Euclidean Curves with Incompressible Canonical Vector Field
Yıl 2018,
Cilt: 8 Sayı: 2, 70 - 82, 28.12.2018
Kadri Arslan
,
Yılmaz Aydın
Eray Demirbaş
Aziz Yazla
Öz
In
the present study we consider Euclidean curves with incompressible canonical
vector fields. We investigate such curves in terms of their curvature
functions. Recently, B.Y. Chen gave classification of plane curves with
incompressible canonical vector fields. For higher dimensional case we gave a
complete classification of Euclidean space curves with incompressible canonical
vector fields. Further we obtain some results of the Euclidean curves with incompressible
canonical vector fields in -dimensional Euclidean space E4.
Kaynakça
- [1] A. T. Ali, Spacelike Salkowski and anti-Salkowski curves with timelike principal normal in Minkowski 3-space, Mathematica Aeterna, 1(2011), 201 - 210.
- [2] B. Y. Chen, Euclidean submanifolds with incompressible canonical vector field, arXiv:1801.07196v3 [math.DG] 29 Jan 2018.
- [3] J. W. Bruce, P. J. Giblin, Curves and Singularities, A Geometrical Introduction to Singularity Theory, Second edition, Cambridge University Press, Cambridge, 1992.
- [4] H. Gluck, Higher curvatures of curves in Euclidean space, Am. Math. Monthly 73 (1966), 699-704.
- [5] F. Klein and S. Lie, Uber diejenigen ebenenen kurven welche durch ein geschlossenes system von einfach unendlich vielen vartauschbaren linearen Transformationen in sich übergehen, Math. Ann. 4 (1871), 50-84.
- [6] J. Monterde, Curves with constant curvature ratios, Bull. Mexican Math. Soc. Ser. 3A 13(1) (2007), 177-186.
- [7] G. Öztürk, K. Arslan and H. H. Hacisalihoglu, A characterization of ccr-curves in R^{m}, Proc. Estonian Acad. Sci. 57(4) (2008), 217-224.
- [8] G. Öztürk, S. Gürpınar and K. Arslan, A New Characterization of Curves in Euclidean 4-Space E⁴, Bull. Acad. Stiinte a Republicii Moldova Mathematica, 83(2017), 39-50.
- [9] E. Salkowski, Zur transformation von raumkurven, Math. Ann. 66(4) (1909), 517-557.
Yıl 2018,
Cilt: 8 Sayı: 2, 70 - 82, 28.12.2018
Kadri Arslan
,
Yılmaz Aydın
Eray Demirbaş
Aziz Yazla
Kaynakça
- [1] A. T. Ali, Spacelike Salkowski and anti-Salkowski curves with timelike principal normal in Minkowski 3-space, Mathematica Aeterna, 1(2011), 201 - 210.
- [2] B. Y. Chen, Euclidean submanifolds with incompressible canonical vector field, arXiv:1801.07196v3 [math.DG] 29 Jan 2018.
- [3] J. W. Bruce, P. J. Giblin, Curves and Singularities, A Geometrical Introduction to Singularity Theory, Second edition, Cambridge University Press, Cambridge, 1992.
- [4] H. Gluck, Higher curvatures of curves in Euclidean space, Am. Math. Monthly 73 (1966), 699-704.
- [5] F. Klein and S. Lie, Uber diejenigen ebenenen kurven welche durch ein geschlossenes system von einfach unendlich vielen vartauschbaren linearen Transformationen in sich übergehen, Math. Ann. 4 (1871), 50-84.
- [6] J. Monterde, Curves with constant curvature ratios, Bull. Mexican Math. Soc. Ser. 3A 13(1) (2007), 177-186.
- [7] G. Öztürk, K. Arslan and H. H. Hacisalihoglu, A characterization of ccr-curves in R^{m}, Proc. Estonian Acad. Sci. 57(4) (2008), 217-224.
- [8] G. Öztürk, S. Gürpınar and K. Arslan, A New Characterization of Curves in Euclidean 4-Space E⁴, Bull. Acad. Stiinte a Republicii Moldova Mathematica, 83(2017), 39-50.
- [9] E. Salkowski, Zur transformation von raumkurven, Math. Ann. 66(4) (1909), 517-557.