin daha iyi anlaşılmasını sağlayarak daha başarılı ortodontik tedaviler yapılmasına olanak sağlamaktadır. Bu çalışmada sonlu elemanlar analizi hakkında genel bir görüş ve ortodonti bilimindeki kullanım alanlarıyla ilgili bilgi ve bakış açısı kazandırmak istenmiştir.

Kaynakça

  • 1- Küçükkurt S. Sonlu elemanlar stres analiz yöntemi ve dental implantoloji alanında yapılan araştırmalar. Atatürk üni diş hek fak derg. 2017;29(4):701–10
  • 2- Uysal C. Üst çene posterior dişlerin zigoma ankrajı ile blok intrüzyonunda farklı kortikotomi uygulamalarının sonlu elemanlar metodu ile incelenmesi (Doç. Dr. Cumhur Tuncer) Gazi üniversitesi diş hekimliği fakültesi ortodonti anabilim dalı doktora tezi, 2016.
  • 3- Hrennikoff A. Solution of problems of elasticity by the framework method. J appl Mech. 1941;
  • 4- McHenry D. A Lattice Analogy For The Solution of Stress Problems. J Inst Civ Eng. 1943;21(2):59–82.
  • 5- Vollmer D, Meyer U, Joos U, Vegh A, Piffko J. Experimental and finite element study of a human mandible. J Cranio Maxillofacial Surgeryurgery. 2000;28(2):91–6
  • 6- Shyam Sundar S, Nandlal B, Saikrishna D, Mallesh G. Finite Element Analysis: A Maxillofacial Surgeon’s Perspective. J Maxillofac Oral Surg. 2012;11(2):206–11.
  • 7- Ardary W. Plate and screw fixation in the management of mandible fractures. Clin Plast Surg. 1989;16(1):61.
  • 8- Kimura A, Nagasao T, Kaneko T, Tamaki T, Miyamoto J, Nakajima T. Adaquate fixation of plates for stability during mandibular reconstruction. J Cranio-Maxillofacial Surg. 2006;34(4):193–200.
  • 9- Freitas E, Rahal S, Gioso M, Vulcano L, Shimano A, da Silva J, et al. Finite element modeling for development and optimization of a bone plate for mandibular fracture in dogs. J Vet Dent. 2010;27(4):212–21.
  • 10- Daegling D, Hylander W. Experimental observation, theoretical models, and biomechanical inference in the study of mandibular form. Am J Phys Anthropol. 2000;112(4):541–51.
  • 11- Rubin C, Krishnamurthy N, Capilouto E, Yi H. Clinical Science Stress Analysis of the Human Tooth Using a Three-dimensional Finite Element Model. J Dent Res. 1983;62(2):82–6.
  • 12- Choi J, Baek S, Choi J. Evaluation of stress distribution in resorbable screw fixation system: three-dimensional finite element analysis of mandibular setback surgery with bilateral sagittal split ramus osteotomy. J Craniofac Surg. 2010;21(4):1104–9.
  • 13- Ming-Yih L, Chun-Li L, Wen-Da T, Lun-Jou L. Biomechanical stability analysis of rigid intraoral fixation for bilateral sagittal split osteotomy. J Plast Reconstr Aesthet Surg. 2010;63(3):451–5.
  • 14- Cemile Uysal, Burcu Baloş Tuncer, Cumhur TuncerProg Orthod. 2019; 20: 8. Published online 2019 Mar 4. doi: 10.1186/s40510-019-0262-4
  • 15- Meijer H, Kuiper J, Starmans F, Bosman F. Stress distribution around dental implants: influence of superstructure, length of implants, and height of mandible. J Prosthet Dent. 1992;68(1):96–102.
  • 16- Abrão AF, Domingos RG, de Paiva JB, Laganá DC, Abrão J. Photoelastic analysis of stress distribution in mandibular second molar roots caused by several uprighting mechanics. Am J Orthod Dentofac Orthop. 2018;153(3):415–21.
  • 17- Kojima Y, Mizuno T, Fukui H. A numerical simulation of tooth movement produced by molar uprighting spring. Am J Orthod Dentofac Orthop. 2007;132(5):630–8
  • 18- Gallas MM, Abeleira MT, Fernández JR, Burguera M. Three-dimensional numerical simulation of dental implants as orthodontic anchorage. Eur J Orthod. 2005;27(1):12–6
  • 19- Acar A, Canyurek U, Kocaaga M, Erverdi N. Continuous vs. discontinuousforce application and root resorption. Angle Orthod 1999;69(2):159-163.
  • 20- Spyridon N. Papageorgiou, Ludger Keilig, Istabrak Hasan, Andreas Jäger, Christoph BourauelEuropean Journal of Orthodontics, Volume 38, Issue 3, June 2016, Pages 300–307,
  • 21- Sardarian, A., Shahidi, S., Boushehri, S. G., & Geramy, A. (2014). The effect of vertical bracket positioning on torque and the resultant stress in the periodontal ligament—a finite element study. Progress in Orthodontics, 15(1), 50.
  • 22- Park, Choon-Soo, et al. "Effect of archwire stiffness and friction on maxillary posterior segment displacement during anterior segment retraction: A three-dimensional finite element analysis." The Korean Journal of Orthodontics 49.6 (2019): 393-403
  • 23- McGuinness N, Wilson AN, Jones M, Middleton J, Robertson NR. Stresses induced by edgewise appliances in the periodontal ligament-a finite element study. Angle Orthod 1992;62:15-22.
  • 24- Kojima Y, Fukui H. Numerical simulation of canin retraction by sliding mechanics. Am J Orthod Dentofacial Orthop 2005;127:542-551.
  • 25- Ammar HH, Ngan P, Crout RJ, Mucino VH, Mukdadi OM. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2011;139:e59-71.
  • 26- Tanne K, Hiraga J, Sakuda M. Effects of directions of maxillary protraction forces on biomechanical changes in craniofacial complex. The European Journal of Orthodontics, 11(4):382-391, 1989.
  • 27- Holberg C, Holberg N, Janson IR. Sutural strain in orthopedic headgear therapy: A finite element analysis. Am J Orthod Dentofacial Orthop 2008; 134:53-9.
  • 28- Chen J, Akyuz U, Xu L, Pidaparti RM. Stress analysis of the humantemporomandibular joint. Med Eng Phys 1998;20:565-72.
  • 29- Duru FI. Sınıf II olguların tedavisinde kullanılan iskeletsel ve dişsel destekli forsus ve monoblok apareylerinin çene-yüz kemikleri ve tme üzerine etkilerinin sonlu elemanlar analiz yöntemi ile karşılaştırılması. (Prof.Dr. Hülya Kılıçoğlu), İstanbul üniversitesi diş hekimliği fakültesi ortodonti anabilim dalı doktora tezi, 2014.
  • 30- Talay B. Üst çeneye farklı tip yüz maskeleri ile farklı açılarda uygulanan protraksiyon kuvvetlerinin dentofasiyal yapılar üzerine etkilerinin sonlu elemanlar yöntemi ile incelenmesi. (Yrd. Doç. Dr. Hasan İlhan Mutaf) Cumhuriyet üniversitesi diş hekimliği fakültesi ortodonti anabilim dalı uzmanlık tezi, 2016.

Finite Element Analysis Applications in Orthodontics

Yıl 2021, Cilt: 7 Sayı: 1, 33 - 44, 01.04.2021

Öz

In order to examine the reactions of complex bodies against external factors such as force, it is difficult and complex to solve the created equations with traditional mathematical analytical methods, so intermediate values can be obtained by methods such as finite element analysis in such investigations. Instead of evaluating the whole object with finite element analysis, by dividing the object into finite elements that are smaller and easier to evaluate, the effects of the applied effect on each finite element and between finite elements are examined. This method enables more successful orthodontic treatments by providing a better understanding of the intraoral mechanics and the fixed and functional appliances applied and their effects. In this study, it is aimed to gain a general view about finite element analysis and to gain information and perspective about its usage areas in orthodontics.

Kaynakça

  • 1- Küçükkurt S. Sonlu elemanlar stres analiz yöntemi ve dental implantoloji alanında yapılan araştırmalar. Atatürk üni diş hek fak derg. 2017;29(4):701–10
  • 2- Uysal C. Üst çene posterior dişlerin zigoma ankrajı ile blok intrüzyonunda farklı kortikotomi uygulamalarının sonlu elemanlar metodu ile incelenmesi (Doç. Dr. Cumhur Tuncer) Gazi üniversitesi diş hekimliği fakültesi ortodonti anabilim dalı doktora tezi, 2016.
  • 3- Hrennikoff A. Solution of problems of elasticity by the framework method. J appl Mech. 1941;
  • 4- McHenry D. A Lattice Analogy For The Solution of Stress Problems. J Inst Civ Eng. 1943;21(2):59–82.
  • 5- Vollmer D, Meyer U, Joos U, Vegh A, Piffko J. Experimental and finite element study of a human mandible. J Cranio Maxillofacial Surgeryurgery. 2000;28(2):91–6
  • 6- Shyam Sundar S, Nandlal B, Saikrishna D, Mallesh G. Finite Element Analysis: A Maxillofacial Surgeon’s Perspective. J Maxillofac Oral Surg. 2012;11(2):206–11.
  • 7- Ardary W. Plate and screw fixation in the management of mandible fractures. Clin Plast Surg. 1989;16(1):61.
  • 8- Kimura A, Nagasao T, Kaneko T, Tamaki T, Miyamoto J, Nakajima T. Adaquate fixation of plates for stability during mandibular reconstruction. J Cranio-Maxillofacial Surg. 2006;34(4):193–200.
  • 9- Freitas E, Rahal S, Gioso M, Vulcano L, Shimano A, da Silva J, et al. Finite element modeling for development and optimization of a bone plate for mandibular fracture in dogs. J Vet Dent. 2010;27(4):212–21.
  • 10- Daegling D, Hylander W. Experimental observation, theoretical models, and biomechanical inference in the study of mandibular form. Am J Phys Anthropol. 2000;112(4):541–51.
  • 11- Rubin C, Krishnamurthy N, Capilouto E, Yi H. Clinical Science Stress Analysis of the Human Tooth Using a Three-dimensional Finite Element Model. J Dent Res. 1983;62(2):82–6.
  • 12- Choi J, Baek S, Choi J. Evaluation of stress distribution in resorbable screw fixation system: three-dimensional finite element analysis of mandibular setback surgery with bilateral sagittal split ramus osteotomy. J Craniofac Surg. 2010;21(4):1104–9.
  • 13- Ming-Yih L, Chun-Li L, Wen-Da T, Lun-Jou L. Biomechanical stability analysis of rigid intraoral fixation for bilateral sagittal split osteotomy. J Plast Reconstr Aesthet Surg. 2010;63(3):451–5.
  • 14- Cemile Uysal, Burcu Baloş Tuncer, Cumhur TuncerProg Orthod. 2019; 20: 8. Published online 2019 Mar 4. doi: 10.1186/s40510-019-0262-4
  • 15- Meijer H, Kuiper J, Starmans F, Bosman F. Stress distribution around dental implants: influence of superstructure, length of implants, and height of mandible. J Prosthet Dent. 1992;68(1):96–102.
  • 16- Abrão AF, Domingos RG, de Paiva JB, Laganá DC, Abrão J. Photoelastic analysis of stress distribution in mandibular second molar roots caused by several uprighting mechanics. Am J Orthod Dentofac Orthop. 2018;153(3):415–21.
  • 17- Kojima Y, Mizuno T, Fukui H. A numerical simulation of tooth movement produced by molar uprighting spring. Am J Orthod Dentofac Orthop. 2007;132(5):630–8
  • 18- Gallas MM, Abeleira MT, Fernández JR, Burguera M. Three-dimensional numerical simulation of dental implants as orthodontic anchorage. Eur J Orthod. 2005;27(1):12–6
  • 19- Acar A, Canyurek U, Kocaaga M, Erverdi N. Continuous vs. discontinuousforce application and root resorption. Angle Orthod 1999;69(2):159-163.
  • 20- Spyridon N. Papageorgiou, Ludger Keilig, Istabrak Hasan, Andreas Jäger, Christoph BourauelEuropean Journal of Orthodontics, Volume 38, Issue 3, June 2016, Pages 300–307,
  • 21- Sardarian, A., Shahidi, S., Boushehri, S. G., & Geramy, A. (2014). The effect of vertical bracket positioning on torque and the resultant stress in the periodontal ligament—a finite element study. Progress in Orthodontics, 15(1), 50.
  • 22- Park, Choon-Soo, et al. "Effect of archwire stiffness and friction on maxillary posterior segment displacement during anterior segment retraction: A three-dimensional finite element analysis." The Korean Journal of Orthodontics 49.6 (2019): 393-403
  • 23- McGuinness N, Wilson AN, Jones M, Middleton J, Robertson NR. Stresses induced by edgewise appliances in the periodontal ligament-a finite element study. Angle Orthod 1992;62:15-22.
  • 24- Kojima Y, Fukui H. Numerical simulation of canin retraction by sliding mechanics. Am J Orthod Dentofacial Orthop 2005;127:542-551.
  • 25- Ammar HH, Ngan P, Crout RJ, Mucino VH, Mukdadi OM. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2011;139:e59-71.
  • 26- Tanne K, Hiraga J, Sakuda M. Effects of directions of maxillary protraction forces on biomechanical changes in craniofacial complex. The European Journal of Orthodontics, 11(4):382-391, 1989.
  • 27- Holberg C, Holberg N, Janson IR. Sutural strain in orthopedic headgear therapy: A finite element analysis. Am J Orthod Dentofacial Orthop 2008; 134:53-9.
  • 28- Chen J, Akyuz U, Xu L, Pidaparti RM. Stress analysis of the humantemporomandibular joint. Med Eng Phys 1998;20:565-72.
  • 29- Duru FI. Sınıf II olguların tedavisinde kullanılan iskeletsel ve dişsel destekli forsus ve monoblok apareylerinin çene-yüz kemikleri ve tme üzerine etkilerinin sonlu elemanlar analiz yöntemi ile karşılaştırılması. (Prof.Dr. Hülya Kılıçoğlu), İstanbul üniversitesi diş hekimliği fakültesi ortodonti anabilim dalı doktora tezi, 2014.
  • 30- Talay B. Üst çeneye farklı tip yüz maskeleri ile farklı açılarda uygulanan protraksiyon kuvvetlerinin dentofasiyal yapılar üzerine etkilerinin sonlu elemanlar yöntemi ile incelenmesi. (Yrd. Doç. Dr. Hasan İlhan Mutaf) Cumhuriyet üniversitesi diş hekimliği fakültesi ortodonti anabilim dalı uzmanlık tezi, 2016.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Ömer Faruk Sarı Bu kişi benim

Muhammed Hilmi Buyukcavus

Yayımlanma Tarihi 1 Nisan 2021
Gönderilme Tarihi 7 Ekim 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 7 Sayı: 1

Kaynak Göster

Vancouver Sarı ÖF, Buyukcavus MH. Ortodontide Sonlu Elemanlar Analizi Uygulamaları. Aydin Dental Journal. 2021;7(1):33-44.

All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)