Araştırma Makalesi
BibTex RIS Kaynak Göster

Monel 400 Nikel Esaslı Süper Alaşımın Tornalanmasında Oluşan Kesme Kuvveti Bileşenlerinin Değerlendirilmesi ve Yapay Sinir Ağları ile Modellenmesi

Yıl 2023, Cilt: 10 Sayı: 21, 252 - 265, 31.12.2023
https://doi.org/10.54365/adyumbd.1340057

Öz

Yapılan çalışma iki bölümden oluşmaktadır. Birinci Bölüm, Monel 400 alaşımının farklı kesme parametrelerinde tornalanması sonucu kesme parametrelerinin kesme kuvveti bileşenlerine ve esas kesme kuvvetine etkileri değerlendirilmiştir. İkinci bölüm ise farklı kesme parametrelerinde yapılan tornalama deneylerinde ölçülen kesme kuvveti bileşenlerinin Yapay Sinir Ağları (YSA) yöntemiyle tahmininden oluşmaktadır. Çalışmada kesme parametresi olarak üç farklı kesme hızı (60-85-110 m/dak), üç farklı ilerleme miktarı (0,05-0,07-0,09 mm/dev) ve üç farklı kesme derinliği (0,4-0,8-1,2 mm) seçilmiştir. Kesme kuvveti bileşenlerinin (Fz, Fx ve Fy) ölçümü A KISTLER 9257 B tipi piezoelektrik dinamometre ile gerçekleştirilmiştir. Kesme kuvveti bileşenlerinin tahmininde YSA yöntemi kullanılmıştır. Sonuç olarak, Monel 400 alaşımının tornalanmasında en düşük kesme kuvveti bileşenleri 0,4 mm kesme derinliğinde, 110 m/dak kesme hızında ve 0,05 mm/dev ilerleme miktarında Fz:227,48 N, Fy:154 N ve Fx:99,16 N ölçülmüştür. YSA yöntemini ile tahmin edilen kesme kuvveti bileşenleri ile deneysel sonuçlar incelendiğinde YSA yöntemini ile yapılan tahminlerin yüksek doğruluk içerdiği görülmüştür.

Kaynakça

  • Choudhury and M. El-Baradie, "Machinability of nickel-base super alloys: a general review," Journal of Materials Processing Technology, vol. 77, no. 1-3, pp. 278-284, 1998.
  • A. K. Parida and K. Maity, "Modeling of machining parameters affecting flank wear and surface roughness in hot turning of Monel-400 using response surface methodology (RSM)," Measurement, vol. 137, pp. 375-381, 2019.
  • A. K. Parida and K. Maity, "Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation," Engineering Science and Technology, an International Journal, vol. 21, no. 3, pp. 364-370, 2018.
  • M. Davami and M. Zadshakoyan, "Investigation of tool temperature and surface quality in hot machining of hard-to-cut materials," International Journal of Materials and Metallurgical Engineering, vol. 2, no. 10, pp. 252-256, 2008.
  • Y. Zhu, H. Liu, D. Zhang, J. Wang, and F. Yan, "Effect of polarization potentials on tribocorrosion behavior of Monel 400 alloy in seawater environment," Tribology International, vol. 168, p. 107445, 2022.
  • E. Ezugwu, Z. Wang, and A. Machado, "The machinability of nickel-based alloys: a review," Journal of Materials Processing Technology, vol. 86, no. 1-3, pp. 1-16, 1999.
  • M. Akgün, "Monel K-500 Alaşımının Isı Destekli İşlenmesi Üzerine Sayısal Bir Çalışma," Uluslararası Teknolojik Bilimler Dergisi, vol. 14, no. 1, pp. 23-29, 2022.
  • N. S. Ross, M. Ganesh, D. Srinivasan, M. K. Gupta, M. E. Korkmaz, and J. Krolczyk, "Role of sustainable cooling/lubrication conditions in improving the tribological and machining characteristics of Monel-400 alloy," Tribology International, vol. 176, p. 107880, 2022.
  • R. Pawade, S. S. Joshi, P. Brahmankar, and M. Rahman, "An investigation of cutting forces and surface damage in high-speed turning of Inconel 718," Journal of Materials Processing Technology, vol. 192, pp. 139-146, 2007.
  • B. Özlü and L. Uğur, "Optimization of cutting forces on turning of Ti-6Al-4V Alloy by 3D FEM simulation analysis," Journal of Engineering Research and Applied Science, vol. 10, no. 2, pp. 1789-1795, 2021.
  • M. Dhananchezian, "Experimental investigation on dry turned Monel 400 alloy surface parameters with uncoated and coated tool," Materials Today: Proceedings, vol. 46, pp. 8303-8306, 2021.
  • M. Dhananchezian, "Comparison of the turning performance of Ti-6Al-4V, monel 400 and inconel 600 alloy with carbide insert," in AIP Conference Proceedings, 2021, vol. 2395, no. 1: AIP Publishing.
  • M. Hanief and M. Charoo, "Modeling and optimization of flank wear and surface roughness of Monel-400 during hot turning using artificial intelligence techniques," Metallurgical and Materials Engineering, vol. 26, no. 1, pp. 57-69, 2020.
  • M. Dhananchezian and K. Rajkumar, "Cutting velocity influenced machinability of Monel 400 by coated tool," Materials and Manufacturing Processes, vol. 38, no. 1, pp. 116-125, 2023.
  • Ç. V. Yıldırım, T. Kıvak, and F. Erzincanlı, "Nikel esaslı Waspaloy süper alaşımının seramik takımlarla frezelenmesinde kesme kuvvetinin Taguchi Metodu ile optimizasyonu," Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 5, no. 2, pp. 400-414, 2017.
  • E. Nas and F. Kara, "Optimization of EDM machinability of hastelloy C22 super alloys," Machines, vol. 10, no. 12, p. 1131, 2022.
  • F. MEYDANERİ and U. Gültekin, "Rene 41 Süper Alaşımının Tornalama Yöntemiyle İşlenebilirliğinin Araştırılması," İmalat Teknolojileri ve Uygulamaları, vol. 3, no. 2, pp. 32-38, 2022.
  • H. Gökçe, "Modelling and optimization for thrust force, temperature and burr height in drilling of custom 450," Experimental Techniques, vol. 46, no. 4, pp. 707-721, 2022.
  • M. Akgün and H. Demir, "Estimation of surface roughness and flank wear in milling of Inconel 625 superalloy," Surface Review and Letters, vol. 28, no. 04, p. 2150011, 2021.
  • H. KAZAN and E. U. ERGÜL, "Kesme Parametrelerinin Haynes 242 Nikel Bazlı Süper Alaşım Malzemenin Tornalamasında Güç Tüketimi Üzerindeki Etkilerinin RSM ve GA ile İncelenmesi," Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 5, pp. 1204-1213, 2022.
  • F. Djavanroodi, B. Omranpour, and M. Sedighi, "Artificial neural network modeling of ECAP process," Materials and Manufacturing processes, vol. 28, no. 3, pp. 276-281, 2013.
  • J. P. Davim, V. Gaitonde, and S. Karnik, "Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models," Journal of materials processing technology, vol. 205, no. 1-3, pp. 16-23, 2008.
  • S. Ranganathan, T. Senthilvelan, and G. Sriram, "Evaluation of machining parameters of hot turning of stainless steel (Type 316) by applying ANN and RSM," Materials and Manufacturing Processes, vol. 25, no. 10, pp. 1131-1141, 2010.
  • D. Zhu, X. Zhang, and H. Ding, "Tool wear characteristics in machining of nickel-based superalloys," International Journal of Machine Tools and Manufacture, vol. 64, pp. 60-77, 2013.
  • Ş. Şirin and T. Kıvak, "Effects of hybrid nanofluids on machining performance in MQL-milling of Inconel X-750 superalloy," Journal of Manufacturing Processes, vol. 70, pp. 163-176, 2021.
  • B. Özlü, "Sleipner soğuk iş takım çeliğinin tornalanmasında kesme parametrelerinin kesme kuvveti, yüzey pürüzlülüğü ve talaş şekli üzerine etkisinin incelenmesi," Journal of the Faculty of Engineering & Architecture of Gazi University, vol. 36, no. 3, 2021.
  • T. Ahmed, N. Mollick, S. Mahmud, and T. Ahmad, "Analysis of effects of machining parameters on cutting force components in turning AISI 201 stainless steel using cemented carbide cutting tool insert," Materials Today: Proceedings, vol. 42, pp. 832-837, 2021.
  • S. S. Vadgeri, S. R. Patil, and S. T. Chavan, "Static and fatigue analysis of lathe spindle for maximum cutting force," Materials Today: Proceedings, vol. 5, no. 2, pp. 4438-4444, 2018.
  • J. He, S. Wang, G. Li, Z. Yang, L. Hu, and K. Wu, "Compilation of NC lathe dynamic cutting force spectrum based on two-dimensional mixture models," The International Journal of Advanced Manufacturing Technology, vol. 98, pp. 251-262, 2018.
  • I. Ciftci, "Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools," Tribology international, vol. 39, no. 6, pp. 565-569, 2006.
  • B. Özlü, H. Demir, M. Türkmen, and S. Gündüz, "Examining the machinability of 38MnVS6 microalloyed steel, cooled in different mediums after hot forging with the coated carbide and ceramic tool," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 235, no. 22, pp. 6228-6239, 2021.
  • M. Akgün, B. Özlü, and F. Kara, "Effect of PVD-TiN and CVD-Al2O3 coatings on cutting force, surface roughness, cutting power, and temperature in hard turning of AISI H13 steel," Journal of Materials Engineering and Performance, vol. 32, no. 3, pp. 1390-1401, 2023.
  • B. ÖZLÜ, "Evaluation Of energy consumption, cutting force, surface roughness and vibration In machining toolox 44 steel using taguchi-based gray relational analysis," Surface Review and Letters, vol. 29, no. 08, p. 2250103, 2022.
  • M. Akgün and F. Kara, "Analysis and optimization of cutting tool coating effects on surface roughness and cutting forces on turning of AA 6061 alloy," Advances in Materials Science and Engineering, vol. 2021, pp. 1-12, 2021.
  • T. Wu and K. Lei, "Prediction of surface roughness in milling process using vibration signal analysis and artificial neural network," The International Journal of Advanced Manufacturing Technology, vol. 102, no. 1-4, pp. 305-314, 2019.
  • A. M. Zain, H. Haron, and S. Sharif, "Prediction of surface roughness in the end milling machining using Artificial Neural Network," Expert Systems with Applications, vol. 37, no. 2, pp. 1755-1768, 2010.
  • M. Ramezani and A. Afsari, "Surface roughness and cutting force estimation in the CNC turning using artificial neural networks," Management Science Letters, vol. 5, no. 4, pp. 357-362, 2015.

Evaluation of Cutting Force Components in Turning of Monel 400 Nickel Based Superalloy and Modeling with Artificial Neural Networks

Yıl 2023, Cilt: 10 Sayı: 21, 252 - 265, 31.12.2023
https://doi.org/10.54365/adyumbd.1340057

Öz

The study consists of two parts. The first part evaluates the effects of cutting parameters on the cutting force components and the actual cutting force as a result of turning Monel 400 alloy at different cutting parameters. The second part consists of the prediction of the cutting force components measured in turning tests at different cutting parameters by Artificial Neural Networks (ANN) method. Three different cutting speeds (60-85-110 m/min), three different feed rates (0.05-0.07-0.09 mm/rev) and three different depths of cut (0.4-0.8-1.2 mm) were selected as cutting parameters. The measurement of the cutting force components (Fz, Fx and Fy) was carried out with a KISTLER 9257 type B piezoelectric dynamometer. ANN method was used to predict the shear force components. As a result, the lowest cutting force components Fz:227.48 N, Fy:154 N and Fx:99.16 N were measured at 0.4 mm depth of cut, 110 m/min cutting speed and 0.05 mm/rev feed rate for turning Monel 400 alloy. When the cutting force components predicted by ANN method and experimental results are analyzed, it is seen that the predictions made by ANN method have high accuracy.

Kaynakça

  • Choudhury and M. El-Baradie, "Machinability of nickel-base super alloys: a general review," Journal of Materials Processing Technology, vol. 77, no. 1-3, pp. 278-284, 1998.
  • A. K. Parida and K. Maity, "Modeling of machining parameters affecting flank wear and surface roughness in hot turning of Monel-400 using response surface methodology (RSM)," Measurement, vol. 137, pp. 375-381, 2019.
  • A. K. Parida and K. Maity, "Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation," Engineering Science and Technology, an International Journal, vol. 21, no. 3, pp. 364-370, 2018.
  • M. Davami and M. Zadshakoyan, "Investigation of tool temperature and surface quality in hot machining of hard-to-cut materials," International Journal of Materials and Metallurgical Engineering, vol. 2, no. 10, pp. 252-256, 2008.
  • Y. Zhu, H. Liu, D. Zhang, J. Wang, and F. Yan, "Effect of polarization potentials on tribocorrosion behavior of Monel 400 alloy in seawater environment," Tribology International, vol. 168, p. 107445, 2022.
  • E. Ezugwu, Z. Wang, and A. Machado, "The machinability of nickel-based alloys: a review," Journal of Materials Processing Technology, vol. 86, no. 1-3, pp. 1-16, 1999.
  • M. Akgün, "Monel K-500 Alaşımının Isı Destekli İşlenmesi Üzerine Sayısal Bir Çalışma," Uluslararası Teknolojik Bilimler Dergisi, vol. 14, no. 1, pp. 23-29, 2022.
  • N. S. Ross, M. Ganesh, D. Srinivasan, M. K. Gupta, M. E. Korkmaz, and J. Krolczyk, "Role of sustainable cooling/lubrication conditions in improving the tribological and machining characteristics of Monel-400 alloy," Tribology International, vol. 176, p. 107880, 2022.
  • R. Pawade, S. S. Joshi, P. Brahmankar, and M. Rahman, "An investigation of cutting forces and surface damage in high-speed turning of Inconel 718," Journal of Materials Processing Technology, vol. 192, pp. 139-146, 2007.
  • B. Özlü and L. Uğur, "Optimization of cutting forces on turning of Ti-6Al-4V Alloy by 3D FEM simulation analysis," Journal of Engineering Research and Applied Science, vol. 10, no. 2, pp. 1789-1795, 2021.
  • M. Dhananchezian, "Experimental investigation on dry turned Monel 400 alloy surface parameters with uncoated and coated tool," Materials Today: Proceedings, vol. 46, pp. 8303-8306, 2021.
  • M. Dhananchezian, "Comparison of the turning performance of Ti-6Al-4V, monel 400 and inconel 600 alloy with carbide insert," in AIP Conference Proceedings, 2021, vol. 2395, no. 1: AIP Publishing.
  • M. Hanief and M. Charoo, "Modeling and optimization of flank wear and surface roughness of Monel-400 during hot turning using artificial intelligence techniques," Metallurgical and Materials Engineering, vol. 26, no. 1, pp. 57-69, 2020.
  • M. Dhananchezian and K. Rajkumar, "Cutting velocity influenced machinability of Monel 400 by coated tool," Materials and Manufacturing Processes, vol. 38, no. 1, pp. 116-125, 2023.
  • Ç. V. Yıldırım, T. Kıvak, and F. Erzincanlı, "Nikel esaslı Waspaloy süper alaşımının seramik takımlarla frezelenmesinde kesme kuvvetinin Taguchi Metodu ile optimizasyonu," Düzce Üniversitesi Bilim ve Teknoloji Dergisi, vol. 5, no. 2, pp. 400-414, 2017.
  • E. Nas and F. Kara, "Optimization of EDM machinability of hastelloy C22 super alloys," Machines, vol. 10, no. 12, p. 1131, 2022.
  • F. MEYDANERİ and U. Gültekin, "Rene 41 Süper Alaşımının Tornalama Yöntemiyle İşlenebilirliğinin Araştırılması," İmalat Teknolojileri ve Uygulamaları, vol. 3, no. 2, pp. 32-38, 2022.
  • H. Gökçe, "Modelling and optimization for thrust force, temperature and burr height in drilling of custom 450," Experimental Techniques, vol. 46, no. 4, pp. 707-721, 2022.
  • M. Akgün and H. Demir, "Estimation of surface roughness and flank wear in milling of Inconel 625 superalloy," Surface Review and Letters, vol. 28, no. 04, p. 2150011, 2021.
  • H. KAZAN and E. U. ERGÜL, "Kesme Parametrelerinin Haynes 242 Nikel Bazlı Süper Alaşım Malzemenin Tornalamasında Güç Tüketimi Üzerindeki Etkilerinin RSM ve GA ile İncelenmesi," Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, vol. 22, no. 5, pp. 1204-1213, 2022.
  • F. Djavanroodi, B. Omranpour, and M. Sedighi, "Artificial neural network modeling of ECAP process," Materials and Manufacturing processes, vol. 28, no. 3, pp. 276-281, 2013.
  • J. P. Davim, V. Gaitonde, and S. Karnik, "Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models," Journal of materials processing technology, vol. 205, no. 1-3, pp. 16-23, 2008.
  • S. Ranganathan, T. Senthilvelan, and G. Sriram, "Evaluation of machining parameters of hot turning of stainless steel (Type 316) by applying ANN and RSM," Materials and Manufacturing Processes, vol. 25, no. 10, pp. 1131-1141, 2010.
  • D. Zhu, X. Zhang, and H. Ding, "Tool wear characteristics in machining of nickel-based superalloys," International Journal of Machine Tools and Manufacture, vol. 64, pp. 60-77, 2013.
  • Ş. Şirin and T. Kıvak, "Effects of hybrid nanofluids on machining performance in MQL-milling of Inconel X-750 superalloy," Journal of Manufacturing Processes, vol. 70, pp. 163-176, 2021.
  • B. Özlü, "Sleipner soğuk iş takım çeliğinin tornalanmasında kesme parametrelerinin kesme kuvveti, yüzey pürüzlülüğü ve talaş şekli üzerine etkisinin incelenmesi," Journal of the Faculty of Engineering & Architecture of Gazi University, vol. 36, no. 3, 2021.
  • T. Ahmed, N. Mollick, S. Mahmud, and T. Ahmad, "Analysis of effects of machining parameters on cutting force components in turning AISI 201 stainless steel using cemented carbide cutting tool insert," Materials Today: Proceedings, vol. 42, pp. 832-837, 2021.
  • S. S. Vadgeri, S. R. Patil, and S. T. Chavan, "Static and fatigue analysis of lathe spindle for maximum cutting force," Materials Today: Proceedings, vol. 5, no. 2, pp. 4438-4444, 2018.
  • J. He, S. Wang, G. Li, Z. Yang, L. Hu, and K. Wu, "Compilation of NC lathe dynamic cutting force spectrum based on two-dimensional mixture models," The International Journal of Advanced Manufacturing Technology, vol. 98, pp. 251-262, 2018.
  • I. Ciftci, "Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools," Tribology international, vol. 39, no. 6, pp. 565-569, 2006.
  • B. Özlü, H. Demir, M. Türkmen, and S. Gündüz, "Examining the machinability of 38MnVS6 microalloyed steel, cooled in different mediums after hot forging with the coated carbide and ceramic tool," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 235, no. 22, pp. 6228-6239, 2021.
  • M. Akgün, B. Özlü, and F. Kara, "Effect of PVD-TiN and CVD-Al2O3 coatings on cutting force, surface roughness, cutting power, and temperature in hard turning of AISI H13 steel," Journal of Materials Engineering and Performance, vol. 32, no. 3, pp. 1390-1401, 2023.
  • B. ÖZLÜ, "Evaluation Of energy consumption, cutting force, surface roughness and vibration In machining toolox 44 steel using taguchi-based gray relational analysis," Surface Review and Letters, vol. 29, no. 08, p. 2250103, 2022.
  • M. Akgün and F. Kara, "Analysis and optimization of cutting tool coating effects on surface roughness and cutting forces on turning of AA 6061 alloy," Advances in Materials Science and Engineering, vol. 2021, pp. 1-12, 2021.
  • T. Wu and K. Lei, "Prediction of surface roughness in milling process using vibration signal analysis and artificial neural network," The International Journal of Advanced Manufacturing Technology, vol. 102, no. 1-4, pp. 305-314, 2019.
  • A. M. Zain, H. Haron, and S. Sharif, "Prediction of surface roughness in the end milling machining using Artificial Neural Network," Expert Systems with Applications, vol. 37, no. 2, pp. 1755-1768, 2010.
  • M. Ramezani and A. Afsari, "Surface roughness and cutting force estimation in the CNC turning using artificial neural networks," Management Science Letters, vol. 5, no. 4, pp. 357-362, 2015.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgi Sistemleri (Diğer)
Bölüm Makaleler
Yazarlar

Barış Özlü 0000-0002-8594-1234

Levent Uğur 0000-0003-3447-3191

Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 9 Ağustos 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 10 Sayı: 21

Kaynak Göster

APA Özlü, B., & Uğur, L. (2023). Monel 400 Nikel Esaslı Süper Alaşımın Tornalanmasında Oluşan Kesme Kuvveti Bileşenlerinin Değerlendirilmesi ve Yapay Sinir Ağları ile Modellenmesi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 10(21), 252-265. https://doi.org/10.54365/adyumbd.1340057
AMA Özlü B, Uğur L. Monel 400 Nikel Esaslı Süper Alaşımın Tornalanmasında Oluşan Kesme Kuvveti Bileşenlerinin Değerlendirilmesi ve Yapay Sinir Ağları ile Modellenmesi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2023;10(21):252-265. doi:10.54365/adyumbd.1340057
Chicago Özlü, Barış, ve Levent Uğur. “Monel 400 Nikel Esaslı Süper Alaşımın Tornalanmasında Oluşan Kesme Kuvveti Bileşenlerinin Değerlendirilmesi Ve Yapay Sinir Ağları Ile Modellenmesi”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10, sy. 21 (Aralık 2023): 252-65. https://doi.org/10.54365/adyumbd.1340057.
EndNote Özlü B, Uğur L (01 Aralık 2023) Monel 400 Nikel Esaslı Süper Alaşımın Tornalanmasında Oluşan Kesme Kuvveti Bileşenlerinin Değerlendirilmesi ve Yapay Sinir Ağları ile Modellenmesi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10 21 252–265.
IEEE B. Özlü ve L. Uğur, “Monel 400 Nikel Esaslı Süper Alaşımın Tornalanmasında Oluşan Kesme Kuvveti Bileşenlerinin Değerlendirilmesi ve Yapay Sinir Ağları ile Modellenmesi”, Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 10, sy. 21, ss. 252–265, 2023, doi: 10.54365/adyumbd.1340057.
ISNAD Özlü, Barış - Uğur, Levent. “Monel 400 Nikel Esaslı Süper Alaşımın Tornalanmasında Oluşan Kesme Kuvveti Bileşenlerinin Değerlendirilmesi Ve Yapay Sinir Ağları Ile Modellenmesi”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 10/21 (Aralık 2023), 252-265. https://doi.org/10.54365/adyumbd.1340057.
JAMA Özlü B, Uğur L. Monel 400 Nikel Esaslı Süper Alaşımın Tornalanmasında Oluşan Kesme Kuvveti Bileşenlerinin Değerlendirilmesi ve Yapay Sinir Ağları ile Modellenmesi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2023;10:252–265.
MLA Özlü, Barış ve Levent Uğur. “Monel 400 Nikel Esaslı Süper Alaşımın Tornalanmasında Oluşan Kesme Kuvveti Bileşenlerinin Değerlendirilmesi Ve Yapay Sinir Ağları Ile Modellenmesi”. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, c. 10, sy. 21, 2023, ss. 252-65, doi:10.54365/adyumbd.1340057.
Vancouver Özlü B, Uğur L. Monel 400 Nikel Esaslı Süper Alaşımın Tornalanmasında Oluşan Kesme Kuvveti Bileşenlerinin Değerlendirilmesi ve Yapay Sinir Ağları ile Modellenmesi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi. 2023;10(21):252-65.