Araştırma Makalesi
BibTex RIS Kaynak Göster

Ortaokul Matematik Öğretmen Adaylarının Matematiksel Modelleme Yeterliklerinin Cinsiyete Göre İncelenmesi: Çok Boyutlu Madde Tepki Kuramı

Yıl 2018, Cilt: 8 Sayı: Özel Sayı, 150 - 169, 30.11.2018
https://doi.org/10.17984/adyuebd.456626

Öz

Bu
çalışmanın amacı, ortaokul matematik öğretmen adaylarının matematiksel
modelleme yeterliklerinin belirlenmesidir. Bu amaç doğrultusunda; nedensel
karşılaştırma araştırması olarak desenlenen bu çalışmada, ortaokul matematik
öğretmen adaylarının matematiksel modelleme yeterlikleri incelenmiş ve
cinsiyet faktörünün bu yeterlikler üzerinde istatistiksel olarak anlamlı bir
farklılık oluşturup oluşturmadığı belirlenmiştir. Çalışmanın katılımcıları,
seçkisiz olmayan örnekleme yöntemlerinden kolay ulaşılabilir örnekleme yöntemi
ile belirlenen 144’ü kadın ve 63’ü erkek olmak üzere 207 ortaokul matematik
öğretmen adayından oluşmuştur. Araştırma sonuçları,  ortaokul matematik öğretmen adaylarının
genel matematiksel modelleme yeterliği, problemi yapılandırma, değişkenleri
belirleme ile yorumlama-doğrulama yeterliklerinin negatif logit değerleri,
matematik modeli oluşturma ve matematik çalışma yeterliklerinin ise pozitif
logit değerleri aldıklarını göstermektedir. Öğretmen adaylarının matematik
modeli oluşturma matematiksel modelleme alt yeterliğinin en yüksek logit
değeri, yorumlama-doğrulama matematiksel modelleme alt yeterliğinin ise en
düşük logit değeri aldığı belirlenmiştir. Ayrıca, cinsiyet faktörünün öğretmen
adaylarının genel matematiksel modelleme yeterliği ve matematiksel modelleme
alt yeterlikleri puanları üzerinde istatistiksel olarak anlamlı bir farklılık
oluşturmadığı da tespit edilmiştir.

Kaynakça

  • Blum, W. & Leiß, D. (2006). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum & S. Kahn (Eds.), Mathematical modelling (ICTMA12): Education, engineering and economics (pp. 222-231). Chichester: Ellis Horwood.
  • Blum, W., Galbraith, P. L., & Niss, M. (2007). Introduction. In W. Blum, P. L. Galbraith, H. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 3–32). New York, NY: Springer.
  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM, 38(2), 86-95.
  • Brandt, S. (2008). Estimation of a Rasch model including subdimensions.IERI Monograph Series. Issues and Methodologies in Large-Scale Assessments, 1, 51-70.
  • DeMars, C. (2010). Item response theory. Oxford University Press.
  • Erkuş, A. (2003). Psikometri üzerine yazılar. Ankara: Türk Psikologlar Derneği.
  • Fraenkel, J.R., Wallen, N.E., & Hyun, H.H., (2012). How to design and evaluate research in education. New York, NY: McGraw-Hill Higher Education.
  • Frejd, P. & Ärlebäck, J. B. (2011). First results from a study investigating Swedish upper secondary students’ mathematical modelling competencies. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.),Trends in teaching and learning of mathematical modelling(pp. 407–416). New York: Springer.
  • Gatabi, A. R., & Abdolahpour, K. (2013). Investigating Students’ Modeling Competency through Grade, Gender, and Location. In Proceedings of the 8th Congress of the European Society for Research in Mathematics Education CERME (Vol. 8, pp. 1070-1077).
  • Grünewald, S. (2013). The Development of Modelling Competencies by Year 9 Students: Effects of a Modelling. In G.A. Stillman, G. Kaiser, W. Blum, & J.P. Brown (Eds.), Teaching Mathematical Modelling: Connecting to Research and Practice. (pp. 185-194). Dordrecht: Netherlands
  • Hambleton, R. K., & Jones, R. W. (1993). Comparison of classical test theory and item response theory and their applications to test development. Educational Measurement: Issues and Practice, 12(3), 38-4
  • Hambleton, R. K., & Patsula, L. (1998). Adapting tests for use in multiple languages and cultures. Social indicators research, 45(1-3), 153-171.
  • Izard, J., Crouch, R., Haines, C., Houston, K., & Neill, N. (2003). Assessing the impact of teaching mathematical modelling: Some implications. In Mathematical Modelling: A Way of Life–ICTMA 11 (pp. 165-177).
  • Kaiser, G. (2005). Mathematical modelling in school–Examples and experiences. H. W. Henn, G. Kaiser (Eds.), Mathematikunterricht im Spannungsfeld von Evolution und Evaluation. Festband für Werner Blum. Hildesheim: Franzbecker, 99-108.
  • Kaiser, G. (2007). Modelling and modelling competencies in school. Mathematical modelling (ICTMA 12): Education, engineering and economics, 110-119.
  • Kaiser, G., & Grünewald, S. (2015). Promotion of mathematical modelling competencies in the context of modelling projects. In N. H. Lee and D. K. E. Ng (Eds.), Mathematical Modelling: From Theory to Practice (pp. 21-39). Singapore: World Scientific
  • Kaiser, G., & Schwarz, B. (2006). Modellierungskompetenzen – Entwicklung im Unterricht und ihre Messung. In Beiträge zum Mathematikunterricht 2006 (pp. 56–58). Hildesheim: Franzbecker.
  • Lord, F. M. (1953). The relation oftest score to the trait underlying the test. Educational and Psychological Measurement, 13, 517-548.
  • Ludwig, M., & Reit, X.R. (2013, January). Comparative study about gender differences in mathematical modelling. Proceedings of Fifth International Conference to review research on Science, TEchnology and Mathematics Education (epiSTEME 5): Mumbai, India
  • Ludwig, M., & Xu, B. (2010). A Comparative Study of Modelling Competencies Among Chinese and German Students. Journal für Mathematik-Didaktik 31(1), 77-97.Maaß, K. (2006). What are modelling competencies?. ZDM, 38(2), 113-142.
  • Martin, M. O., Mullis, I. V. S., & Chrostowski, S. J. (Eds.). (2004). TIMSS 2003 technical report.Chestnut Hill, MA: Boston College.
  • Mehraein, S., & Gatabi, A.R.(2014). Gender and mathematical modelling competency: primary students’ performance and their attitude. Procedia-Social and Behavioral Sciences, 128, 198-203.
  • Milli Eğitim Bakanlığı [MEB]. (2013). İlkokul ve ortaokul matematik dersi (1, 2, 3, 4, 5, 6, 7 ve 8. Sınıflar) öğretim programı. Ankara: Yazar.
  • Milli Eğitim Bakanlığı [MEB]. (2018). Ortaöğretim matematik dersi öğretim programı. Ankara: Yazar.
  • OECD (2016), PISA 2015 Results (Volume I): Excellence and Equity in Education, PISA, OECD Publishing, Paris. http://dx.doi.org/10.1787/9789264266490-enOrganisation for Economic Co-operation and Development (OECD). (2005). PISA 2003 technical report. Paris: Author.
  • Stillman, G., Galbraith, P., Brown, J., & Edwards, I. (2007). A framework for success in implementing mathematical modelling in the secondary classroom. Mathematics: Essential research, essential practice, 2, 688-697.
  • Yüksek Öğretim Kurulu [YÖK]. (2018a). Matematik öğretmenliği lisans programı. Ankara: Yazar. http://www.yok.gov.tr/documents/10279/41805112/Matematik_Ogretmenligi_Lisans_Programi.pdf
  • Yüksek Öğretim Kurulu [YÖK]. (2018b). İlköğretim matematik öğretmenliği lisans programı. Ankara: Yazar. http://www.yok.gov.tr/documents/10279/41805112/Ilkogretim_Matematik_ Lisans_Programi.pdf

Examining Mathematical Modeling Competencies of Pre-Service Middle School Mathematics Teachers by Gender: Multidimensional Item Response Theory

Yıl 2018, Cilt: 8 Sayı: Özel Sayı, 150 - 169, 30.11.2018
https://doi.org/10.17984/adyuebd.456626

Öz

The aim of this
study is to determine the mathematical modeling competencies of pre-service
middle school mathematics teacher. In accordance with this purpose; in this
study, which is designed as a causal comparison study, the mathematical
modeling competencies of the pre-service middle school mathematics teacher
were examined and it was determined whether these competency make a
statistically significant difference according to the gender. Participants of
the study consisted of 207 pre-service middle school mathematics teacher, 144 female
and 63 male, determined by convenient sampling method. The results of the
research show that the general mathematical modeling competencies, problem
simplifying, identifying variables and interpreting/validation modelling
sub-competencies of the pre-service middle school mathematics teachers have
negative logit values and mathematizing and mathematical analysis modelling
sub-competencies  have positive logit
values. It was determined that the pre-service teachers had the highest logit
value of mathematical analysis sub-competency and the lowest logit value of
interpretation and validation sub-competency. Moreover, there was no
significant difference between the general modeling competence and the other
modeling sub-competency scores of pre-service teachers according to gender.

Kaynakça

  • Blum, W. & Leiß, D. (2006). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum & S. Kahn (Eds.), Mathematical modelling (ICTMA12): Education, engineering and economics (pp. 222-231). Chichester: Ellis Horwood.
  • Blum, W., Galbraith, P. L., & Niss, M. (2007). Introduction. In W. Blum, P. L. Galbraith, H. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 3–32). New York, NY: Springer.
  • Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM, 38(2), 86-95.
  • Brandt, S. (2008). Estimation of a Rasch model including subdimensions.IERI Monograph Series. Issues and Methodologies in Large-Scale Assessments, 1, 51-70.
  • DeMars, C. (2010). Item response theory. Oxford University Press.
  • Erkuş, A. (2003). Psikometri üzerine yazılar. Ankara: Türk Psikologlar Derneği.
  • Fraenkel, J.R., Wallen, N.E., & Hyun, H.H., (2012). How to design and evaluate research in education. New York, NY: McGraw-Hill Higher Education.
  • Frejd, P. & Ärlebäck, J. B. (2011). First results from a study investigating Swedish upper secondary students’ mathematical modelling competencies. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.),Trends in teaching and learning of mathematical modelling(pp. 407–416). New York: Springer.
  • Gatabi, A. R., & Abdolahpour, K. (2013). Investigating Students’ Modeling Competency through Grade, Gender, and Location. In Proceedings of the 8th Congress of the European Society for Research in Mathematics Education CERME (Vol. 8, pp. 1070-1077).
  • Grünewald, S. (2013). The Development of Modelling Competencies by Year 9 Students: Effects of a Modelling. In G.A. Stillman, G. Kaiser, W. Blum, & J.P. Brown (Eds.), Teaching Mathematical Modelling: Connecting to Research and Practice. (pp. 185-194). Dordrecht: Netherlands
  • Hambleton, R. K., & Jones, R. W. (1993). Comparison of classical test theory and item response theory and their applications to test development. Educational Measurement: Issues and Practice, 12(3), 38-4
  • Hambleton, R. K., & Patsula, L. (1998). Adapting tests for use in multiple languages and cultures. Social indicators research, 45(1-3), 153-171.
  • Izard, J., Crouch, R., Haines, C., Houston, K., & Neill, N. (2003). Assessing the impact of teaching mathematical modelling: Some implications. In Mathematical Modelling: A Way of Life–ICTMA 11 (pp. 165-177).
  • Kaiser, G. (2005). Mathematical modelling in school–Examples and experiences. H. W. Henn, G. Kaiser (Eds.), Mathematikunterricht im Spannungsfeld von Evolution und Evaluation. Festband für Werner Blum. Hildesheim: Franzbecker, 99-108.
  • Kaiser, G. (2007). Modelling and modelling competencies in school. Mathematical modelling (ICTMA 12): Education, engineering and economics, 110-119.
  • Kaiser, G., & Grünewald, S. (2015). Promotion of mathematical modelling competencies in the context of modelling projects. In N. H. Lee and D. K. E. Ng (Eds.), Mathematical Modelling: From Theory to Practice (pp. 21-39). Singapore: World Scientific
  • Kaiser, G., & Schwarz, B. (2006). Modellierungskompetenzen – Entwicklung im Unterricht und ihre Messung. In Beiträge zum Mathematikunterricht 2006 (pp. 56–58). Hildesheim: Franzbecker.
  • Lord, F. M. (1953). The relation oftest score to the trait underlying the test. Educational and Psychological Measurement, 13, 517-548.
  • Ludwig, M., & Reit, X.R. (2013, January). Comparative study about gender differences in mathematical modelling. Proceedings of Fifth International Conference to review research on Science, TEchnology and Mathematics Education (epiSTEME 5): Mumbai, India
  • Ludwig, M., & Xu, B. (2010). A Comparative Study of Modelling Competencies Among Chinese and German Students. Journal für Mathematik-Didaktik 31(1), 77-97.Maaß, K. (2006). What are modelling competencies?. ZDM, 38(2), 113-142.
  • Martin, M. O., Mullis, I. V. S., & Chrostowski, S. J. (Eds.). (2004). TIMSS 2003 technical report.Chestnut Hill, MA: Boston College.
  • Mehraein, S., & Gatabi, A.R.(2014). Gender and mathematical modelling competency: primary students’ performance and their attitude. Procedia-Social and Behavioral Sciences, 128, 198-203.
  • Milli Eğitim Bakanlığı [MEB]. (2013). İlkokul ve ortaokul matematik dersi (1, 2, 3, 4, 5, 6, 7 ve 8. Sınıflar) öğretim programı. Ankara: Yazar.
  • Milli Eğitim Bakanlığı [MEB]. (2018). Ortaöğretim matematik dersi öğretim programı. Ankara: Yazar.
  • OECD (2016), PISA 2015 Results (Volume I): Excellence and Equity in Education, PISA, OECD Publishing, Paris. http://dx.doi.org/10.1787/9789264266490-enOrganisation for Economic Co-operation and Development (OECD). (2005). PISA 2003 technical report. Paris: Author.
  • Stillman, G., Galbraith, P., Brown, J., & Edwards, I. (2007). A framework for success in implementing mathematical modelling in the secondary classroom. Mathematics: Essential research, essential practice, 2, 688-697.
  • Yüksek Öğretim Kurulu [YÖK]. (2018a). Matematik öğretmenliği lisans programı. Ankara: Yazar. http://www.yok.gov.tr/documents/10279/41805112/Matematik_Ogretmenligi_Lisans_Programi.pdf
  • Yüksek Öğretim Kurulu [YÖK]. (2018b). İlköğretim matematik öğretmenliği lisans programı. Ankara: Yazar. http://www.yok.gov.tr/documents/10279/41805112/Ilkogretim_Matematik_ Lisans_Programi.pdf
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Yüksel Dede

Veysel Akçakın 0000-0002-7705-0722

Gürcan Kaya 0000-0001-8380-1708

Yayımlanma Tarihi 30 Kasım 2018
Kabul Tarihi 29 Kasım 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: Özel Sayı

Kaynak Göster

APA Dede, Y., Akçakın, V., & Kaya, G. (2018). Ortaokul Matematik Öğretmen Adaylarının Matematiksel Modelleme Yeterliklerinin Cinsiyete Göre İncelenmesi: Çok Boyutlu Madde Tepki Kuramı. Adıyaman University Journal of Educational Sciences, 8(2), 150-169. https://doi.org/10.17984/adyuebd.456626

                                                                                             

by-nc-nd.png?resize=300%2C105&ssl=1 Bu eser CC BY-NC-ND Atıf-GayriTicari-Türetilemez ile lisanslanmıştır.