BibTex RIS Kaynak Göster

SERA GAZI SALINIMLARINDA TARIMIN ROLÜ

Yıl 2012, Cilt: 9 Sayı: 2, 25 - 38, 01.06.2012

Öz

Atmosferdeki sera gazlarındaki (SG) artış ve neticesinde gerçekleşen iklim değişikliğinin 21. yy da önemli etkileri olacaktır. Tarımsal faaliyetler; üç ana sera gazı olan karbondioksit (CO2), metan (CH4) ve nitroz oksit (N2O) için bir kaynak konumundadır. Tarım toprakları ise tutulan C' un biyokütle ürünlerine ve toprak organik maddesine dönüştürülmesiyle, CO2 açısından bir havuz durumunda bulunmaktadır. Bu çalışmada, tarım topraklarından sera gazlarının salınımı ve C tutulumuyla ilgili bilimsel çalışmalar derlendi ve tarımın nasıl kendi SG yükünü azaltabileceği ile koruma tedbirleri aracılığıyla nasıl sera gazı salınımlarının azaltılabileceği üzerine bakış açısı oluşturmaya çalışıldı. Bunun yanında tarımsal uygulamaların ve sistemlerin sera gazları salınımı üzerine etkisi incelendi. Tarım alanlarının CO2 , N2O ve CH4 salınımlarının azaltılması yönüyle potansiyelleri yeterince iyi tanımlanamamıştır. Ayrıca, öne çıkarılması gereken birçok eksiklikler de bulunmaktadır. Bunlar arasında küresel iklimin gelecekte nasıl değişeceğine dair belirsizlikler, toprak kullanımı ve bitki örtüsü, kurak iklimlerde ve düşük kaliteli topraklarda yetişen tek ve çok yıllık bitkilerin verim düşüklükleri ile kimyasal gübre etkinliği sayılabilir. Bütün bunlara ek olarak, tarımın atmosfer üzerine olan net yararlarını saptayabilmek için, N2O ve CH4 gazlarının dengesi ile yaklaşık C stoğunu tahminleme metotlarının geliştirilmesi gereklidir.

Kaynakça

  • Bange, H.W. 2000. Global change: it's not a gas. Nature, 408: 301–302. 2
  • Bardgett, R.D. 2005. The biology of soil: a community and ecosystem approach. In: Biology of Habitats (Crawley, M.J., C. Little, T.R.E. Southwood and S. Ulfstrand, eds.) Oxford University Press Inc., New York, USA. 2 242 p. 2
  • Bedard-Haughn, A., A.L. Matson, D.J. Pennock. 2006. Land use effects on gross nitrogen mineralization, nitrification, and N O emissions in ephemeral wetlands. Soil Biology & . Biochemistry, 38: 3398–3406.
  • Beedlow, P.A., D.T. Tingey, D.L. Phillips, W. Hogsett, D.M. Olszyk. 2004. Rising atmospheric CO and carbon 2
  • sequestration in forests. Frontiers in Ecology and the Environment, 2: 315–322. SONUÇ
  • Bremner, J.M., A.M. Blackmer. 1978. Nitrous oxide: emission from soils during nitrification of fertilizer nitrogen. Science, 199: 295–296.
  • Burton, D.L., X. Li, C.A. Grant. 2008. Influence of fertilizer nitrogen source and management practice on N2O emissions from two Black Chernozemic soils. Canadian Journal of Soil Science, 88: 219–227.
  • Cerri, C.C., M. Bernous, C.E.P. Cerri, C. Feller. 2004. Carbon cycling and sequestration opportunities in South America: the case of Brazil. Soil Use and Management, 20: 248–254.
  • Chapuis-Lardy, L., N. Wrage, A. Metay, J.-J. Chotte, M. Bernoux. 2007. Soils, a sink for N O? A review. Global 2
  • Change Biology, 13: 1–17.
  • Crutzen, P.J., A.R. Mosier, K.A. Smith, W. Winiwarter. 2008. N O release from agrobiofuel production negates 2
  • global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics, 8: 389–395.
  • Dalal, R.C., W. Wang, P. Robertson, W.J. Parton. 2003. Nitrous oxide emission from Australian agriculture lands and mitigation options: a review. Australian Journal of Soil Research, 41: 165–195.
  • Puurveen. 2006. Modeling the effects of fertilizer application rate on nitrous oxide emissions. Soil Science Society of America Journal, 70: 235–248.
  • Halvorson, A.D., S.J. Del Grosso, C.A. Reule. 2008. DAYCENT model simulations of corn yields and nitrous oxide emissions in irrigated tillage systems in Colorado. Journal of Environmental Quality, 37: 1383–1389.
  • Nitrogen, tillage, and crop otation effects on nitrous oxide emissions from irrigated cropping systems. Journal of Environmental Quality, 37: 1337–1344.
  • Hamilton, S.K., A.L. Kurzman, C. Arango, L. Jin, G.P. Del Grosso, S.J., W.J. Parton, A.R. Mosier, M.K. Walsh, D.S. Ojima, P.E. Thornton. 2006. DAYCENT National-scale simulations of nitrous oxide emissions from cropped soils in the United States. Journal of Environmental Quality, 35: 1451–1460.
  • Robertson. 2007. Evidence for carbon sequestration by agricultural liming. Global Biogeochemical Cycles, 21: GB2021, doi:10.1029/2006GB002738.
  • Hirsch, A.I., A.M. Michalak, L.M. Bruhwiler, W. Peters, E.J. Denman, K.L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Dlugokencky, P.P. Tans. 2006. Inverse modeling estimates of the global nitrous oxide surface flux from 1998–2001, Global Biogeochemical Cycles, 20: GB1008, doi:10.1029/2004GB002443. 17 p.
  • P.L. da Silva Dias, S.C. Wofsy, X. Zhang. 2007. Couplings between changes in the climate system and biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller, eds.). Cambridge University Press, Cambridge, United Kingdom. pp. 499 – 587.
  • Hou, A.X., G.X. Chen, Z.P. Wang, O. Van Cleemput, W.H. Patrick Jr. 2000. Methane and nitrous oxide emissions form a rice field in relation to soil redox and microbiological processes. Soil Science Society of America Journal, 64: 2180–2186.
  • Hungate, B.A., E.A. Holland, R.B. Jackson, F.S. Chapin, H.A. Mooney, C.B. Field. 1997. The fate of carbon in grasslands under carbon dioxide enrichment. Nature, 388: 576–579.
  • Dorland, S., E.G. Beauchamp. 1991. De-nitrification and Hutsch, B.W., X. Wang, K. Feng, F. Yan, S. Schubert. 1999. ammonification at low soil temperatures. Canadian Journal of Soil Science, 71: 293–303.
  • Nitrous oxide emission as affected by changes in soil water content and nitrogen fertilization. Journal of Plant Nutrition and Soil Science, 162: 607–613.
  • IFA/FAO, 2001. Global Estimates of Gaseous Emissions of 2010. (Consumption in nutrients (tonnes of nutrients): Nitrogen Fertilizers (N total nutrients), in 2010.
  • NH , NO, and N O from Agricultural Land. International Fertilizer Industry Association and the Food and Agriculture Organization of the United N a t i o n s , R o m e , I t a l y . p . 1 0 6 . ftp://ftp.fao.org/agl/agll/docs/globest.pdf (eriþim 14 Kasým 2012).
  • Monogr. 22. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin, pp. 289–326.
  • IPCC, 1996. Climate Change 1995. In: The Science of Climate Change. Contribution of Working Group I to t h e S e c o n d A s s e s s m e n t R e p o r t o f t h e Intergovernmental Panel on Climate Change (Houghton, J.T., L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg and K. Maskell, eds.). Cambridge University Press, Cambridge, United Kingdom. 588 p.
  • Follett, R.F., Kimble, J.M., Lal, R. 2001. The Potential of U.S. Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect (Follett, R.F., J.M. Kimble and R. Lal, eds.) Lewis Publishers, A CRC Company, Boca Raton, FL, 472 p.
  • IPCC, 2000. The Special Report on Land Use, Land-Use Change, and Forestry (Watson, R.T., I.R. Noble, B. Bolin, N.H. Ravindranath, D. J. Verardo and D.J. Dokken, eds.). Cambridge University Press, Cambridge, United Kingdom. 375 p.
  • Fontaine, S., G. Bardoux, L. Abbadie, A. Mariotti. 2004. Carbon input to soil may decrease soil carbon content. Ecology Letters, 7: 314–320.
  • IPCC, 2001. Climate Change 2001. In: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson, eds.). Cambridge University Press, Cambridge, United Kingdom. 881 p.
  • Nitrogen cycles: past, present, and future. Biogeochemistry, 70: 153–226.
  • IPCC, 2003. Good Practice Guidance for Land Use, Land- Gillam, K.M., B.J. Zebarth, D.L. Burton. 2008. Nitrous Use Change and Forestry (Penman, J., M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. M., T. Ngara, K. Tanabe and F. Wagner, eds.). IPCC National Greenhouse Gas Inventories Programme Technical Support Unit. Japan. 590 p.
  • Soil Science, 88(2): 133–143.
  • Granli, T., O.C. Bİckman. 1994. Nitrous oxide from IPCC, 2006. N O Emissions from Managed Soils, and CO 2 2
  • agriculture. Norwegian Journal of Agricultural Sciences, Supplement 12. 128 p.
  • Emissions from Lime and Urea Application. In: Agriculture, Forestry and Other Land Use (Eggleston, Grant, R.F., E. Pattey, T.W. Goddard, L.M. Kryzanowski, H. S., L. Buendia, K. Miwa, T. Ngara and K. Tanabe, eds.). Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. 5 4
  • nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_11 _Ch11_N2O&CO2.pdf (eriþim 14 Kasým 2012).
  • IPCC, 2007. Climate Change 2007: The Physical Science U. Kafkafi, eds). Marcel Dekker, Inc., New York, pp. 505–528.
  • McSwiney, C.P., G.P. Robertson. 2005. Nonlinear response p .
  • h t t p : / / w w w . i p c c - of N O flux to incremental fertilizer addition in a 2
  • continuous maize (Zea mays L.) cropping system. Global Change Biology, 11: 1712–1719.
  • Mosquera, J., J.M.G. Hol, C. Rappoldt, J. Dolfing. 2007. Basis. In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007 (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller, eds.). Cambridge University Press, Cambridge, United Kingdom. 996 p.
  • Precise soil management as a tool to reduce CH and 4
  • N O emissions from agricultural soils. Report No: 28. 2
  • W a g e n i n g e n .
  • http://www.asg.wur.nl/NR/rdonlyres/F81D8745- 6596-4296-A292-8553950E2B98/40310/28.pdf (eriþim 14 Kasým 2012). p .
  • 2 . Iqbal, M. 1992. Potential rates of de-nitrification in 2 field Nevison, C.D., N.M. Mahowald, R.F. Weiss, R.G. Prinn. soils in southern England. Journal of Agricultural Science, 118: 223–227.
  • Interannual and seasonal variability in atmospheric N O. Global Biogeochemical Cycles, 21: GB3017, doi:10.1029/2006GB002755. p.13. 2
  • Izaurralde, R.C., R.L. Lemke, T.W. Goddard, B. McConkey, Z. Zhang. 2004. Nitrous oxide emissions from agricultural toposequences in Alberta and Saskatchewan. Soil Science Society of America Journal, 68: 1285–1294.
  • Norton, J.M. 2008. Nitrification in agricultural soils. In: Nitrogen in Agricultural Systems (Schepers, J.S. and W.R. Raun, eds.),. Agron. Monogr. 49. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin. pp. 173–199.
  • in the western United States. In: Soil Acidity and Liming (Adams, F., ed.). 2 edition. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin, pp. 333–347.
  • OECD, 2001. Methods and Results (Vol. 3). Environmental Indicators for Agriculture. Organisation for Economic Co-Operation and Development (OECD) Publications. France. p. 400.
  • Jones, M.B., A. Donnelly. 2004. Carbon sequestration in Parkin, T.B. 2008. Effect of sampling frequency on temperate grass land ecosystems and the influence of management, climate and elevated CO . New Phytologist, 164: 423–439.
  • estimates of cumulative nitrous oxide emissions. 2
  • Journal of Environmental Quality, 37: 1390–1395.
  • Post, W.M., W.R. Emmanuel, P.J. Zinke, A.G. Jugsujinda, A., R.D. DeLaune, C.W. Lindau. 1995. Stangenberger. 1982. Soil carbon pools and world life zones. Nature, 298: 156–159.
  • Influence of nitrate on methane production and oxidation in flooded soil. Communications in Soil Science and Plant Analysis, 26: 2449–2459.
  • Robertson, G.P. 2004. Abatement of nitrous oxide, methane, and the other non-CO greenhouse gases: the need for a systems approach. In: The Global Carbon Cycle (Field, C.B. and M.R. Raupach, eds.). Island Press, Washington, DC, pp. 493– 506
  • Science, 257: 1672–1675.
  • Lal, R. 1997. Long-term tillage and maize monoculture Robertson, G.P., Groffman, P.M., 2007. Nitrogen effects on a tropical Alfisol in Western Nigeria. II. Soil chemical properties. Soil and Tillage Research, 42: 161–174.
  • transformation. In: Soil Microbiology, Biochemistry, and Ecology (Paul, E.A., ed. ). Springer, New York, NY, pp. 341–364.
  • Lal, R. 2004. Soil carbon sequestration impacts on global Schlesinger, W.H., J. Lichter. 2001. Limited carbon storage climate change and food security. Science, 304: 1623–1627.
  • in soil and litter of experimental forest plots under increased atmospheric CO . Nature, 411: 466–469.
  • Six, J., S.M. Ogle, F.J. Breidt, R.T. Conant, A.R. Mosier, K. 2
  • Lal, R., J.P. Bruce. 1999. The potential of world cropland soils to sequester C and mitigate the greenhouse effect. Environmental Science & Policy, 2: 177-185.
  • Paustian. 2004. The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term. Global Change Biology, 10: 155–160.
  • carbon sequestration in the U.S.: a challenge to the policy makers. Soil Science, 168: 827–845.
  • Smith, K.A., F. Conen. 2004. Impacts of land management Lindau, C.W., R.D. DeLaune, W.H. Patrick Jr., P.K. Bollich. on fluxes and trace greenhouse gases. Soil Use and Management, 20: 255–263.
  • Fertilizer effects on dinitrogen, nitrous oxide, and methane emissions from lowland rice. Soil Science Society of America Journal, 54: 1789–1794.
  • Smith, P. 2004. Soil as carbon sinks: the global context. Soil Use and Management, 20: 212–218.
  • Linn, D.M., J.W. Doran. 1984. Effect of water-filled pores Snyder, C.S., T.W. Bruulsema, T.L. Jensen, P.E. Fixen. 2009. space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal, 48: 1267–1272.
  • Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment, 133: 247–266.
  • Maraseni, T.N., G. Cockfield, A. Apan. 2007. A comparison of greenhouse gas emissions from inputs into farm enterprises in Southeast Queensland, Australia. Journal of Environmental Science and Health, 42: 11–19.
  • Marschner, H. 1991. Root-induced changes in the Soussana, J.F., P. Loiseau, N. Vuichard, E. Ceschia, J. Balesdent, T. Chevallier. 2004. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use and Management, 20: 219–230.
  • availability of micronutrients in the rhizosphere. In: Plant Roots—the Hidden Half (Waisel, Y., A. Eshel and Subbarao, G.V., O. Ito, K.L. Sahrawat, W.L. Berry, K. Nakahara, T. Ishikawa, T. Watanabe, K. Suenaga, M. Rondon, I.M. Rao. 2006. Scope and strategies for r e g u l a t i o n o f n i t r i f i c a t i o n i n a g r i c u l t u r a l systems—challenges and opportunities. Critical Reviews in Plant Sciences, 25: 303–335.
  • Teepe, R., R. Brumme, F. Beese, B. Ludwig. 2004. Nitrous oxide emission and methane consumption following compaction of forest soils. Soil Science Society of America Journal, 68: 605–611.
  • Thomas, S., H. Barlow, G. Francis, D. Hedderley. 2004. Emission of nitrous oxide from fertilized potatoes. In: SuperSoil 2004: 3 Australian New Zealand Soils Conference, 5–9 December 2004, University of Sidney, Australia.
  • Thornton, F.C., R.J. Valente. 1996. Soil emissions of nitric oxide and nitrous oxide from no-till corn. Soil Science Society of America Journal, 60: 1127–1133.
  • TÜÝK, 2012. Seragazý Emisyon Envanteri 1990 -2010. T.C. Ýstatistik Kurumu Baþkanlýðý Haber Bülteni. Yayýnlanma Tarihi: 01.06.2012, Sayý: 10829. Ankara.
  • UNESCO ve SCOPE, 2007. Human Alteration of the Nitrogen Cycle: Threats, Benefits and Opportunities. April 2007-No. 4. UNESCO-SCOPE, Paris, France. p. 6.
  • West, T.O., A.C. McBride. 2005. The contribution of agricultural lime to carbon dioxide emission in the United States: dissolution, transport, and net emissions. Agriculture, Ecosystems and Environment, 108: 145–154.
  • West, T.O., G. Marland. 2002. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems and Environment, 91: 217–232. Sorumlu Yazar
  • Hüseyin Hüsnü KAYIKÇIOÐLU
  • husnu.kayikcioglu@gmail.com Geliþ Tarihi Kabul Tarihi : 15.12.2012

The Role of Agriculture in Greenhouse Gas Emissions

Yıl 2012, Cilt: 9 Sayı: 2, 25 - 38, 01.06.2012

Öz

The increase of greenhouse gases (GHG) in the atmosphere and the resulting climatic change will have important
st effects in the 21 century. Agricultural activity is a source for three primary GHG: carbon dioxide (CO2), methane
(CH4) and nitrous oxide (N2O). Agricultural soils can also be a sink for CO2 through C sequestration into biomass
products and soil organic matter. In this paper; it was summarized the literature on GHG emissions and C
sequestration, provided a perspective on how agriculture can reduce its GHG burden and how it can help to
mitigate GHG emissions through conservation measures. Impacts of agricultural practices and systems on GHG
emission were reviewed.
The potential of agricultural lands for CO2 , N2O and CH4 mitigation is not well recognized. Besides, there are a
number of shortcomings that need to be emphasized. These include the uncertainties related to future shifts in
global climate, land-use and plant cover, the poor yields of trees and crops on low fertile soils and under arid
climate conditions, mineral fertilizers efficiency. In addition, more efforts are needed to improve methods for
estimating C stocks and gas balances such as nitrous oxide (N2O) and methane (CH4) to determine net benefits of
agriculture on the atmosphere.

Kaynakça

  • Bange, H.W. 2000. Global change: it's not a gas. Nature, 408: 301–302. 2
  • Bardgett, R.D. 2005. The biology of soil: a community and ecosystem approach. In: Biology of Habitats (Crawley, M.J., C. Little, T.R.E. Southwood and S. Ulfstrand, eds.) Oxford University Press Inc., New York, USA. 2 242 p. 2
  • Bedard-Haughn, A., A.L. Matson, D.J. Pennock. 2006. Land use effects on gross nitrogen mineralization, nitrification, and N O emissions in ephemeral wetlands. Soil Biology & . Biochemistry, 38: 3398–3406.
  • Beedlow, P.A., D.T. Tingey, D.L. Phillips, W. Hogsett, D.M. Olszyk. 2004. Rising atmospheric CO and carbon 2
  • sequestration in forests. Frontiers in Ecology and the Environment, 2: 315–322. SONUÇ
  • Bremner, J.M., A.M. Blackmer. 1978. Nitrous oxide: emission from soils during nitrification of fertilizer nitrogen. Science, 199: 295–296.
  • Burton, D.L., X. Li, C.A. Grant. 2008. Influence of fertilizer nitrogen source and management practice on N2O emissions from two Black Chernozemic soils. Canadian Journal of Soil Science, 88: 219–227.
  • Cerri, C.C., M. Bernous, C.E.P. Cerri, C. Feller. 2004. Carbon cycling and sequestration opportunities in South America: the case of Brazil. Soil Use and Management, 20: 248–254.
  • Chapuis-Lardy, L., N. Wrage, A. Metay, J.-J. Chotte, M. Bernoux. 2007. Soils, a sink for N O? A review. Global 2
  • Change Biology, 13: 1–17.
  • Crutzen, P.J., A.R. Mosier, K.A. Smith, W. Winiwarter. 2008. N O release from agrobiofuel production negates 2
  • global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics, 8: 389–395.
  • Dalal, R.C., W. Wang, P. Robertson, W.J. Parton. 2003. Nitrous oxide emission from Australian agriculture lands and mitigation options: a review. Australian Journal of Soil Research, 41: 165–195.
  • Puurveen. 2006. Modeling the effects of fertilizer application rate on nitrous oxide emissions. Soil Science Society of America Journal, 70: 235–248.
  • Halvorson, A.D., S.J. Del Grosso, C.A. Reule. 2008. DAYCENT model simulations of corn yields and nitrous oxide emissions in irrigated tillage systems in Colorado. Journal of Environmental Quality, 37: 1383–1389.
  • Nitrogen, tillage, and crop otation effects on nitrous oxide emissions from irrigated cropping systems. Journal of Environmental Quality, 37: 1337–1344.
  • Hamilton, S.K., A.L. Kurzman, C. Arango, L. Jin, G.P. Del Grosso, S.J., W.J. Parton, A.R. Mosier, M.K. Walsh, D.S. Ojima, P.E. Thornton. 2006. DAYCENT National-scale simulations of nitrous oxide emissions from cropped soils in the United States. Journal of Environmental Quality, 35: 1451–1460.
  • Robertson. 2007. Evidence for carbon sequestration by agricultural liming. Global Biogeochemical Cycles, 21: GB2021, doi:10.1029/2006GB002738.
  • Hirsch, A.I., A.M. Michalak, L.M. Bruhwiler, W. Peters, E.J. Denman, K.L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Dlugokencky, P.P. Tans. 2006. Inverse modeling estimates of the global nitrous oxide surface flux from 1998–2001, Global Biogeochemical Cycles, 20: GB1008, doi:10.1029/2004GB002443. 17 p.
  • P.L. da Silva Dias, S.C. Wofsy, X. Zhang. 2007. Couplings between changes in the climate system and biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller, eds.). Cambridge University Press, Cambridge, United Kingdom. pp. 499 – 587.
  • Hou, A.X., G.X. Chen, Z.P. Wang, O. Van Cleemput, W.H. Patrick Jr. 2000. Methane and nitrous oxide emissions form a rice field in relation to soil redox and microbiological processes. Soil Science Society of America Journal, 64: 2180–2186.
  • Hungate, B.A., E.A. Holland, R.B. Jackson, F.S. Chapin, H.A. Mooney, C.B. Field. 1997. The fate of carbon in grasslands under carbon dioxide enrichment. Nature, 388: 576–579.
  • Dorland, S., E.G. Beauchamp. 1991. De-nitrification and Hutsch, B.W., X. Wang, K. Feng, F. Yan, S. Schubert. 1999. ammonification at low soil temperatures. Canadian Journal of Soil Science, 71: 293–303.
  • Nitrous oxide emission as affected by changes in soil water content and nitrogen fertilization. Journal of Plant Nutrition and Soil Science, 162: 607–613.
  • IFA/FAO, 2001. Global Estimates of Gaseous Emissions of 2010. (Consumption in nutrients (tonnes of nutrients): Nitrogen Fertilizers (N total nutrients), in 2010.
  • NH , NO, and N O from Agricultural Land. International Fertilizer Industry Association and the Food and Agriculture Organization of the United N a t i o n s , R o m e , I t a l y . p . 1 0 6 . ftp://ftp.fao.org/agl/agll/docs/globest.pdf (eriþim 14 Kasým 2012).
  • Monogr. 22. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin, pp. 289–326.
  • IPCC, 1996. Climate Change 1995. In: The Science of Climate Change. Contribution of Working Group I to t h e S e c o n d A s s e s s m e n t R e p o r t o f t h e Intergovernmental Panel on Climate Change (Houghton, J.T., L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg and K. Maskell, eds.). Cambridge University Press, Cambridge, United Kingdom. 588 p.
  • Follett, R.F., Kimble, J.M., Lal, R. 2001. The Potential of U.S. Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect (Follett, R.F., J.M. Kimble and R. Lal, eds.) Lewis Publishers, A CRC Company, Boca Raton, FL, 472 p.
  • IPCC, 2000. The Special Report on Land Use, Land-Use Change, and Forestry (Watson, R.T., I.R. Noble, B. Bolin, N.H. Ravindranath, D. J. Verardo and D.J. Dokken, eds.). Cambridge University Press, Cambridge, United Kingdom. 375 p.
  • Fontaine, S., G. Bardoux, L. Abbadie, A. Mariotti. 2004. Carbon input to soil may decrease soil carbon content. Ecology Letters, 7: 314–320.
  • IPCC, 2001. Climate Change 2001. In: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C.A. Johnson, eds.). Cambridge University Press, Cambridge, United Kingdom. 881 p.
  • Nitrogen cycles: past, present, and future. Biogeochemistry, 70: 153–226.
  • IPCC, 2003. Good Practice Guidance for Land Use, Land- Gillam, K.M., B.J. Zebarth, D.L. Burton. 2008. Nitrous Use Change and Forestry (Penman, J., M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. M., T. Ngara, K. Tanabe and F. Wagner, eds.). IPCC National Greenhouse Gas Inventories Programme Technical Support Unit. Japan. 590 p.
  • Soil Science, 88(2): 133–143.
  • Granli, T., O.C. Bİckman. 1994. Nitrous oxide from IPCC, 2006. N O Emissions from Managed Soils, and CO 2 2
  • agriculture. Norwegian Journal of Agricultural Sciences, Supplement 12. 128 p.
  • Emissions from Lime and Urea Application. In: Agriculture, Forestry and Other Land Use (Eggleston, Grant, R.F., E. Pattey, T.W. Goddard, L.M. Kryzanowski, H. S., L. Buendia, K. Miwa, T. Ngara and K. Tanabe, eds.). Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. 5 4
  • nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_11 _Ch11_N2O&CO2.pdf (eriþim 14 Kasým 2012).
  • IPCC, 2007. Climate Change 2007: The Physical Science U. Kafkafi, eds). Marcel Dekker, Inc., New York, pp. 505–528.
  • McSwiney, C.P., G.P. Robertson. 2005. Nonlinear response p .
  • h t t p : / / w w w . i p c c - of N O flux to incremental fertilizer addition in a 2
  • continuous maize (Zea mays L.) cropping system. Global Change Biology, 11: 1712–1719.
  • Mosquera, J., J.M.G. Hol, C. Rappoldt, J. Dolfing. 2007. Basis. In: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007 (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller, eds.). Cambridge University Press, Cambridge, United Kingdom. 996 p.
  • Precise soil management as a tool to reduce CH and 4
  • N O emissions from agricultural soils. Report No: 28. 2
  • W a g e n i n g e n .
  • http://www.asg.wur.nl/NR/rdonlyres/F81D8745- 6596-4296-A292-8553950E2B98/40310/28.pdf (eriþim 14 Kasým 2012). p .
  • 2 . Iqbal, M. 1992. Potential rates of de-nitrification in 2 field Nevison, C.D., N.M. Mahowald, R.F. Weiss, R.G. Prinn. soils in southern England. Journal of Agricultural Science, 118: 223–227.
  • Interannual and seasonal variability in atmospheric N O. Global Biogeochemical Cycles, 21: GB3017, doi:10.1029/2006GB002755. p.13. 2
  • Izaurralde, R.C., R.L. Lemke, T.W. Goddard, B. McConkey, Z. Zhang. 2004. Nitrous oxide emissions from agricultural toposequences in Alberta and Saskatchewan. Soil Science Society of America Journal, 68: 1285–1294.
  • Norton, J.M. 2008. Nitrification in agricultural soils. In: Nitrogen in Agricultural Systems (Schepers, J.S. and W.R. Raun, eds.),. Agron. Monogr. 49. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin. pp. 173–199.
  • in the western United States. In: Soil Acidity and Liming (Adams, F., ed.). 2 edition. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin, pp. 333–347.
  • OECD, 2001. Methods and Results (Vol. 3). Environmental Indicators for Agriculture. Organisation for Economic Co-Operation and Development (OECD) Publications. France. p. 400.
  • Jones, M.B., A. Donnelly. 2004. Carbon sequestration in Parkin, T.B. 2008. Effect of sampling frequency on temperate grass land ecosystems and the influence of management, climate and elevated CO . New Phytologist, 164: 423–439.
  • estimates of cumulative nitrous oxide emissions. 2
  • Journal of Environmental Quality, 37: 1390–1395.
  • Post, W.M., W.R. Emmanuel, P.J. Zinke, A.G. Jugsujinda, A., R.D. DeLaune, C.W. Lindau. 1995. Stangenberger. 1982. Soil carbon pools and world life zones. Nature, 298: 156–159.
  • Influence of nitrate on methane production and oxidation in flooded soil. Communications in Soil Science and Plant Analysis, 26: 2449–2459.
  • Robertson, G.P. 2004. Abatement of nitrous oxide, methane, and the other non-CO greenhouse gases: the need for a systems approach. In: The Global Carbon Cycle (Field, C.B. and M.R. Raupach, eds.). Island Press, Washington, DC, pp. 493– 506
  • Science, 257: 1672–1675.
  • Lal, R. 1997. Long-term tillage and maize monoculture Robertson, G.P., Groffman, P.M., 2007. Nitrogen effects on a tropical Alfisol in Western Nigeria. II. Soil chemical properties. Soil and Tillage Research, 42: 161–174.
  • transformation. In: Soil Microbiology, Biochemistry, and Ecology (Paul, E.A., ed. ). Springer, New York, NY, pp. 341–364.
  • Lal, R. 2004. Soil carbon sequestration impacts on global Schlesinger, W.H., J. Lichter. 2001. Limited carbon storage climate change and food security. Science, 304: 1623–1627.
  • in soil and litter of experimental forest plots under increased atmospheric CO . Nature, 411: 466–469.
  • Six, J., S.M. Ogle, F.J. Breidt, R.T. Conant, A.R. Mosier, K. 2
  • Lal, R., J.P. Bruce. 1999. The potential of world cropland soils to sequester C and mitigate the greenhouse effect. Environmental Science & Policy, 2: 177-185.
  • Paustian. 2004. The potential to mitigate global warming with no-tillage management is only realized when practiced in the long term. Global Change Biology, 10: 155–160.
  • carbon sequestration in the U.S.: a challenge to the policy makers. Soil Science, 168: 827–845.
  • Smith, K.A., F. Conen. 2004. Impacts of land management Lindau, C.W., R.D. DeLaune, W.H. Patrick Jr., P.K. Bollich. on fluxes and trace greenhouse gases. Soil Use and Management, 20: 255–263.
  • Fertilizer effects on dinitrogen, nitrous oxide, and methane emissions from lowland rice. Soil Science Society of America Journal, 54: 1789–1794.
  • Smith, P. 2004. Soil as carbon sinks: the global context. Soil Use and Management, 20: 212–218.
  • Linn, D.M., J.W. Doran. 1984. Effect of water-filled pores Snyder, C.S., T.W. Bruulsema, T.L. Jensen, P.E. Fixen. 2009. space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Science Society of America Journal, 48: 1267–1272.
  • Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems and Environment, 133: 247–266.
  • Maraseni, T.N., G. Cockfield, A. Apan. 2007. A comparison of greenhouse gas emissions from inputs into farm enterprises in Southeast Queensland, Australia. Journal of Environmental Science and Health, 42: 11–19.
  • Marschner, H. 1991. Root-induced changes in the Soussana, J.F., P. Loiseau, N. Vuichard, E. Ceschia, J. Balesdent, T. Chevallier. 2004. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use and Management, 20: 219–230.
  • availability of micronutrients in the rhizosphere. In: Plant Roots—the Hidden Half (Waisel, Y., A. Eshel and Subbarao, G.V., O. Ito, K.L. Sahrawat, W.L. Berry, K. Nakahara, T. Ishikawa, T. Watanabe, K. Suenaga, M. Rondon, I.M. Rao. 2006. Scope and strategies for r e g u l a t i o n o f n i t r i f i c a t i o n i n a g r i c u l t u r a l systems—challenges and opportunities. Critical Reviews in Plant Sciences, 25: 303–335.
  • Teepe, R., R. Brumme, F. Beese, B. Ludwig. 2004. Nitrous oxide emission and methane consumption following compaction of forest soils. Soil Science Society of America Journal, 68: 605–611.
  • Thomas, S., H. Barlow, G. Francis, D. Hedderley. 2004. Emission of nitrous oxide from fertilized potatoes. In: SuperSoil 2004: 3 Australian New Zealand Soils Conference, 5–9 December 2004, University of Sidney, Australia.
  • Thornton, F.C., R.J. Valente. 1996. Soil emissions of nitric oxide and nitrous oxide from no-till corn. Soil Science Society of America Journal, 60: 1127–1133.
  • TÜÝK, 2012. Seragazý Emisyon Envanteri 1990 -2010. T.C. Ýstatistik Kurumu Baþkanlýðý Haber Bülteni. Yayýnlanma Tarihi: 01.06.2012, Sayý: 10829. Ankara.
  • UNESCO ve SCOPE, 2007. Human Alteration of the Nitrogen Cycle: Threats, Benefits and Opportunities. April 2007-No. 4. UNESCO-SCOPE, Paris, France. p. 6.
  • West, T.O., A.C. McBride. 2005. The contribution of agricultural lime to carbon dioxide emission in the United States: dissolution, transport, and net emissions. Agriculture, Ecosystems and Environment, 108: 145–154.
  • West, T.O., G. Marland. 2002. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems and Environment, 91: 217–232. Sorumlu Yazar
  • Hüseyin Hüsnü KAYIKÇIOÐLU
  • husnu.kayikcioglu@gmail.com Geliþ Tarihi Kabul Tarihi : 15.12.2012
Toplam 86 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA52AY32NA
Bölüm Düzeltme
Yazarlar

Hüseyin Hüsnü Kayıkçıoğlu

Nur Okur Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 9 Sayı: 2

Kaynak Göster

APA Kayıkçıoğlu, H. H., & Okur, N. (2012). SERA GAZI SALINIMLARINDA TARIMIN ROLÜ. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 9(2), 25-38.
AMA Kayıkçıoğlu HH, Okur N. SERA GAZI SALINIMLARINDA TARIMIN ROLÜ. ADÜ ZİRAAT DERG. Aralık 2012;9(2):25-38.
Chicago Kayıkçıoğlu, Hüseyin Hüsnü, ve Nur Okur. “SERA GAZI SALINIMLARINDA TARIMIN ROLÜ”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 9, sy. 2 (Aralık 2012): 25-38.
EndNote Kayıkçıoğlu HH, Okur N (01 Aralık 2012) SERA GAZI SALINIMLARINDA TARIMIN ROLÜ. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 9 2 25–38.
IEEE H. H. Kayıkçıoğlu ve N. Okur, “SERA GAZI SALINIMLARINDA TARIMIN ROLÜ”, ADÜ ZİRAAT DERG, c. 9, sy. 2, ss. 25–38, 2012.
ISNAD Kayıkçıoğlu, Hüseyin Hüsnü - Okur, Nur. “SERA GAZI SALINIMLARINDA TARIMIN ROLÜ”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 9/2 (Aralık 2012), 25-38.
JAMA Kayıkçıoğlu HH, Okur N. SERA GAZI SALINIMLARINDA TARIMIN ROLÜ. ADÜ ZİRAAT DERG. 2012;9:25–38.
MLA Kayıkçıoğlu, Hüseyin Hüsnü ve Nur Okur. “SERA GAZI SALINIMLARINDA TARIMIN ROLÜ”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, c. 9, sy. 2, 2012, ss. 25-38.
Vancouver Kayıkçıoğlu HH, Okur N. SERA GAZI SALINIMLARINDA TARIMIN ROLÜ. ADÜ ZİRAAT DERG. 2012;9(2):25-38.