Araştırma Makalesi
BibTex RIS Kaynak Göster

Some Characterizations of Factorable Surface in Euclidean 3-space

Yıl 2024, Cilt: 1 Sayı: 2, 70 - 76, 27.12.2024

Öz

In this study, we consider factorable surfaces in Euclidean 3-space, also the focal surfaces of these surfaces. First, we calculate the principal curvatures of the factorable surface by using Gaussian and mean curvatures. Then, we create the parameterizations for the focal surfaces by using the principal curvatures of this surface and give some characterizations for the focal surfaces of the factorable surface by using Gaussian and mean curvatures. In addition, with the help of the special case examined, examples of factorable surfaces are given, and the focal surfaces of these surfaces are created and their shapes are visualized.

Proje Numarası

ID:HIZDEP-FEF/2402

Kaynakça

  • Alfred, G. (1998) Modern Differential Geometry of Curves and Surfaces with Mathematica, Dover Publications.
  • Aydın M. E., Ogrenmiş A. O. (2017). Linear Weingarten Factorable Surfaces in Isotropic Spaces, Stud. Univ. Babeş-Bolyai Mathematica, 62(2), 261-268.
  • Büyükkütük S. (2018). Çarpanlara Ayrılabilir Yüzeylerin Bir Karakterizasyonu, Doktora Tezi, Kocaeli Üniversitesi.
  • Büyükkütük S., Öztürk G. (2018). A Characterization of Factorable Surfaces in Euclidean 4-Space E^4, Kocaeli Journal of Science and Engineering, vol. 1, no. 1, pp. 15–20.
  • Büyükkütük S., Öztürk G. (2019). An Application of Factorable Surface in Euclidean 4-space E^4, TWMS J. of Apl. Eng. Math, vol. 9, no. 1, pp. 121–127.
  • Büyükkütük S., Kişi İ., Öztürk G. (2024) A Classification of Focal Surfaces of a Tube Surface in E^3, Mathematical Analysis for Engineering and Applied Sciences, Taylor & Francis Book.
  • Büyükkütük S., Kişi İ., Öztürk G. (2024) Focal Surfaces of the Translation Surface in Euclidean Space E^3. Authorea. August 26.
  • Hagen H., Pottmann H. and Divivier A. (1991). Visualization functions on a surface, Journal of Visualization and Animation, 2, 52-58.
  • Hagen H., Hahmann S. (1992). Generalized focal surfaces, A New method for surface interrogation, Proceedings Visualization'92, Boston, 70-76.
  • Lopez R., Moruz M. (2015). Translation and Homothetical Surfaces in Euclidean Surfaces with Constant Curvature, J. Korean Math. Soc., 52(3), 523-535.
  • Meng H., Liu H. (2009). Factorable Surfaces In 3-Minkowski Space, Bull Korean Math. Soc., 46(1), 155-169.
  • O’Neill B. (1966). Elemantary Differantial Geometry, Academic Press.
  • Özdemir B., Arslan K. (2008) On generalized focal surfaces in , Rev. Bull. Calcutta Math. Soc. 16, 23-32.
  • Petrusevski L., Petrovic M., Devetakovic M.and Ivanovic J. (2017). Modelling of focal-directional surfaces for application in architecture, FME Transactions, 45, 294-300.
  • Petrovic M. (2016). Generating the focal directorial geometric forms as a designing pattern of the architectural-urban space (in Serbian), doctoral dissertation, University of Belgrade, Faculty of Architecture.
  • Van de Woestyne I. (1993). A New Characterization of Helicoids, Geometry and Topology of Submanifolds V, World Sci. Publ. River Edge, NJ.
  • Van de Woestyne I. (1993). Minimal homothetical hypersurfaces of a Semi-Euclidean space, Results in Mathematics, 27(3), 333-342.
  • Yu Y., Liu H. (2007). The factorable minimal surfaces, Proceedings of the Eleventh International Workshop on Differential Geometry, 11, 33-39.

Üç Boyutlu Öklid Uzayında Çarpanlara Ayrılabilir Yüzeyin Bazı Karakterizasyonları

Yıl 2024, Cilt: 1 Sayı: 2, 70 - 76, 27.12.2024

Öz

Bu çalışmada Öklid 3-uzayında çarpanlara ayrılabilir yüzeyler ve bu yüzeylerin fokal yüzeyleri ele alınmıştır. Öncelikle çarpanlara ayrılabilir yüzeyin Gauss ve ortalama eğrilikleri yardımıyla asli eğrilikleri hesaplanmıştır. Daha sonra bu yüzeyin asli eğrilikleri yardımıyla fokal yüzeyleri için parametrizasyonlar oluşturulmuştur ve çarpanlara ayrılabilir yüzeyin fokal yüzeyleri için Gauss ve ortalama eğrilikleri yardımıyla bazı karakterizasyonlar verilmiştir. Ayrıca incelenen özel durum yardımıyla çarpanlara ayrılabilir yüzey örnekleri verilmiş ve bu yüzeylerin fokal yüzeyleri oluşturularak şekilleri görselleştirilmiştir.

Proje Numarası

ID:HIZDEP-FEF/2402

Kaynakça

  • Alfred, G. (1998) Modern Differential Geometry of Curves and Surfaces with Mathematica, Dover Publications.
  • Aydın M. E., Ogrenmiş A. O. (2017). Linear Weingarten Factorable Surfaces in Isotropic Spaces, Stud. Univ. Babeş-Bolyai Mathematica, 62(2), 261-268.
  • Büyükkütük S. (2018). Çarpanlara Ayrılabilir Yüzeylerin Bir Karakterizasyonu, Doktora Tezi, Kocaeli Üniversitesi.
  • Büyükkütük S., Öztürk G. (2018). A Characterization of Factorable Surfaces in Euclidean 4-Space E^4, Kocaeli Journal of Science and Engineering, vol. 1, no. 1, pp. 15–20.
  • Büyükkütük S., Öztürk G. (2019). An Application of Factorable Surface in Euclidean 4-space E^4, TWMS J. of Apl. Eng. Math, vol. 9, no. 1, pp. 121–127.
  • Büyükkütük S., Kişi İ., Öztürk G. (2024) A Classification of Focal Surfaces of a Tube Surface in E^3, Mathematical Analysis for Engineering and Applied Sciences, Taylor & Francis Book.
  • Büyükkütük S., Kişi İ., Öztürk G. (2024) Focal Surfaces of the Translation Surface in Euclidean Space E^3. Authorea. August 26.
  • Hagen H., Pottmann H. and Divivier A. (1991). Visualization functions on a surface, Journal of Visualization and Animation, 2, 52-58.
  • Hagen H., Hahmann S. (1992). Generalized focal surfaces, A New method for surface interrogation, Proceedings Visualization'92, Boston, 70-76.
  • Lopez R., Moruz M. (2015). Translation and Homothetical Surfaces in Euclidean Surfaces with Constant Curvature, J. Korean Math. Soc., 52(3), 523-535.
  • Meng H., Liu H. (2009). Factorable Surfaces In 3-Minkowski Space, Bull Korean Math. Soc., 46(1), 155-169.
  • O’Neill B. (1966). Elemantary Differantial Geometry, Academic Press.
  • Özdemir B., Arslan K. (2008) On generalized focal surfaces in , Rev. Bull. Calcutta Math. Soc. 16, 23-32.
  • Petrusevski L., Petrovic M., Devetakovic M.and Ivanovic J. (2017). Modelling of focal-directional surfaces for application in architecture, FME Transactions, 45, 294-300.
  • Petrovic M. (2016). Generating the focal directorial geometric forms as a designing pattern of the architectural-urban space (in Serbian), doctoral dissertation, University of Belgrade, Faculty of Architecture.
  • Van de Woestyne I. (1993). A New Characterization of Helicoids, Geometry and Topology of Submanifolds V, World Sci. Publ. River Edge, NJ.
  • Van de Woestyne I. (1993). Minimal homothetical hypersurfaces of a Semi-Euclidean space, Results in Mathematics, 27(3), 333-342.
  • Yu Y., Liu H. (2007). The factorable minimal surfaces, Proceedings of the Eleventh International Workshop on Differential Geometry, 11, 33-39.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Araştırma Makaleleri
Yazarlar

Hakan Aydın 0009-0006-3947-5507

Günay Öztürk 0000-0002-1608-0354

Proje Numarası ID:HIZDEP-FEF/2402
Erken Görünüm Tarihi 21 Aralık 2024
Yayımlanma Tarihi 27 Aralık 2024
Gönderilme Tarihi 4 Kasım 2024
Kabul Tarihi 21 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 1 Sayı: 2

Kaynak Göster

APA Aydın, H., & Öztürk, G. (2024). Üç Boyutlu Öklid Uzayında Çarpanlara Ayrılabilir Yüzeyin Bazı Karakterizasyonları. ADÜ Fen Ve Mühendislik Bilimleri Dergisi, 1(2), 70-76.