Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Yield and Yield Criteria of Different Cotton Lines and Varieties

Yıl 2024, , 37 - 44, 30.06.2024
https://doi.org/10.25308/aduziraat.1406419

Öz

Cotton (Gossypium hirsutum L.) has a economic and strategic importance that provides raw materials to the textile sector. Efforts are being made to increase cotton yield and fiber quality through breeding studies carried out in the world and in Türkiye. It is necessary to determine the yield and yield criteria of the genotypes to be included in the breeding programs and to determine their superiority compared to the control varieties. In this research carried out for this purpose, 165 cotton genotypes were tested to determine yield and yield components. The trial was carried out in 2019 in the experimental area of Siirt University Faculty of Agriculture, Field Crops Department, in 4 blocks according to the Augmented trial design, and 165 genotype materials, including 160 cotton genotypes and 5 control varieties (Stoneville 468, BA 119, BA 440, Edessa, Lima) was used as plant material. In the study, seed cotton yield, plant height, number of monopodial and sympodial branches, number of nodes and number of bolls were examined. Results showed that the highest seed cotton yield were obtained from MNH-786, Dpl-5540-85-subokra and Mex 123 cotton genotypes and that these genotypes showed the highest values than the superior control variety. Deltapine 5816, Stoneville 213 and CIM-70 genotypes were found to be promising for plant height, VH 260, Stoneville 213 and Tamcot Sphinx for sympodial branches, and Deltapine 905, NIAB 777, Tonia and Stoneville 213 genotypes for boll number. The findings showed that there is a wide genetic variability among cotton genotypes in terms of yield and yield component, genotypes with ideal values in terms of desired characteristics can be used as parents in cotton breeding program and new cotton genotypes suitable for the textile sector can be obtained.

Destekleyen Kurum

Siirt Üniversitesi Bilimsel Araştırmalar Proje Koordinasyon Birimi

Proje Numarası

2020-SİÜFEB-021

Teşekkür

2020-SİÜFEB-021 nolu proje ile destek sağlayan Siirt Üniversitesi BAP birimine teşekkür ederiz.

Kaynakça

  • Ahuja SL, Dhayal LS, Prakash R (2006) Correlation and Path Coefficient Analysis of Components in G. hirsutum L. Hybrids by Usual and Fibre Quality Grouping. Turkish Journal of Agriculture and Forestry, 30, 317-324.
  • Anonymous (2022a) National Cotton Council Cotton Sector Report 2022 http://www.upk.org.tr/User_Files/pdf/ulusal-pamuk-konseyi-sektor-raporu2021.pdf [Date of Visit: 08 April 2022].
  • Anonymous (2022b) Turkish Statistical Institute, Crop Productio Statistics https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr
  • Azhar MT, Rehman A (2018) Overview on effects of water stress on cotton plants and productivity. In Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants. Elsevier Incorporation. https://doi.org/10.1016/B978-0-12-813066-7.00016-4 [Visit:15 December 2020].
  • Bozbek T (2004) Determination of Yield Components and Genetic Correlations in Hybrid Cotton Populations. Nazilli Cotton Research Institute. Doctorate Project. Tagem 2004 Development Report. http://www.tagem.gov.tr/ [Visited: 14 December 2020].
  • Esbroeck GV, Bowman DT (1998) Cotton germplasm diversity and its importance to cultivar development. The Journal of Cotton Science, 2 (3), 121-129. Guthrie D, Silvertooth J, Stichler C (1993) Monitoring plant vigor. Cotton Physiology Today. Newsletter of the Cotton Physiology Education Program. https://www.cotton.org/tech/physiology/cpt/upload/CPT-June93-v4-5-REPOP.pdf [Visit: 08.02.2021]
  • Iqbal M and Khan MA (2011) Response of cotton genotypes to planting date and plant spacing. Frontiers of Agriculture in China, 5, 262.
  • Karademir E, Karademir Ç, Kireç A (2019) The Effect of Boll Location and Distribution on Yield in Cotton. 1st International Harran Multidisciplinary Studies Congress, 08-10 March, 304-312 pp. Şanlıurfa.
  • Khalid MA, Malik TA, Fatima N, Shaakel A, Karim İ, Arfan M, Merrium A, Khanum, P (2018) Correlation for Economic Traits in Upland Cotton. Acta Scientific Agriculture, 2, (10): 59-62.
  • Khokhar ES, Shakeel A, Maqbool MA, Anwar MW, Tanveer Z, Irfan F, (2017) Genetic Study of Cotton (Gossypium hirsutum L.) Genotypes for Different Agronomic, Yield and Quality Traits. Pakistan Journal of Agricultural Research, 30 (4), 363-372.
  • Kıllı F and Gençer O (1999) Cotton Agriculture in the Turkish World in the 2000s Fibre Technology and Textile 1st Symposium, 28 September-1 October 1999 Kahramanmaraş, p. 382.
  • Krieg DR (1997) Genetic and environmental factors affecting productivity of cotton. Proceedings of the Beltwide Cotton Conference, 7-10 January, National Cotton Council of America, New Orleans, LA, 2:1347.
  • Mert M (2009) Fibre Plants. NOBEL Publications No: 1446, p.s. 277, Ankara.
  • Özüdoğru T (2012) Cotton Status and Forecast 2010/2011. Directorate of Agricultural Economics and Policy Development Publications, Publication No: 263, Ankara
  • Pettigrew WT (2003) Physiological consequences of moisture deficit stress in cotton. Crop Science, 44(4),1265-1272.
  • Rahman SA and Iqbal MS (2013). Cause and Effect Estimates for Yield Contributing and Morphological Traits in Upland Cotton (Gossypium hirsutum L.). Journal of Agricultural Research, 51 (4), 393-398.
  • Rauf S Khan, TM, Sadaqat HA, Khan AI (2004) Correlation and path coefficient analysis of yield components in cotton (Gossypium hirsutum L.). International Journal of Agricultural Biology, 6(4):686-688.
  • Reddy KR, Hodges HF, Reddy VR (1992) Temperature Effects on Cotton Fruit Retention. Agronomy Journal. 84, 26-30.
  • Reddy KR, Brand D, Wijewardana C, Gao W (2017) Temperature Effects on Cotton Seedling Emergence, Growth and Development. Agronomy Journal. 109 (4), 1379- 1387.
  • Sahito A, Baloch ZA, Mahar A, Otho SA, Kalhoro SA, Ali A, Kalhoro FA, Soomro RN, Ali F (2015) American Journal of Plant Sciences, 6, 1027-1039.
  • Salahuddin S, Abro S, Rehman A, Iqbal K (2010) Correlation Analysis of Seed Cotton Yield With Some Quantitative Traits in Upland Cotton (Gossypium hirsutum L.) Pakistan Journal of Botany, 42(6): 3799-3805.
  • Sawan ZM (2017) Cotton production and climatic factors: Studying the nature of its relationship by different statistical method. Cogent Biology, 3 (1), 1-35.
  • Schaefer CR, Ritchie GL, Bordovsky JP, Lewis K, Kelly B (2018) Irrigation Timing and Rate Affect Cotton Boll Distribution and Fiber Quality. Crop Ecology and Physiology, 110 (3), 922-931.
  • Sharma B, Mills CI, Snowden C, Ritchi GL (2015) Contribution of Boll Mass and Boll Number to Irrigated Cotton Yield. Agronomy Journal. 107:1845–1853.
  • Yunjun Y, Yanhua D, Zhao H, Li L (2019) Relationships Between Plant Architecture Traits and Cotton Yield Within the Plant Height Range of 80–120 CM Desired for Mechanical Harvesting in the Yellow River Valley of China. Agronomy, 9, 587; doi:10.3390/agronomy9100587, 1-18

Farklı pamuk hat ve çeşitlerinin verim ve verim kriterlerinin belirlenmesi

Yıl 2024, , 37 - 44, 30.06.2024
https://doi.org/10.25308/aduziraat.1406419

Öz

Pamuk (Gossypium hirsutum L.), tekstil sektörüne hammadde sağlayan ekonomik ve stratejik öneme sahip bir bitkidir. Dünya’da ve Türkiye’de yürütülen ıslah çalışmaları ile pamuk veriminin ve lif kalitesinin arttırılmasına çalışılmaktadır. Islah programlarında kullanılacak genotiplerin öncelikle verim ve verim komponentlerinin belirlenmesi ve kontrol çeşitlere göre üstünlüklerinin saptanması gerekmektedir. Bu amaçla yürütülen bu araştırmada, 165 adet pamuk genotipi verim ve verim komponentlerinin belirlenmesi bakımından test edilmiştir. Deneme 2019 yılında Siirt Üniversitesi Ziraat Fakültesi Tarla Bitkileri bölümü deneme alanında Augmented deneme desenine göre 4 blok şeklinde yürütülmüş ve 160 adet pamuk genotipi ve 5 adet kontrol çeşit (Stoneville 468, BA 119, BA 440, Edessa ve Lima) olmak üzere 165 adet genotip materyal olarak kullanılmıştır. Çalışmada kütlü pamuk verimi, bitki boyu, odun dalı ve meyve dalı sayısı, boğum sayısı ve koza sayısı özellikleri incelenmiştir. Çalışmada kütlü pamuk verimi bakımından en yüksek değerlerin MNH-786, Dpl-5540-85-subokra ve Mex 123 genotiplerinden elde edildiği ve bu genotiplerin en yüksek kontrol çeşitten daha üstün değerler gösterdikleri belirlenmiştir. Deltapine 5816, Stoneville 213 ve CIM-70 genotiplerinin bitki boyu bakımından, VH 260, Stoneville 213 ve Tamcot Sphinx genotiplerinin meyve dalı sayısı bakımından, Deltapine 905, NIAB 777, Tonia ve Stoneville 213 genotiplerinin ise koza sayısı bakımından daha ümitvar oldukları görülmüştür. Araştırmada elde edilen bulgular incelenen özellikler yönü ile materyalde geniş bir genetik değişkenliğin bulunduğunu, istenen özellikler bakımından ideal değerlere sahip genotiplerin pamuk ıslah çalışmalarında ebeveyn olarak kullanılabileceğini ve tekstil sektörüne uygun yeni pamuk genotiplerinin elde edilebileceğini göstermektedir.

Proje Numarası

2020-SİÜFEB-021

Kaynakça

  • Ahuja SL, Dhayal LS, Prakash R (2006) Correlation and Path Coefficient Analysis of Components in G. hirsutum L. Hybrids by Usual and Fibre Quality Grouping. Turkish Journal of Agriculture and Forestry, 30, 317-324.
  • Anonymous (2022a) National Cotton Council Cotton Sector Report 2022 http://www.upk.org.tr/User_Files/pdf/ulusal-pamuk-konseyi-sektor-raporu2021.pdf [Date of Visit: 08 April 2022].
  • Anonymous (2022b) Turkish Statistical Institute, Crop Productio Statistics https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr
  • Azhar MT, Rehman A (2018) Overview on effects of water stress on cotton plants and productivity. In Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress in Plants. Elsevier Incorporation. https://doi.org/10.1016/B978-0-12-813066-7.00016-4 [Visit:15 December 2020].
  • Bozbek T (2004) Determination of Yield Components and Genetic Correlations in Hybrid Cotton Populations. Nazilli Cotton Research Institute. Doctorate Project. Tagem 2004 Development Report. http://www.tagem.gov.tr/ [Visited: 14 December 2020].
  • Esbroeck GV, Bowman DT (1998) Cotton germplasm diversity and its importance to cultivar development. The Journal of Cotton Science, 2 (3), 121-129. Guthrie D, Silvertooth J, Stichler C (1993) Monitoring plant vigor. Cotton Physiology Today. Newsletter of the Cotton Physiology Education Program. https://www.cotton.org/tech/physiology/cpt/upload/CPT-June93-v4-5-REPOP.pdf [Visit: 08.02.2021]
  • Iqbal M and Khan MA (2011) Response of cotton genotypes to planting date and plant spacing. Frontiers of Agriculture in China, 5, 262.
  • Karademir E, Karademir Ç, Kireç A (2019) The Effect of Boll Location and Distribution on Yield in Cotton. 1st International Harran Multidisciplinary Studies Congress, 08-10 March, 304-312 pp. Şanlıurfa.
  • Khalid MA, Malik TA, Fatima N, Shaakel A, Karim İ, Arfan M, Merrium A, Khanum, P (2018) Correlation for Economic Traits in Upland Cotton. Acta Scientific Agriculture, 2, (10): 59-62.
  • Khokhar ES, Shakeel A, Maqbool MA, Anwar MW, Tanveer Z, Irfan F, (2017) Genetic Study of Cotton (Gossypium hirsutum L.) Genotypes for Different Agronomic, Yield and Quality Traits. Pakistan Journal of Agricultural Research, 30 (4), 363-372.
  • Kıllı F and Gençer O (1999) Cotton Agriculture in the Turkish World in the 2000s Fibre Technology and Textile 1st Symposium, 28 September-1 October 1999 Kahramanmaraş, p. 382.
  • Krieg DR (1997) Genetic and environmental factors affecting productivity of cotton. Proceedings of the Beltwide Cotton Conference, 7-10 January, National Cotton Council of America, New Orleans, LA, 2:1347.
  • Mert M (2009) Fibre Plants. NOBEL Publications No: 1446, p.s. 277, Ankara.
  • Özüdoğru T (2012) Cotton Status and Forecast 2010/2011. Directorate of Agricultural Economics and Policy Development Publications, Publication No: 263, Ankara
  • Pettigrew WT (2003) Physiological consequences of moisture deficit stress in cotton. Crop Science, 44(4),1265-1272.
  • Rahman SA and Iqbal MS (2013). Cause and Effect Estimates for Yield Contributing and Morphological Traits in Upland Cotton (Gossypium hirsutum L.). Journal of Agricultural Research, 51 (4), 393-398.
  • Rauf S Khan, TM, Sadaqat HA, Khan AI (2004) Correlation and path coefficient analysis of yield components in cotton (Gossypium hirsutum L.). International Journal of Agricultural Biology, 6(4):686-688.
  • Reddy KR, Hodges HF, Reddy VR (1992) Temperature Effects on Cotton Fruit Retention. Agronomy Journal. 84, 26-30.
  • Reddy KR, Brand D, Wijewardana C, Gao W (2017) Temperature Effects on Cotton Seedling Emergence, Growth and Development. Agronomy Journal. 109 (4), 1379- 1387.
  • Sahito A, Baloch ZA, Mahar A, Otho SA, Kalhoro SA, Ali A, Kalhoro FA, Soomro RN, Ali F (2015) American Journal of Plant Sciences, 6, 1027-1039.
  • Salahuddin S, Abro S, Rehman A, Iqbal K (2010) Correlation Analysis of Seed Cotton Yield With Some Quantitative Traits in Upland Cotton (Gossypium hirsutum L.) Pakistan Journal of Botany, 42(6): 3799-3805.
  • Sawan ZM (2017) Cotton production and climatic factors: Studying the nature of its relationship by different statistical method. Cogent Biology, 3 (1), 1-35.
  • Schaefer CR, Ritchie GL, Bordovsky JP, Lewis K, Kelly B (2018) Irrigation Timing and Rate Affect Cotton Boll Distribution and Fiber Quality. Crop Ecology and Physiology, 110 (3), 922-931.
  • Sharma B, Mills CI, Snowden C, Ritchi GL (2015) Contribution of Boll Mass and Boll Number to Irrigated Cotton Yield. Agronomy Journal. 107:1845–1853.
  • Yunjun Y, Yanhua D, Zhao H, Li L (2019) Relationships Between Plant Architecture Traits and Cotton Yield Within the Plant Height Range of 80–120 CM Desired for Mechanical Harvesting in the Yellow River Valley of China. Agronomy, 9, 587; doi:10.3390/agronomy9100587, 1-18
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Araştırma
Yazarlar

Dilan Altun Bu kişi benim 0000-0001-7157-9249

Emine Karademir 0000-0001-6369-1572

Proje Numarası 2020-SİÜFEB-021
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 18 Aralık 2023
Kabul Tarihi 19 Nisan 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Altun, D., & Karademir, E. (2024). Farklı pamuk hat ve çeşitlerinin verim ve verim kriterlerinin belirlenmesi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 21(1), 37-44. https://doi.org/10.25308/aduziraat.1406419
AMA Altun D, Karademir E. Farklı pamuk hat ve çeşitlerinin verim ve verim kriterlerinin belirlenmesi. ADÜ ZİRAAT DERG. Haziran 2024;21(1):37-44. doi:10.25308/aduziraat.1406419
Chicago Altun, Dilan, ve Emine Karademir. “Farklı Pamuk Hat Ve çeşitlerinin Verim Ve Verim Kriterlerinin Belirlenmesi”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 21, sy. 1 (Haziran 2024): 37-44. https://doi.org/10.25308/aduziraat.1406419.
EndNote Altun D, Karademir E (01 Haziran 2024) Farklı pamuk hat ve çeşitlerinin verim ve verim kriterlerinin belirlenmesi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 21 1 37–44.
IEEE D. Altun ve E. Karademir, “Farklı pamuk hat ve çeşitlerinin verim ve verim kriterlerinin belirlenmesi”, ADÜ ZİRAAT DERG, c. 21, sy. 1, ss. 37–44, 2024, doi: 10.25308/aduziraat.1406419.
ISNAD Altun, Dilan - Karademir, Emine. “Farklı Pamuk Hat Ve çeşitlerinin Verim Ve Verim Kriterlerinin Belirlenmesi”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 21/1 (Haziran 2024), 37-44. https://doi.org/10.25308/aduziraat.1406419.
JAMA Altun D, Karademir E. Farklı pamuk hat ve çeşitlerinin verim ve verim kriterlerinin belirlenmesi. ADÜ ZİRAAT DERG. 2024;21:37–44.
MLA Altun, Dilan ve Emine Karademir. “Farklı Pamuk Hat Ve çeşitlerinin Verim Ve Verim Kriterlerinin Belirlenmesi”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, c. 21, sy. 1, 2024, ss. 37-44, doi:10.25308/aduziraat.1406419.
Vancouver Altun D, Karademir E. Farklı pamuk hat ve çeşitlerinin verim ve verim kriterlerinin belirlenmesi. ADÜ ZİRAAT DERG. 2024;21(1):37-44.