Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Effective Mutation Dose on Walnut (Juglans regia L. cv. Chandler) Budwoods

Yıl 2021, Cilt: 18 Sayı: 1, 111 - 117, 30.06.2021
https://doi.org/10.25308/aduziraat.859402

Öz

Walnut (Juglans regia L., 2n=2x=32, Juglandaceae) is a deciduous temperate fruit species with an increasing economic importance and health benefits. The effective mutation dose (EMD) was not determined for ‘Chandler’ budwoods. The objective of this study was to determine the radiosensitivity of walnut budwoods to cobalt-60 gamma ray. One-year-old budwoods of ‘Chandler’ walnut cultivar carrying 4-5 buds in 20 cm in length were irradiated with cobalt-60. The gamma irradiation and chip budding were performed three different times. The budwoods were irradiated (1) with 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 Gy gamma doses on Apr 2017, (2) with 0, 20, 25, 30, 35, 40 Gy gamma doses on Sep 2017, and (3) with only 42 Gy gamma dose on Apr 2018. Then, gamma irradiated budwoods were chip budded on seedling rootstocks. Mutation 1 Vegetation 1 (M1V1) plants were obtained. The humidity content of the budwoods was determined after gamma irradiation. The bud take ratio, shoot length, and chlorophyll density of M1V1 plants were measured. From the shoot length of the plants, EMD was calculated as 42.1 Gy after the first irradiation on Apr, 2017, and that was calculated as 20.9 Gy in the second irradiation on Sep, 2017. The main plant population was obtained by previously calculated 42.1 Gy dose in the third irradiation on Apr, 2018. The survival rates of budded plants in three irradiation experiments were 21.6%, 54.8%, and 32.0%, respectively. According to the results, the most suitable gamma ray dose is 42.1 Gy.

Destekleyen Kurum

Aydın Adnan Menderes Üniversitesi

Proje Numarası

ADU BAP ZRF-17023

Teşekkür

We thank Dr. Burak Kunter and Prof. Dr. Kourosh Vahdati for their critical reading of the manuscript. ADU-AgBioCenter was acknowledged for allowing us to conduct a part of this work. This M.S. thesis work was funded by the Scientific Research Project No. ADU BAP ZRF-17023

Kaynakça

  • Anonymous (2019) FAO/IAEA Food and Agriculture Organisation/International Atomic Energy Agency, Vienna. https://mvd.iaea.org/#!Search(Erişimtarihi: 12/01/2021).
  • Atay AN, Kunter B, Atay E, Kantoğlu KY, Kaplan N (2018) Radiosensitivity and Preliminary Results in Mutation Breeding of ‘Amasya’ Apple Cultivar. In: IAEA (ed.), The International Symposium on Plant Mutation Breeding and Biotechnology of FAO, 27-31 August 2018, Vienna, IAEA-CN-263-3.
  • Babcock EB (1915) Walnut Mutant Investigation. Proceedings of the National Academy of Sciences 1: 535-537.
  • Bado S, Forster BP, Nielen S, Ali AM, Lagoda PJL, Till BJ, Laimer M (2015) Plant Mutation Breeding Current Progress and Future Assessment. Plant Breeding Reviews 39: 23-87.
  • Ballester AM (2013) Evaluación y preselección de mutantesdemaduración tardíaobtenidos por irradiación de mandarina Clementina (Citrus clementina Hort. ex Tanaka). MásterTesis, Universidad Politécnica de Valencia, Valencia.
  • Bermejo A, Pardo J, Cano A (2012) Murcott Seedless: Influence of Gamma Irradiation on Citrus Production and Fruit Quality. Spanish Journal of Agricultural Research 10: 768-777.
  • Bernard A, Lheureux F, Dirlewanger E (2018) Walnut: Past and Future of Genetic Improvement. Tree Genetics Genomes 14:1-28.
  • Bhattacharya S, Joshi RK (1977) Factors Modifying Radiation Induced Stimulation in Plants: Pre- irradiation Seed Moisture Content. Rad. Environ. Biophys. 14:47-51.
  • Caplin N, Willey N (2018) Ionizing Radiation, Higher Plants, and Radioprotection: From Acute High Doses to Chronic Low Doses. Frontiers in Plant Science9: 847.
  • Çelik Ö, Atak Ç (2017) Applications of Ionizing Radiation in Mutation Breeding. In: Maghraby AM (ed.),New Insights on Gamma Rays, InTech Open, London, 111.
  • Ebrahimi A, Vahdati K (2006) Improved success of Persian walnut grafting under environmentally controlled conditions. International Journal of Fruit Science. 6(4): 3-12.
  • Esnault M-A, Legue F, Chenal C (2010) Ionizing Radiation: Advances in Plant Response. Environmental and Experimental Botany 68: 231-237.
  • Gulsen O, Uzun A, Pala H, Canihos E, Kafa G (2007) Development of Seedless and Mal Secco Tolerant Mutant Lemons through Budwood Irradiation. Scientia Horticulturae 112: 184-190.
  • Hearn CJ (1986) Development of Seedless Grapefruit Cultivars through Budwood Irradiation. Journal of the American Society for Horticultural Science 111: 304-306.
  • Jain SM (2010) Mutagenesis in Crop Improvement under the Climate Change. Romanian Biotechnological Letters 15: 88-106.
  • Jankowicz-Cieslak J, Mba C, Till BJ (2017) Mutagenesis for Crop Breeding and Functional Genomics. In: Jankowicz-Cieslak J, Tai TH, KumlehnJ, Till BJ (eds.), Biotechnologies for Plant Mutation Breeding, FAO/IAEA, Springer, Switzerland, 3-18.
  • Karadeniz T (2005) Relationships Between Graft Success and Climatic Values in Walnut (Juglans regia L.). Journal of Central European Agriculture 6(4): 631-634.
  • Kara-Özbek C, Dalkılıç Z (2017) Effects of Mycorrhiza and Vermicompost on the Growth of Trifoliate Orange Seedlings, and Determination of Tolerance of Nagami Kumquat Budwoods to Cobalt-60 Irradiation and Identification of Different Genotypes with RAPD Markers. ADU Journal of the Faculty of Agriculture14:1-7.
  • Karimi S, Karami H, Mokhtassi-Bidgoli A, Tavallali V, Vahdati K (2018) Inducing Drought Tolerance in Greenhouse Grown Juglans regia by Imposing Controlled Salt Stress: The Role of Osmotic Adjustment. Scientia Horticulturae 239: 181-192.
  • Kudina GA (1988) Walnut Mutation Breeding. Mutation Breeding Newsletter 34:24.
  • Kunter B, Bas M, Kantoglu Y, Burak M (2012) Mutation Breeding of Sweet Cherry (Prunus avium L.) var. 0900 Ziraat. In: Shu QY, Forster BP, Nakagawa H, (eds.), Plant Mutation Breeding and Biotechnology, CABI, Wallingford, 453-459.
  • Lagoda PJL (2012) Effects of Radiation on Living Cells and Plants. In: Shu QY, Forster BP, Nakagawa H, (eds.), Plant Mutation Breeding and Biotechnology, CABI, Wallingford, 123-134.
  • Lamo K, Bhat DJ, Kour K, Singh Solanki SP (2017) Mutation Studies in Fruit Crops: A Review. International Journal of Current Microbiology and Applied Science 6: 3620-3633.
  • Legave JM, Garcia G (1988) Radiosensibilité de Rameaux Greffons d’Abricotier Exposés à un Rayonnement Gamma Aigu et Observation en Pépinière d’une Deuxième Génération Végétative de Bourgeons Irradiés. Agronomie 8: 55-59.
  • López-García A, Terol J, Tadeo FR, Herrero-Ortega A, Ibañez V, Talón M (2015) Three New Cultivars of Clementine: ‘Clemenverd’, ‘Nero’ and ‘Neufina’. Acta Horticulturae 1065: 239-243.
  • Maluszynski M, Szarejko I, Bhatia CR, Nichterlein K, Lagoda PJL (2009) Methodologies for Generating Variability Part 4: Mutation Techniques. In: Ceccarelli S, Guimarães EP, Weltzien E (eds.), Plant Breeding and Farmer Participation, FAO, Rome, 159-194.
  • Mba C, Afza R, Bado S, Jain SM (2010) Induced Mutagenesis in Plants Using Physical and Chemical Agents. In: Davey MR, Anthony P (eds.), Plant Cell Culture: Essential Methods, John Wiley & Sons, Ltd., Chichester, UK, 111-130.
  • McGranahan G, Leslie C (2012) Walnut. In: Badenes ML, Byrne DH (eds.), Fruit Breeding, Springer, London, 827-846.
  • Nguyen VV (2001) Induction of Mutation on Mulberry (Morus alba L.) by Using In Vitro Techniques in Combination with Gamma Irradiation. JAERI-Conference3: 160-165.
  • Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and Application of Plant Mutagenesis in Crop Improvement: A Review. Biotechnology & Biotechnological Equipment 30: 1-16.
  • Ollitrault P, Navarro L (2012) Citrus. In: Badenes ML, Byrne DH (eds.), Fruit Breeding, Springer, London, 623-662.
  • Opeke LK, Jacobs VJ (1973) Mutation Breeding in Cacao (Theobroma cacao L.). In: FAO/IAEA (ed.), Panel on Mutation Breeding of Vegetatively Propagated Perennial Crops IAEA-PL-501/14,11-15 September 1972, Vienna, 137.
  • Özen M, Kocataş H, Çobanoğlu F,Ertan B, Kösoğlu İ, Tan N, Şahin B, Belge A, Konak R, Aksoy U, Gülşen O (2017) Mutation Breeding Studies of Fig. Acta Horticulturae 1173: 93-98.
  • Pennington AG, Beineke WF (1977) A New Leaf Mutation in Black Walnut (Juglans nigra L.). Proceedings of Indiana Academy of Science 86: 409-412.
  • Piri I, Babayan M, Tavassoli A, Javaheri M (2011) The use of Gamma Irradiation in Agriculture. African Journal of Microbiology Research 5: 5806-5811.
  • Rezaee R, Vahdati K, Grigoorian W, Valizadeh M (2008) Walnut grafting success and bleeding rate as affected by different grafting methods and seedling vigor. The Journal of Horticultural Science & Biotechnology. 83(1):94-99.
  • Roose ML, Williams E (2007a) Mutation Breeding. In: Citrus Genetics, Breeding and Biotechnology, In: Khan IA, (ed.), CABI, Wallingford, 345-352.
  • Roose ML, Williams E (2007b) Mandarin Tree Named ‘Tango’. USPP17863P3.
  • Saamin S, Thompson MM (1998) Radiation-Induced Mutations from Accessory Buds of Sweet Cherry, Prunus avium L. cv ‘Bing’. Theoretical and Applied Genetics 96: 912-916.
  • Sadat Hosseini GM, Vahdati K, Lotfi M, Hassani D, Pirvali Biranvand N (2011) Production of Haploids in Persian Walnut through Parthenogenesis Induced by Gamma-Irradiated Pollen.Journal of the American Society for Horticultural Science 136:198-204.
  • Saito T (2016) Advances in Japanese Pear Breeding in Japan. Breeding Science 66: 46-59.
  • Shirasawa K, Hirakawa H, Nunome T, Tabata S,Isobe S (2016) Genome-Wide Survey of Artificial Mutations Induced by Ethyl Methanesulfonate and Gamma Rays in Tomato. Plant Biotechnology Journal 14: 51-60.
  • Sparrow AH, Schwemmer SS, Bottino PJ (1971) The Effects of External Gamma Radiation from Radioactive Fallout on Plants with Special Reference to Crop Production. Radiation Botany 11: 85-118.
  • Spiegel-Roy P, Vardi A, Yaniv Y, Fanberstein L, Elhanati A, Carmi N (2007) ‘Ayelet’ and ‘Galya’: New Seedless Lemon Cultivars. HortScience 42: 1723-1724.
  • Suprasanna P, Jain SM (2017) Mutant Resources and Mutagenesis in Crop Plants. Emirates Journal of Food and Agriculture 29: 651-657.
  • Şen SM (2011) Ceviz: Yetiştiriciliği, Besin Değeri, Folklorü. 4. Baskı. ÜÇM Yayıncılık. Ankara.
  • Tekintaş FE, Şen SM, Akça Y, Erdoğan V, Ertürk Ü, Sütyemez M, Dalkılıç Z (2014) Following Walnut Footprints in Turkey. In: Avanzato D (ed), Fallowing Walnut Footprints (Juglans regia L.): Cultivation and Culture, Folklore and History, Traditions and Uses, Scripta Horticulturae, 17: 401-408.
  • Tosri C, Chusreeaeom K, Limtiyayotin M, Sukin N, Jompuk P (2019) Comparative Effect of High Energy Electron Beam and 137Cs Gamma Ray on Survival, Growth and Chlorophyll Content in Curcuma Hybrid ‘Laddawan’ and Determine Proper Dose for Mutations Breeding. Emirates Journal of Food and Agriculture 31: 321-327.
  • Tulecke W, McGranahan G (1994) The Walnut Germplasm Collection of the University of California, Davis: A Description of the Collection and A History of the Breeding Program of Eugene F. Serr and Harold I. Forde. Report No. 13. The University of California Genetic Resources Conservation Program, Davis, CA.
  • Ulukapi K, Nasircilar AG (2015) Developments of Gamma Ray Application on Mutation Breeding Studies in Recent Years. In: AABES (ed.), The International Conference Advances in Agricultural, Biological and Environmental Sciences, 22-23 July, 2015, London, 31-34.
  • Uzun A, Gulsen O, Kafa G, Seday U (2008) ‘Alata’, ‘Gulsen’, and ‘Uzun’ Seedless Lemons and ‘Eylul’ Early-Maturing Lemon. HortScience 43: 1920-1921.
  • Vahdati K, Lotfi N (2013) Abiotic Stress Tolerance in Plants with Emphasizing on Drought and Salinity Stresses in Walnut. In: Vahdati K, Leslie CA (eds.), Abiotic Stress-Plant Responses and Applications in Agriculture, InTech Open, Rijeka, 307-365.
  • Vahdati K, Lotfi N, Kholdebarin B, Hasani D, Amiri R (2009) Screening for Drought Tolerant Genotypes of Persian Walnuts (Juglans regia L.) during Seed Germination. HortScience 44: 1815-1819.
  • Vahdati K, Arab MM, Sarikhani Khorami S,Sadat Hosseini M, Leslie CA, Brown PJ (2019) Advances in Walnut (Juglans regia L.) Breeding Strategies. In: Al-Khayri JM, Jain SM, Johnson DV (eds.), Advances in Plant Breeding Strategies, Vol 4: Nut and Beverage Crops, Springer, Switzerland, 401-472.
  • Vardi A, Spiegel-Roy P, Frydman-Shani A, Elchanati A, Neumann H (2003a) Citrus Tree Named ‘Orri’. USPP13616.
  • Vardi A, Spiegel-Roy P, Frydman-Shani A, Elchanati A,Neumann H (2003b) Citrus Tree Named ‘Moria’. USPP13460.
  • Yadav A, Singh B, Singh SD (2019) Impact of Gamma Irradiation on Growth, Yield and Physiological Attributes of Maize. Indian Journal of Experimental Biology 57: 116-122.

Ceviz (Juglans regia L. cv. Chandler) Aşı Gözleri Üzerine Etkili Mutasyon Dozunun Belirlenmesi

Yıl 2021, Cilt: 18 Sayı: 1, 111 - 117, 30.06.2021
https://doi.org/10.25308/aduziraat.859402

Öz

Ceviz (Juglans regia L., 2n=2x=32, Juglandaceae), ekonomik önemi ve sağlık açısından faydaları artan, yaprak döken ılıman iklim meyve türüdür. ‘Chandler’ aşı gözlerinin etkili mutasyon dozu (EMD) henüz belirlenmemiştir. Bu çalışmanın amacı, ceviz aşı gözlerinin kobalt-60 ışınlamasına hassasiyetini belirlemektir. Üzerinde 4-5 aşı gözü bulunan 20 cm uzunluğundaki ‘Chandler’ ceviz çeşidi aşı kalemleri kobalt-60 ışınlamasına maruz bırakılmıştır. Üç farklı dönemde gama ışınlaması ve yongalı göz aşısı yapılmıştır. Aşı kalemleri (1) Nisan 2017’de 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 Gy gama dozlarına, (2) Eylül 2017’de 0, 20, 25, 30, 35, 40 Gy gama dozlarına ve (3) Nisan 2018’de 42 Gy gama dozuna tabi tutulmuşlardır. Gama uygulaması yapılan aşı kalemleri çöğür anaçları üzerine yongalı göz aşısı ile aşılanmıştır. Mutasyon 1 Vejetasyon 1 (M1V1) bitkileri elde edilmiştir. Aşı kalemlerinin nem içeriği gama ışınlamasından sonra belirlenmiştir. M1V1 bitkilerinin aşı tutma oranı, sürgün boyu ve klorofil yoğunluğu ölçülmüştür. Aşılamadan elde edilen bitkilerin sürgün uzunluklarından, birinci ışınlamadaki EMD=42.1 Gy olarak ve ikinci ışınlamadaki EMD=20.9 Gy olarak belirlenmiştir. Üçüncü ışınlama döneminde sadece daha önce belirlenen 42.1 Gy dozu uygulanılarak ana populasyon bitkileri oluşturulmuştur. Üç ışınlama denemesinden elde edilen aşılı bitki yaşama oranları sırasıyla %21.6, %54.8 ve %32.0. Bu sonuçlara göre, ‘Chandler’ aşı kalemlerine yapılacak en uygun gama dozu 42.1 Gy’dir.

Proje Numarası

ADU BAP ZRF-17023

Kaynakça

  • Anonymous (2019) FAO/IAEA Food and Agriculture Organisation/International Atomic Energy Agency, Vienna. https://mvd.iaea.org/#!Search(Erişimtarihi: 12/01/2021).
  • Atay AN, Kunter B, Atay E, Kantoğlu KY, Kaplan N (2018) Radiosensitivity and Preliminary Results in Mutation Breeding of ‘Amasya’ Apple Cultivar. In: IAEA (ed.), The International Symposium on Plant Mutation Breeding and Biotechnology of FAO, 27-31 August 2018, Vienna, IAEA-CN-263-3.
  • Babcock EB (1915) Walnut Mutant Investigation. Proceedings of the National Academy of Sciences 1: 535-537.
  • Bado S, Forster BP, Nielen S, Ali AM, Lagoda PJL, Till BJ, Laimer M (2015) Plant Mutation Breeding Current Progress and Future Assessment. Plant Breeding Reviews 39: 23-87.
  • Ballester AM (2013) Evaluación y preselección de mutantesdemaduración tardíaobtenidos por irradiación de mandarina Clementina (Citrus clementina Hort. ex Tanaka). MásterTesis, Universidad Politécnica de Valencia, Valencia.
  • Bermejo A, Pardo J, Cano A (2012) Murcott Seedless: Influence of Gamma Irradiation on Citrus Production and Fruit Quality. Spanish Journal of Agricultural Research 10: 768-777.
  • Bernard A, Lheureux F, Dirlewanger E (2018) Walnut: Past and Future of Genetic Improvement. Tree Genetics Genomes 14:1-28.
  • Bhattacharya S, Joshi RK (1977) Factors Modifying Radiation Induced Stimulation in Plants: Pre- irradiation Seed Moisture Content. Rad. Environ. Biophys. 14:47-51.
  • Caplin N, Willey N (2018) Ionizing Radiation, Higher Plants, and Radioprotection: From Acute High Doses to Chronic Low Doses. Frontiers in Plant Science9: 847.
  • Çelik Ö, Atak Ç (2017) Applications of Ionizing Radiation in Mutation Breeding. In: Maghraby AM (ed.),New Insights on Gamma Rays, InTech Open, London, 111.
  • Ebrahimi A, Vahdati K (2006) Improved success of Persian walnut grafting under environmentally controlled conditions. International Journal of Fruit Science. 6(4): 3-12.
  • Esnault M-A, Legue F, Chenal C (2010) Ionizing Radiation: Advances in Plant Response. Environmental and Experimental Botany 68: 231-237.
  • Gulsen O, Uzun A, Pala H, Canihos E, Kafa G (2007) Development of Seedless and Mal Secco Tolerant Mutant Lemons through Budwood Irradiation. Scientia Horticulturae 112: 184-190.
  • Hearn CJ (1986) Development of Seedless Grapefruit Cultivars through Budwood Irradiation. Journal of the American Society for Horticultural Science 111: 304-306.
  • Jain SM (2010) Mutagenesis in Crop Improvement under the Climate Change. Romanian Biotechnological Letters 15: 88-106.
  • Jankowicz-Cieslak J, Mba C, Till BJ (2017) Mutagenesis for Crop Breeding and Functional Genomics. In: Jankowicz-Cieslak J, Tai TH, KumlehnJ, Till BJ (eds.), Biotechnologies for Plant Mutation Breeding, FAO/IAEA, Springer, Switzerland, 3-18.
  • Karadeniz T (2005) Relationships Between Graft Success and Climatic Values in Walnut (Juglans regia L.). Journal of Central European Agriculture 6(4): 631-634.
  • Kara-Özbek C, Dalkılıç Z (2017) Effects of Mycorrhiza and Vermicompost on the Growth of Trifoliate Orange Seedlings, and Determination of Tolerance of Nagami Kumquat Budwoods to Cobalt-60 Irradiation and Identification of Different Genotypes with RAPD Markers. ADU Journal of the Faculty of Agriculture14:1-7.
  • Karimi S, Karami H, Mokhtassi-Bidgoli A, Tavallali V, Vahdati K (2018) Inducing Drought Tolerance in Greenhouse Grown Juglans regia by Imposing Controlled Salt Stress: The Role of Osmotic Adjustment. Scientia Horticulturae 239: 181-192.
  • Kudina GA (1988) Walnut Mutation Breeding. Mutation Breeding Newsletter 34:24.
  • Kunter B, Bas M, Kantoglu Y, Burak M (2012) Mutation Breeding of Sweet Cherry (Prunus avium L.) var. 0900 Ziraat. In: Shu QY, Forster BP, Nakagawa H, (eds.), Plant Mutation Breeding and Biotechnology, CABI, Wallingford, 453-459.
  • Lagoda PJL (2012) Effects of Radiation on Living Cells and Plants. In: Shu QY, Forster BP, Nakagawa H, (eds.), Plant Mutation Breeding and Biotechnology, CABI, Wallingford, 123-134.
  • Lamo K, Bhat DJ, Kour K, Singh Solanki SP (2017) Mutation Studies in Fruit Crops: A Review. International Journal of Current Microbiology and Applied Science 6: 3620-3633.
  • Legave JM, Garcia G (1988) Radiosensibilité de Rameaux Greffons d’Abricotier Exposés à un Rayonnement Gamma Aigu et Observation en Pépinière d’une Deuxième Génération Végétative de Bourgeons Irradiés. Agronomie 8: 55-59.
  • López-García A, Terol J, Tadeo FR, Herrero-Ortega A, Ibañez V, Talón M (2015) Three New Cultivars of Clementine: ‘Clemenverd’, ‘Nero’ and ‘Neufina’. Acta Horticulturae 1065: 239-243.
  • Maluszynski M, Szarejko I, Bhatia CR, Nichterlein K, Lagoda PJL (2009) Methodologies for Generating Variability Part 4: Mutation Techniques. In: Ceccarelli S, Guimarães EP, Weltzien E (eds.), Plant Breeding and Farmer Participation, FAO, Rome, 159-194.
  • Mba C, Afza R, Bado S, Jain SM (2010) Induced Mutagenesis in Plants Using Physical and Chemical Agents. In: Davey MR, Anthony P (eds.), Plant Cell Culture: Essential Methods, John Wiley & Sons, Ltd., Chichester, UK, 111-130.
  • McGranahan G, Leslie C (2012) Walnut. In: Badenes ML, Byrne DH (eds.), Fruit Breeding, Springer, London, 827-846.
  • Nguyen VV (2001) Induction of Mutation on Mulberry (Morus alba L.) by Using In Vitro Techniques in Combination with Gamma Irradiation. JAERI-Conference3: 160-165.
  • Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, Miah G, Usman M (2016) Principle and Application of Plant Mutagenesis in Crop Improvement: A Review. Biotechnology & Biotechnological Equipment 30: 1-16.
  • Ollitrault P, Navarro L (2012) Citrus. In: Badenes ML, Byrne DH (eds.), Fruit Breeding, Springer, London, 623-662.
  • Opeke LK, Jacobs VJ (1973) Mutation Breeding in Cacao (Theobroma cacao L.). In: FAO/IAEA (ed.), Panel on Mutation Breeding of Vegetatively Propagated Perennial Crops IAEA-PL-501/14,11-15 September 1972, Vienna, 137.
  • Özen M, Kocataş H, Çobanoğlu F,Ertan B, Kösoğlu İ, Tan N, Şahin B, Belge A, Konak R, Aksoy U, Gülşen O (2017) Mutation Breeding Studies of Fig. Acta Horticulturae 1173: 93-98.
  • Pennington AG, Beineke WF (1977) A New Leaf Mutation in Black Walnut (Juglans nigra L.). Proceedings of Indiana Academy of Science 86: 409-412.
  • Piri I, Babayan M, Tavassoli A, Javaheri M (2011) The use of Gamma Irradiation in Agriculture. African Journal of Microbiology Research 5: 5806-5811.
  • Rezaee R, Vahdati K, Grigoorian W, Valizadeh M (2008) Walnut grafting success and bleeding rate as affected by different grafting methods and seedling vigor. The Journal of Horticultural Science & Biotechnology. 83(1):94-99.
  • Roose ML, Williams E (2007a) Mutation Breeding. In: Citrus Genetics, Breeding and Biotechnology, In: Khan IA, (ed.), CABI, Wallingford, 345-352.
  • Roose ML, Williams E (2007b) Mandarin Tree Named ‘Tango’. USPP17863P3.
  • Saamin S, Thompson MM (1998) Radiation-Induced Mutations from Accessory Buds of Sweet Cherry, Prunus avium L. cv ‘Bing’. Theoretical and Applied Genetics 96: 912-916.
  • Sadat Hosseini GM, Vahdati K, Lotfi M, Hassani D, Pirvali Biranvand N (2011) Production of Haploids in Persian Walnut through Parthenogenesis Induced by Gamma-Irradiated Pollen.Journal of the American Society for Horticultural Science 136:198-204.
  • Saito T (2016) Advances in Japanese Pear Breeding in Japan. Breeding Science 66: 46-59.
  • Shirasawa K, Hirakawa H, Nunome T, Tabata S,Isobe S (2016) Genome-Wide Survey of Artificial Mutations Induced by Ethyl Methanesulfonate and Gamma Rays in Tomato. Plant Biotechnology Journal 14: 51-60.
  • Sparrow AH, Schwemmer SS, Bottino PJ (1971) The Effects of External Gamma Radiation from Radioactive Fallout on Plants with Special Reference to Crop Production. Radiation Botany 11: 85-118.
  • Spiegel-Roy P, Vardi A, Yaniv Y, Fanberstein L, Elhanati A, Carmi N (2007) ‘Ayelet’ and ‘Galya’: New Seedless Lemon Cultivars. HortScience 42: 1723-1724.
  • Suprasanna P, Jain SM (2017) Mutant Resources and Mutagenesis in Crop Plants. Emirates Journal of Food and Agriculture 29: 651-657.
  • Şen SM (2011) Ceviz: Yetiştiriciliği, Besin Değeri, Folklorü. 4. Baskı. ÜÇM Yayıncılık. Ankara.
  • Tekintaş FE, Şen SM, Akça Y, Erdoğan V, Ertürk Ü, Sütyemez M, Dalkılıç Z (2014) Following Walnut Footprints in Turkey. In: Avanzato D (ed), Fallowing Walnut Footprints (Juglans regia L.): Cultivation and Culture, Folklore and History, Traditions and Uses, Scripta Horticulturae, 17: 401-408.
  • Tosri C, Chusreeaeom K, Limtiyayotin M, Sukin N, Jompuk P (2019) Comparative Effect of High Energy Electron Beam and 137Cs Gamma Ray on Survival, Growth and Chlorophyll Content in Curcuma Hybrid ‘Laddawan’ and Determine Proper Dose for Mutations Breeding. Emirates Journal of Food and Agriculture 31: 321-327.
  • Tulecke W, McGranahan G (1994) The Walnut Germplasm Collection of the University of California, Davis: A Description of the Collection and A History of the Breeding Program of Eugene F. Serr and Harold I. Forde. Report No. 13. The University of California Genetic Resources Conservation Program, Davis, CA.
  • Ulukapi K, Nasircilar AG (2015) Developments of Gamma Ray Application on Mutation Breeding Studies in Recent Years. In: AABES (ed.), The International Conference Advances in Agricultural, Biological and Environmental Sciences, 22-23 July, 2015, London, 31-34.
  • Uzun A, Gulsen O, Kafa G, Seday U (2008) ‘Alata’, ‘Gulsen’, and ‘Uzun’ Seedless Lemons and ‘Eylul’ Early-Maturing Lemon. HortScience 43: 1920-1921.
  • Vahdati K, Lotfi N (2013) Abiotic Stress Tolerance in Plants with Emphasizing on Drought and Salinity Stresses in Walnut. In: Vahdati K, Leslie CA (eds.), Abiotic Stress-Plant Responses and Applications in Agriculture, InTech Open, Rijeka, 307-365.
  • Vahdati K, Lotfi N, Kholdebarin B, Hasani D, Amiri R (2009) Screening for Drought Tolerant Genotypes of Persian Walnuts (Juglans regia L.) during Seed Germination. HortScience 44: 1815-1819.
  • Vahdati K, Arab MM, Sarikhani Khorami S,Sadat Hosseini M, Leslie CA, Brown PJ (2019) Advances in Walnut (Juglans regia L.) Breeding Strategies. In: Al-Khayri JM, Jain SM, Johnson DV (eds.), Advances in Plant Breeding Strategies, Vol 4: Nut and Beverage Crops, Springer, Switzerland, 401-472.
  • Vardi A, Spiegel-Roy P, Frydman-Shani A, Elchanati A, Neumann H (2003a) Citrus Tree Named ‘Orri’. USPP13616.
  • Vardi A, Spiegel-Roy P, Frydman-Shani A, Elchanati A,Neumann H (2003b) Citrus Tree Named ‘Moria’. USPP13460.
  • Yadav A, Singh B, Singh SD (2019) Impact of Gamma Irradiation on Growth, Yield and Physiological Attributes of Maize. Indian Journal of Experimental Biology 57: 116-122.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği
Bölüm Araştırma
Yazarlar

Sinem Sanlı Bu kişi benim 0000-0003-3105-5509

Zeynel Dalkılıç 0000-0002-0946-1036

Proje Numarası ADU BAP ZRF-17023
Yayımlanma Tarihi 30 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 18 Sayı: 1

Kaynak Göster

APA Sanlı, S., & Dalkılıç, Z. (2021). Determination of Effective Mutation Dose on Walnut (Juglans regia L. cv. Chandler) Budwoods. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 18(1), 111-117. https://doi.org/10.25308/aduziraat.859402
AMA Sanlı S, Dalkılıç Z. Determination of Effective Mutation Dose on Walnut (Juglans regia L. cv. Chandler) Budwoods. ADÜ ZİRAAT DERG. Haziran 2021;18(1):111-117. doi:10.25308/aduziraat.859402
Chicago Sanlı, Sinem, ve Zeynel Dalkılıç. “Determination of Effective Mutation Dose on Walnut (Juglans Regia L. Cv. Chandler) Budwoods”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 18, sy. 1 (Haziran 2021): 111-17. https://doi.org/10.25308/aduziraat.859402.
EndNote Sanlı S, Dalkılıç Z (01 Haziran 2021) Determination of Effective Mutation Dose on Walnut (Juglans regia L. cv. Chandler) Budwoods. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 18 1 111–117.
IEEE S. Sanlı ve Z. Dalkılıç, “Determination of Effective Mutation Dose on Walnut (Juglans regia L. cv. Chandler) Budwoods”, ADÜ ZİRAAT DERG, c. 18, sy. 1, ss. 111–117, 2021, doi: 10.25308/aduziraat.859402.
ISNAD Sanlı, Sinem - Dalkılıç, Zeynel. “Determination of Effective Mutation Dose on Walnut (Juglans Regia L. Cv. Chandler) Budwoods”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 18/1 (Haziran 2021), 111-117. https://doi.org/10.25308/aduziraat.859402.
JAMA Sanlı S, Dalkılıç Z. Determination of Effective Mutation Dose on Walnut (Juglans regia L. cv. Chandler) Budwoods. ADÜ ZİRAAT DERG. 2021;18:111–117.
MLA Sanlı, Sinem ve Zeynel Dalkılıç. “Determination of Effective Mutation Dose on Walnut (Juglans Regia L. Cv. Chandler) Budwoods”. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, c. 18, sy. 1, 2021, ss. 111-7, doi:10.25308/aduziraat.859402.
Vancouver Sanlı S, Dalkılıç Z. Determination of Effective Mutation Dose on Walnut (Juglans regia L. cv. Chandler) Budwoods. ADÜ ZİRAAT DERG. 2021;18(1):111-7.