Araştırma Makalesi
BibTex RIS Kaynak Göster

Kuantum Programlama Açısından Kuantum Derleyicilerin Karşılaştırmalı Analizi ve IBMQ Uygulaması

Yıl 2023, Cilt: 10 Sayı: 21, 227 - 241, 31.12.2023
https://doi.org/10.54365/adyumbd.1334196

Öz

Kuantum hesaplama, geleneksel bilgisayarların yapamayacağı kadar karmaşık hesaplamaları çok daha hızlı ve daha verimli gerçekleştirmeye olanak tanıyan bir teknolojidir. Ancak kuantum bilgisayarların çalıştırılması için özel olarak tasarlanmış kuantum algoritmalara ihtiyaç duyulmaktadır. Bu algoritmaların kuantum bilgisayarlarda verimli bir şekilde çalıştırabilmek için uygun derleyici ve kuantum bilgisayar seçimi kritik öneme sahiptir. Bu çalışmada kauntum programlama ve derleyicileri hakkında bilgiler verilerek, literatürdeki kuantum derleyicilerin karşılaştırmaları gerçekleştirilmiştir. Örnek bir soyut kuantum devre 5 kübtlik ibmq_belem, ibmq_quito ve ibmq_manila kuantum bilgisayarlarında çalıştırılarak, kuantum devrelerin çalışma mantığı uygulamalı olarak açıklanmıştır. Yapılan analizlerler sonucu L tipi kübit bağlantısına sahip ibmq_manila bilgisayarının ortalama %86 ile daha başarılı sonuçlar ürettiği gözlemlenmiştir. Diğer taraftan T tipi kübit bağlantılarına sahip ibmq_quito ve ibmq_belem bilgisayarlarının ürettikleri sonuçların başarısı ortaalama %82 ve %48 ile sınırlı kalmaktadır. Aynı kübit bağlantısına sahip bu bilgisayarların başarımları arasındaki gözle görülür farkın sebebi kübit ve bağlantılardaki hata oranlarının olduğu sonucuna varılmıştır.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

121E439

Teşekkür

Bu çalışma; Türkiye Bilimsel ve Teknolojik Araştırma Kurumu tarafından 121E439 nolu TÜBİTAK 1001 projesi kapsamında desteklenmiştir.

Kaynakça

  • Feynman RP. Simulating physics with computers. Int j Theor phys. 2018;21(6/7).
  • Benioff P. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of statistical physics. 1980;22:563-91.
  • Yetiş H, Karaköse M. A New Framework Containing Convolution and Pooling Circuits for Image Processing and Deep Learning Applications with Quantum Computing Implementation. Traitement du Signal. Nisan 2022;39(2):501-12.
  • Bova F, Goldfarb A, Melko RG. Commercial applications of quantum computing. EPJ quantum technology. 2021;8(1):2.
  • Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, vd. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574(7779):505-10.
  • Hassija V, Chamola V, Saxena V, Chanana V, Parashari P, Mumtaz S, vd. Present landscape of quantum computing. IET Quantum Communication. 2020;1(2):42-8.
  • Salm M, Barzen J, Leymann F, Weder B. Prioritization of compiled quantum circuits for different quantum computers. İçinde: 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE; 2022. s. 1258-65.
  • Preskill J. Quantum Computing in the NISQ era and beyond. Quantum. 06 Ağustos 2018;2:79.
  • Salm M, Barzen J, Leymann F, Weder B, Wild K. Automating the comparison of quantum compilers for quantum circuits. İçinde: Symposium and Summer School on Service-Oriented Computing. Springer; 2021. s. 64-80.
  • Miszczak J. High Level Structures for Quantum Computing. Springer Nature; 2022.
  • Yetiş H, Karaköse M. Kuantum Uyarlamalı Genetik Algoritmalar için Çözüm Kalitesini Artıracak Yeni Bir Yaklaşım. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2021;33:71-9.
  • Mukai T. Completely scrambled memory for quantum superposition. Scientific reports. 2019;9(1):1147.
  • SoniaLopezBravo. The qubit in quantum computing - Azure Quantum [Internet]. 2023 [a.yer 27 Temmuz 2023]. Erişim adresi: https://learn.microsoft.com/en-us/azure/quantum/concepts-the-qubit
  • Coles PJ, Eidenbenz S, Pakin S, Adedoyin A, Ambrosiano J, Anisimov P, vd. Quantum Algorithm Implementations for Beginners. :77.
  • Yetis H, Karaköse M. Investigation of Noise Effects for Different Quantum Computing Architectures in IBM-Q at NISQ Level. Içinde: 2021 25th International Conference on Information Technology (IT). Zabljak, Montenegro: IEEE; 2021
  • Khammassi N, Ashraf I, Someren JV, Nane R, Krol AM, Rol MA, vd. Openql: A portable quantum programming framework for quantum accelerators. ACM Journal on Emerging Technologies in Computing Systems (JETC). 2021;18(1):1-24.
  • BM Quantum [Internet]. [a.yer 25 Nisan 2022]. IBM Quantum. Erişim adresi: https://quantum-computing.ibm.com/
  • Hidary JD, Hidary JD. Quantum computing: an applied approach. C. 1. Springer; 2019.
  • Bar NF, Yetis H, Karakose M. An Approach Based on Quantum Reinforcement Learning for Navigation Problems. İçinde: 2022 International Conference on Data Analytics for Business and Industry (ICDABI). IEEE; 2022. s. 593-7.
  • Botea A, Kishimoto A, Marinescu R. On the complexity of quantum circuit compilation. İçinde: Proceedings of the International Symposium on Combinatorial Search. 2018. s. 138-42.
  • Soeken M, Meuli G, Schmitt B, Mozafari F, Riener H, De Micheli G. Boolean satisfiability in quantum compilation. Philosophical Transactions of the Royal Society A. 2020;378(2164):20190161.
  • Yetiş H, Karaköse M. An improved and cost reduced quantum circuit generator approach for image encoding applications. Quantum Information Processing. 01 Haziran 2022;21:203.
  • Bishop LS, Bravyi S, Cross A, Gambetta JM, Smolin J. Quantum volume. Quantum Volume Technical Report. 2017;
  • Leymann F, Barzen J, Falkenthal M, Vietz D, Weder B, Wild K. Quantum in the cloud: application potentials and research opportunities. arXiv preprint arXiv:200306256. 2020;
  • Steiger DS, Häner T, Troyer M. ProjectQ: an open source software framework for quantum computing. Quantum. 2018;2:49.
  • Zhang Y, Deng H, Li Q, Song H, Nie L. Optimizing quantum programs against decoherence: Delaying qubits into quantum superposition. İçinde: 2019 International Symposium on Theoretical Aspects of Software Engineering (TASE). IEEE; 2019. s. 184-91.
  • Salm M, Barzen J, Leymann F, Weder B. About a criterion of successfully executing a circuit in the NISQ era: what wd≪ 1/𝜖 eff really means. İçinde: Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software. 2020. s. 10-3.
  • Häner T, Steiger DS, Svore K, Troyer M. A software methodology for compiling quantum programs. Quantum Science and Technology. 2018;3(2):020501.
  • Svore KM, Aho AV, Cross AW, Chuang I, Markov IL. A layered software architecture for quantum computing design tools. Computer. 2006;39(1):74-83.
  • Itoko T, Raymond R, Imamichi T, Matsuo A. Optimization of quantum circuit mapping using gate transformation and commutation. Integration. 2020;70:43-50.
  • Heyfron LE, Campbell ET. An efficient quantum compiler that reduces T count. Quantum Science and Technology. 2018;4(1):015004.
  • Maslov D, Dueck GW, Miller DM, Negrevergne C. Quantum Circuit Simplification and Level Compaction. IEEE Trans Comput-Aided Des Integr Circuits Syst. Mart 2008;27(3):436-44.
  • Suchara M, Kubiatowicz J, Faruque A, Chong FT, Lai CY, Paz G. Qure: The quantum resource estimator toolbox. İçinde: 2013 IEEE 31st International Conference on Computer Design (ICCD). IEEE; 2013. s. 419-26.
  • McCaskey AJ, Lyakh DI, Dumitrescu EF, Powers SS, Humble TS. XACC: a system-level software infrastructure for heterogeneous quantum–classical computing. Quantum Science and Technology. 2020;5(2):024002.
  • Salm M, Barzen J, Breitenbücher U, Leymann F, Weder B, Wild K. The NISQ analyzer: automating the selection of quantum computers for quantum algorithms. İçinde: Symposium and Summer School on Service-Oriented Computing. Springer; 2020. s. 66-85.
  • Ferrari D, Cacciapuoti AS, Amoretti M, Caleffi M. Compiler design for distributed quantum computing. IEEE Transactions on Quantum Engineering. 2021;2:1-20.
  • Li G, Shi Y, Javadi-Abhari A. Software-hardware co-optimization for computational chemistry on superconducting quantum processors. İçinde: 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). IEEE; 2021. s. 832-45.
  • Han J, Liu Y, Sun X, Song L. Enhancing data and privacy security in mobile cloud computing through quantum cryptography. İçinde: 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS). IEEE; 2016. s. 398-401.
  • Saravanan V, Saeed SM. Test data-driven machine learning models for reliable quantum circuit output. İçinde: 2021 IEEE European Test Symposium (ETS). IEEE; 2021. s. 1-6.
  • Ding Y, Wu XC, Holmes A, Wiseth A, Franklin D, Martonosi M, vd. Square: Strategic quantum ancilla reuse for modular quantum programs via cost-effective uncomputation. İçinde: 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE; 2020. s. 570-83.
  • Oskin M, Chong FT, Chuang IL. A practical architecture for reliable quantum computers. Computer. 2002;35(1):79-87.
  • Chakraborty S. A Prototype For Quantum Database In Hybrid Quantum. 2022;
  • Gerdt VP, Kragler R, Prokopenya AN. A mathematica package for simulation of quantum computation. International Workshop on Computer Algebra in Scientific Computing. Springer; 2009. s. 106-17.

Comparative Analysis of Quantum Compilers in Terms of Quantum Programming and IBMQ Implementation

Yıl 2023, Cilt: 10 Sayı: 21, 227 - 241, 31.12.2023
https://doi.org/10.54365/adyumbd.1334196

Öz

Quantum computing is a technology that allows performing complex calculations much faster and more efficiently than conventional computers. However, specifically designed quantum algorithms are needed to run quantum computers. Appropriate compiler and quantum computer selection is critical in order to run these algorithms efficiently on quantum computers. In this study, information about quantum programming and compilers is given and the quantum compilers in the literature are compared. An example quantum circuit is run on 5 qubit ibmq_belem, ibmq_quito and ibmq_manila quantum computers, and the working logic of quantum circuits is explained practically. As a result of the analysis, it is observed that the ibmq_manila computer with L-type qubit connection produced more successful results with an average of 86%. On the other hand, the success of the results produced by ibmq_quito and ibmq_belem computers with T-type qubit connections is limited to 82% and 48% on average. It has been concluded that the reason for the noticeable difference between the performances of these computers with the same qubit connection is the error rates in the qubits and connections.

Proje Numarası

121E439

Kaynakça

  • Feynman RP. Simulating physics with computers. Int j Theor phys. 2018;21(6/7).
  • Benioff P. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of statistical physics. 1980;22:563-91.
  • Yetiş H, Karaköse M. A New Framework Containing Convolution and Pooling Circuits for Image Processing and Deep Learning Applications with Quantum Computing Implementation. Traitement du Signal. Nisan 2022;39(2):501-12.
  • Bova F, Goldfarb A, Melko RG. Commercial applications of quantum computing. EPJ quantum technology. 2021;8(1):2.
  • Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, vd. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574(7779):505-10.
  • Hassija V, Chamola V, Saxena V, Chanana V, Parashari P, Mumtaz S, vd. Present landscape of quantum computing. IET Quantum Communication. 2020;1(2):42-8.
  • Salm M, Barzen J, Leymann F, Weder B. Prioritization of compiled quantum circuits for different quantum computers. İçinde: 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE; 2022. s. 1258-65.
  • Preskill J. Quantum Computing in the NISQ era and beyond. Quantum. 06 Ağustos 2018;2:79.
  • Salm M, Barzen J, Leymann F, Weder B, Wild K. Automating the comparison of quantum compilers for quantum circuits. İçinde: Symposium and Summer School on Service-Oriented Computing. Springer; 2021. s. 64-80.
  • Miszczak J. High Level Structures for Quantum Computing. Springer Nature; 2022.
  • Yetiş H, Karaköse M. Kuantum Uyarlamalı Genetik Algoritmalar için Çözüm Kalitesini Artıracak Yeni Bir Yaklaşım. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2021;33:71-9.
  • Mukai T. Completely scrambled memory for quantum superposition. Scientific reports. 2019;9(1):1147.
  • SoniaLopezBravo. The qubit in quantum computing - Azure Quantum [Internet]. 2023 [a.yer 27 Temmuz 2023]. Erişim adresi: https://learn.microsoft.com/en-us/azure/quantum/concepts-the-qubit
  • Coles PJ, Eidenbenz S, Pakin S, Adedoyin A, Ambrosiano J, Anisimov P, vd. Quantum Algorithm Implementations for Beginners. :77.
  • Yetis H, Karaköse M. Investigation of Noise Effects for Different Quantum Computing Architectures in IBM-Q at NISQ Level. Içinde: 2021 25th International Conference on Information Technology (IT). Zabljak, Montenegro: IEEE; 2021
  • Khammassi N, Ashraf I, Someren JV, Nane R, Krol AM, Rol MA, vd. Openql: A portable quantum programming framework for quantum accelerators. ACM Journal on Emerging Technologies in Computing Systems (JETC). 2021;18(1):1-24.
  • BM Quantum [Internet]. [a.yer 25 Nisan 2022]. IBM Quantum. Erişim adresi: https://quantum-computing.ibm.com/
  • Hidary JD, Hidary JD. Quantum computing: an applied approach. C. 1. Springer; 2019.
  • Bar NF, Yetis H, Karakose M. An Approach Based on Quantum Reinforcement Learning for Navigation Problems. İçinde: 2022 International Conference on Data Analytics for Business and Industry (ICDABI). IEEE; 2022. s. 593-7.
  • Botea A, Kishimoto A, Marinescu R. On the complexity of quantum circuit compilation. İçinde: Proceedings of the International Symposium on Combinatorial Search. 2018. s. 138-42.
  • Soeken M, Meuli G, Schmitt B, Mozafari F, Riener H, De Micheli G. Boolean satisfiability in quantum compilation. Philosophical Transactions of the Royal Society A. 2020;378(2164):20190161.
  • Yetiş H, Karaköse M. An improved and cost reduced quantum circuit generator approach for image encoding applications. Quantum Information Processing. 01 Haziran 2022;21:203.
  • Bishop LS, Bravyi S, Cross A, Gambetta JM, Smolin J. Quantum volume. Quantum Volume Technical Report. 2017;
  • Leymann F, Barzen J, Falkenthal M, Vietz D, Weder B, Wild K. Quantum in the cloud: application potentials and research opportunities. arXiv preprint arXiv:200306256. 2020;
  • Steiger DS, Häner T, Troyer M. ProjectQ: an open source software framework for quantum computing. Quantum. 2018;2:49.
  • Zhang Y, Deng H, Li Q, Song H, Nie L. Optimizing quantum programs against decoherence: Delaying qubits into quantum superposition. İçinde: 2019 International Symposium on Theoretical Aspects of Software Engineering (TASE). IEEE; 2019. s. 184-91.
  • Salm M, Barzen J, Leymann F, Weder B. About a criterion of successfully executing a circuit in the NISQ era: what wd≪ 1/𝜖 eff really means. İçinde: Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software. 2020. s. 10-3.
  • Häner T, Steiger DS, Svore K, Troyer M. A software methodology for compiling quantum programs. Quantum Science and Technology. 2018;3(2):020501.
  • Svore KM, Aho AV, Cross AW, Chuang I, Markov IL. A layered software architecture for quantum computing design tools. Computer. 2006;39(1):74-83.
  • Itoko T, Raymond R, Imamichi T, Matsuo A. Optimization of quantum circuit mapping using gate transformation and commutation. Integration. 2020;70:43-50.
  • Heyfron LE, Campbell ET. An efficient quantum compiler that reduces T count. Quantum Science and Technology. 2018;4(1):015004.
  • Maslov D, Dueck GW, Miller DM, Negrevergne C. Quantum Circuit Simplification and Level Compaction. IEEE Trans Comput-Aided Des Integr Circuits Syst. Mart 2008;27(3):436-44.
  • Suchara M, Kubiatowicz J, Faruque A, Chong FT, Lai CY, Paz G. Qure: The quantum resource estimator toolbox. İçinde: 2013 IEEE 31st International Conference on Computer Design (ICCD). IEEE; 2013. s. 419-26.
  • McCaskey AJ, Lyakh DI, Dumitrescu EF, Powers SS, Humble TS. XACC: a system-level software infrastructure for heterogeneous quantum–classical computing. Quantum Science and Technology. 2020;5(2):024002.
  • Salm M, Barzen J, Breitenbücher U, Leymann F, Weder B, Wild K. The NISQ analyzer: automating the selection of quantum computers for quantum algorithms. İçinde: Symposium and Summer School on Service-Oriented Computing. Springer; 2020. s. 66-85.
  • Ferrari D, Cacciapuoti AS, Amoretti M, Caleffi M. Compiler design for distributed quantum computing. IEEE Transactions on Quantum Engineering. 2021;2:1-20.
  • Li G, Shi Y, Javadi-Abhari A. Software-hardware co-optimization for computational chemistry on superconducting quantum processors. İçinde: 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). IEEE; 2021. s. 832-45.
  • Han J, Liu Y, Sun X, Song L. Enhancing data and privacy security in mobile cloud computing through quantum cryptography. İçinde: 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS). IEEE; 2016. s. 398-401.
  • Saravanan V, Saeed SM. Test data-driven machine learning models for reliable quantum circuit output. İçinde: 2021 IEEE European Test Symposium (ETS). IEEE; 2021. s. 1-6.
  • Ding Y, Wu XC, Holmes A, Wiseth A, Franklin D, Martonosi M, vd. Square: Strategic quantum ancilla reuse for modular quantum programs via cost-effective uncomputation. İçinde: 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE; 2020. s. 570-83.
  • Oskin M, Chong FT, Chuang IL. A practical architecture for reliable quantum computers. Computer. 2002;35(1):79-87.
  • Chakraborty S. A Prototype For Quantum Database In Hybrid Quantum. 2022;
  • Gerdt VP, Kragler R, Prokopenya AN. A mathematica package for simulation of quantum computation. International Workshop on Computer Algebra in Scientific Computing. Springer; 2009. s. 106-17.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yüksek Performanslı Hesaplama
Bölüm Makaleler
Yazarlar

Mehmet Karaköse 0000-0002-3276-3788

Hasan Yetiş 0000-0001-7608-3293

Osman Furkan Küçük 0009-0002-5594-3009

Çağatay Umut Öğdü 0009-0004-1697-4392

Orhan Yaman 0000-0001-9623-2284

Proje Numarası 121E439
Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 31 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 10 Sayı: 21

Kaynak Göster

APA Karaköse, M., Yetiş, H., Küçük, O. F., Öğdü, Ç. U., vd. (2023). Kuantum Programlama Açısından Kuantum Derleyicilerin Karşılaştırmalı Analizi ve IBMQ Uygulaması. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 10(21), 227-241. https://doi.org/10.54365/adyumbd.1334196
AMA Karaköse M, Yetiş H, Küçük OF, Öğdü ÇU, Yaman O. Kuantum Programlama Açısından Kuantum Derleyicilerin Karşılaştırmalı Analizi ve IBMQ Uygulaması. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2023;10(21):227-241. doi:10.54365/adyumbd.1334196
Chicago Karaköse, Mehmet, Hasan Yetiş, Osman Furkan Küçük, Çağatay Umut Öğdü, ve Orhan Yaman. “Kuantum Programlama Açısından Kuantum Derleyicilerin Karşılaştırmalı Analizi Ve IBMQ Uygulaması”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10, sy. 21 (Aralık 2023): 227-41. https://doi.org/10.54365/adyumbd.1334196.
EndNote Karaköse M, Yetiş H, Küçük OF, Öğdü ÇU, Yaman O (01 Aralık 2023) Kuantum Programlama Açısından Kuantum Derleyicilerin Karşılaştırmalı Analizi ve IBMQ Uygulaması. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10 21 227–241.
IEEE M. Karaköse, H. Yetiş, O. F. Küçük, Ç. U. Öğdü, ve O. Yaman, “Kuantum Programlama Açısından Kuantum Derleyicilerin Karşılaştırmalı Analizi ve IBMQ Uygulaması”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 10, sy. 21, ss. 227–241, 2023, doi: 10.54365/adyumbd.1334196.
ISNAD Karaköse, Mehmet vd. “Kuantum Programlama Açısından Kuantum Derleyicilerin Karşılaştırmalı Analizi Ve IBMQ Uygulaması”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10/21 (Aralık 2023), 227-241. https://doi.org/10.54365/adyumbd.1334196.
JAMA Karaköse M, Yetiş H, Küçük OF, Öğdü ÇU, Yaman O. Kuantum Programlama Açısından Kuantum Derleyicilerin Karşılaştırmalı Analizi ve IBMQ Uygulaması. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2023;10:227–241.
MLA Karaköse, Mehmet vd. “Kuantum Programlama Açısından Kuantum Derleyicilerin Karşılaştırmalı Analizi Ve IBMQ Uygulaması”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 10, sy. 21, 2023, ss. 227-41, doi:10.54365/adyumbd.1334196.
Vancouver Karaköse M, Yetiş H, Küçük OF, Öğdü ÇU, Yaman O. Kuantum Programlama Açısından Kuantum Derleyicilerin Karşılaştırmalı Analizi ve IBMQ Uygulaması. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2023;10(21):227-41.