Derleme
BibTex RIS Kaynak Göster

Tarımsal Üretimde Derin Azotlu Gübreleme

Yıl 2024, Cilt: 1 Sayı: 1, 23 - 31, 02.08.2024

Öz

Azot, bitkisel üretimin temelini oluşturan ve fotosentez, protein ve nükleik asit sentezi gibi hayati süreçler için gerekli bir makro besin elementidir. Ancak, mevcut gübreleme uygulamaları genellikle azot kullanım verimliliği açısından düşük sonuçlar vermekte ve bu durum hem ekonomik kayıplara hem de ciddi çevresel sorunlara yol açmaktadır. Derin azotlu gübreleme, azotun bitki kök bölgesine daha yakın derinliklere yerleştirilmesi işlemidir ve bu yöntem, azotun bitki tarafından daha etkin kullanımını sağlarken, yüzeyden buharlaşma ve yıkanma yoluyla kayıpları önemli ölçüde azaltabilir. Bu makale, derin azotlu gübrelemenin tanımını, önemini ve tarımsal üretim üzerindeki etkilerini ele almakta, geleneksel yüzey gübrelemesi ile karşılaştırmasını yapmaktadır. Ayrıca, uygulama teknikleri ve optimizasyonu, avantajları, zorlukları ve riskleri ile uygulama alanları ve durum çalışmaları incelenmiştir. Sonuç olarak, derin azotlu gübrelemenin bitki büyümesi, verim, azot kullanım verimliliği ve sera gazı emisyonları üzerindeki olumlu etkileri göz önüne alındığında, tarımsal üretimde yaygın olarak benimsenmesi gerekmektedir.

Kaynakça

  • Anas, M., Liao, F., Verma, K., Sarwar, M., Mahmood, A., Chen, Z., Li, Q., Zeng, X., Liu, Y., & Li, Y. (2020). Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 53. https://doi.org/10.1186/s40659-020-00312-4.
  • Aryal, J., Sapkota, T., Krupnik, T., Rahut, D., Jat, M., & Stirling, C. (2021). Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia. Environmental Science and Pollution Research International, 28, 51480 - 51496. https://doi.org/10.1007/s11356-021-13975-7.
  • Chen, Y., Fan, P., Mo, Z., Kong, L., Tian, H., Duan, M., Li, L., Wu, L., Wang, Z., Tang, X., & Pan, S. (2020). Deep Placement of Nitrogen Fertilizer Affects Grain Yield, Nitrogen Recovery Efficiency, and Root Characteristics in Direct-Seeded Rice in South China. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-020-10107-2.
  • Cui, Z., Zhang, H., Chen, X., Zhang, C., Ma, W., Huang, C., ... & Dou, Z. (2018). Pursuing sustainable productivity with millions of smallholder farmers. Nature, 555(7696), 363-366.
  • Dai, Z., Su, W., Chen, H., Barberán, A., Zhao, H., Yu, M., ... & Xu, J. (2018). Long‐term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro‐ecosystems across the globe. Global change biology, 24(8), 3452-3461.
  • Delgado, J., & Follett, R. (2011). Advances in Nitrogen Management for Water Quality. Journal of Soil and Water Conservation, 66, 25A - 26A. https://doi.org/10.2489/jswc.66.1.25A.
  • Fageria, N., & Baligar, V. (2005). Enhancing Nitrogen Use Efficiency in Crop Plants. Advances in Agronomy, 88, 97-185. https://doi.org/10.1016/S0065-2113(05)88004-6.
  • Fernandes, M., & Rossiello, R. (1995). Mineral Nitrogen in Plant Physiology and Plant Nutrition. Critical Reviews in Plant Sciences, 14, 111-148. https://doi.org/10.1080/07352689509701924.
  • Hirel, B., Tétu, T., Lea, P., & Dubois, F. (2011). Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture. Sustainability, 3, 1452-1485. https://doi.org/10.3390/SU3091452.
  • Islam, S. M., Gaihre, Y. K., Islam, M. R., Ahmed, M. N., Akter, M., Singh, U., & Sander, B. O. (2022). Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management. Journal of Environmental Management, 307, 114520.
  • Jat, R., Wani, S., Sahrawat, K., Singh, P., Dhaka, S., & Dhaka, B. (2012). Recent approaches in nitrogen management for sustainable agricultural production and eco-safety. Archives of Agronomy and Soil Science, 58, 1033 - 1060. https://doi.org/10.1080/03650340.2011.557368.
  • Kara, B., (2006). Kahramanmaraş Koşullarında Farklı Gübre Düzeylerinin Farklı Mısır Çeşitlerine Etkisinin Belirlenmesi ve Ceres-Mısır Bitki Gelişiminin Değerlendirilmesi (Doktora Tezi), Çukurova Üniversitesi, Fen Bilimleri Enstitüsü.
  • Karaşahin, M. (2014). Nitrogen uptake efficiency in plant production and the negative effects of reactive nitrogen on the environment. Academic Platform-Journal of Engineering and Science, 2(3), 15-21.
  • Ke, J., He, R., Hou, P., Ding, C., Ding, Y., Wang, S., Liu, Z., Tang, S., Ding, C., Chen, L., & Li, G. (2018). Combined controlled-released nitrogen fertilizers and deep placement effects of N leaching, rice yield and N recovery in machine-transplanted rice. Agriculture, Ecosystems & Environment. https://doi.org/10.1016/J.AGEE.2018.06.023.
  • Li, L., Zhang, Z., Tian, H., Ashraf, U., Mo, Z., Tang, X., ... & Pan, S. (2021). Productivity and profitability of mechanized deep nitrogen fertilization in mechanical pot‐seedling transplanting rice in South China. Agronomy Journal, 113(2), 1664-1680.
  • Liu, L., Shen, T., Yang, Y., Gao, B., Li, Y. C., Xie, J., ... & Chen, J. (2018). Bio-based large tablet controlled-release urea: synthesis, characterization, and controlled-released mechanisms. Journal of agricultural and food chemistry, 66(43), 11265-11272.
  • Liu, Q., Chen, X., Wu, K., & Fu, X. (2015). Nitrogen signaling and use efficiency in plants: what's new?. Current opinion in plant biology, 27, 192-8 . https://doi.org/10.1016/j.pbi.2015.08.002.
  • Liu, T., Fan, D., Zhang, X., Chen, J., Li, C., & Cao, C. (2015). Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Research, 184, 80-90. https://doi.org/10.1016/J.FCR.2015.09.011.
  • Liu, Y., Lai, N., Gao, K., Chen, F., Yuan, L., & Mi, G. (2013). Ammonium Inhibits Primary Root Growth by Reducing the Length of Meristem and Elongation Zone and Decreasing Elemental Expansion Rate in the Root Apex in Arabidopsis thaliana. Plos ONE, 8. https://doi.org/10.1371/journal.pone.0061031.
  • Ma, Q., Sun, L., Tian, H., Rengel, Z., & Shen, J. (2021). Deep banding of phosphorus and nitrogen enhances Rosa multiflora growth and nutrient accumulation by improving root spatial distribution. Scientia Horticulturae. https://doi.org/10.1016/j.scienta.2020.109800.
  • Ma, X., Zhu, C., Yang, N., Gan, L., & Xia, K. (2016). γ-Aminobutyric acid addition alleviates ammonium toxicity by limiting ammonium accumulation in rice (Oryza sativa) seedlings.. Physiologia plantarum, 158 4, 389-401 . https://doi.org/10.1111/ppl.12473.
  • Michalsky, R., & Pfromm, P. H. (2012). Thermodynamics of metal reactants for ammonia synthesis from steam, nitrogen and biomass at atmospheric pressure. AIChE journal, 58(10), 3203-3213.
  • Midolo, G., Alkemade, R., Schipper, A., Benítez‐López, A., Perring, M., & Vries, W. (2018). Impacts of nitrogen addition on plant species richness and abundance: A global meta‐analysis. Global Ecology and Biogeography. https://doi.org/10.1111/GEB.12856.
  • Mogollón, J. M., Bouwman, A. F., Beusen, A. H., Lassaletta, L., van Grinsven, H. J., & Westhoek, H. (2021). More efficient phosphorus use can avoid cropland expansion. Nature Food, 2(7), 509-518.
  • Nasrullah, M., Liang, L., Rizwanullah, M., Yu, X., Majrashi, A., Alharby, H., Alharbi, B., & Fahad, S. (2022). Estimating Nitrogen Use Efficiency, Profitability, and Greenhouse Gas Emission Using Different Methods of Fertilization. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.869873.
  • Nkebiwe, P. M., Weinmann, M., Bar-Tal, A., & Müller, T. (2016). Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field crops research, 196, 389-401.
  • Qin, C., Yi, K., & Wu, P. (2011). Ammonium affects cell viability to inhibit root growth in Arabidopsis. Journal of Zhejiang University SCIENCE B, 12, 477-484. https://doi.org/10.1631/jzus.B1000335.
  • Quan, Z., Zhang, X., Davidson, E., Zhu, F., Li, S., Zhao, X., Chen, X., Zhang, L., He, J., Wei, W., & Fang, Y. (2021). Fates and Use Efficiency of Nitrogen Fertilizer in Maize Cropping Systems and Their Responses to Technologies and Management Practices: A Global Analysis on Field 15N Tracer Studies. Earth's Future, 9. https://doi.org/10.1029/2020EF001514.
  • Raun, W., & Johnson, G. (1999). Improving Nitrogen Use Efficiency for Cereal Production. Agronomy Journal, 91, 357-363. https://doi.org/10.2134/AGRONJ1999.00021962009100030001X.
  • Rogato, A., D’Apuzzo, E., Barbulova, A., Omrane, S., Parlati, A., Carfagna, S., Costa, A., Schiavo, F., Esposito, S., & Chiurazzi, M. (2010). Characterization of a Developmental Root Response Caused by External Ammonium Supply in Lotus japonicus1[C][W]. Plant Physiology, 154, 784 - 795. https://doi.org/10.1104/pp.110.160309.
  • Rose, T. J., Wood, R. H., Rose, M. T., & Van Zwieten, L. (2018). A re-evaluation of the agronomic effectiveness of the nitrification inhibitors DCD and DMPP and the urease inhibitor NBPT. Agriculture, Ecosystems & Environment, 252, 69-73.
  • Shahbaz, P., Haq, S., & Boz, I. (2021). Linking climate change adaptation practices with farm technical efficiency and fertilizer use: a study of wheat–maize mix cropping zone of Punjab province, Pakistan. Environmental Science and Pollution Research, 29, 16925 - 16938. https://doi.org/10.1007/s11356-021-16844-5.
  • Sharma, L., & Bali, S. (2017). A Review of Methods to Improve Nitrogen Use Efficiency in Agriculture. Sustainability, 10, 1-23. https://doi.org/10.3390/SU10010051.
  • Soumare, A., Diedhiou, A., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., & Kouisni, L. (2020). Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. Plants, 9. https://doi.org/10.3390/plants9081011.
  • Subhan, B. (1987). Effect of nitrogen fertilizer on vegetative growt and yield of maize (Zea mays L,) cv, Bastar kuning Local. In Field Crop Abstracts (Vol. 46, No. 4).
  • Sun, Y., Wang, M., Mur, L., Shen, Q., & Guo, S. (2020). Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. International Journal of Molecular Sciences, 21. https://doi.org/10.3390/ijms21020572.
  • The, S., Snyder, R., & Tegeder, M. (2021). Targeting Nitrogen Metabolism and Transport Processes to Improve Plant Nitrogen Use Efficiency. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.628366.
  • Treseder, K. (2008). Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies.. Ecology letters, 11 10, 1111-20 . https://doi.org/10.1111/j.1461-0248.2008.01230.x.
  • Van Grinsven, H. J., Holland, M., Jacobsen, B. H., Klimont, Z., Sutton, M. A., & Jaap Willems, W. (2013). Costs and benefits of nitrogen for Europe and implications for mitigation. Environmental science & technology, 47(8), 3571-3579.
  • Vines, H., & Wedding, R. (1960). Some Effects of Ammonia on Plant Metabolism and a Possible Mechanism for Ammonia Toxicity.. Plant physiology, 35 6, 820-5 . https://doi.org/10.1104/PP.35.6.820.
  • Weber, K., & Burow, M. (2018). Nitrogen–essential macronutrient and signal controlling flowering time. Physiologia Plantarum, 162(2), 251-260.
  • Wienhold, B. J., Trooien, T. P., & Reichman, G. A. (1995). Yield and nitrogen use efficiency of irrigated corn in the northern Great Plains. Agronomy journal, 87(5), 842-846.
  • Wu, M., Liu, M., Liu, J., Li, W., Jiang, C., & Li, Z. (2017). Optimize nitrogen fertilization location in root-growing zone to increase grain yield and nitrogen use efficiency of transplanted rice in subtropical China. Journal of Integrative Agriculture, 16, 2073-2081. https://doi.org/10.1016/S2095-3119(16)61544-7.
  • Xu, G., Fan, X., & Miller, A. (2012). Plant nitrogen assimilation and use efficiency. Annual review of plant biology, 63, 153-82 . https://doi.org/10.1146/annurev-arplant-042811-105532.
  • Zhang, H., Li, W., Adams, H., Wang, A., Wu, J., Jin, C., Guan, D., & Yuan, F. (2018). Responses of Woody Plant Functional Traits to Nitrogen Addition: A Meta-Analysis of Leaf Economics, Gas Exchange, and Hydraulic Traits. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00683.
  • Zhang, H., Zhao, X., Shi, Y., Liang, Y., & Shen, R. (2021). Changes in soil bacterial communities with increasing distance from maize roots affected by ammonium and nitrate additions. Geoderma, 398, 115102. https://doi.org/10.1016/J.GEODERMA.2021.115102.
  • Zhang, L., Zhang, W., Meng, Q., Hu, Y., Schmidhalter, U., Zhong, C., Zou, G., & Chen, X. (2023). Optimizing Agronomic, Environmental, Health and Economic Performances in Summer Maize Production through Fertilizer Nitrogen Management Strategies. Plants, 12. https://doi.org/10.3390/plants12071490.
  • Zheng, W., Sui, C., Liu, Z., Geng, J., Tian, X., Yang, X., ... & Zhang, M. (2016). Long‐term effects of controlled‐release urea on crop yields and soil fertility under wheat–corn double cropping systems. Agronomy Journal, 108(4), 1703-1716.

Deep Nitrogen Fertilization in Agriculture

Yıl 2024, Cilt: 1 Sayı: 1, 23 - 31, 02.08.2024

Öz

Nitrogen is a fundamental macronutrient essential for vital processes such as photosynthesis, protein synthesis, and nucleic acid synthesis in plant production. However, current fertilization practices often result in low nitrogen use efficiency, leading to both economic losses and serious environmental issues. Deep nitrogen fertilization involves placing nitrogen at greater depths closer to the plant root zone, which can enhance nitrogen uptake by plants while significantly reducing losses through surface volatilization and leaching. This article discusses the definition, significance, and impact of deep nitrogen fertilization on agricultural production, comparing it with traditional surface fertilization methods. Additionally, it provides analysis of application techniques and optimization, advantages, challenges and risks, as well as application areas and case studies. In conclusion, given the positive effects of deep nitrogen fertilization on plant growth, yield, nitrogen use efficiency and greenhouse gas emissions, it should be widely adopted in agricultural production.

Kaynakça

  • Anas, M., Liao, F., Verma, K., Sarwar, M., Mahmood, A., Chen, Z., Li, Q., Zeng, X., Liu, Y., & Li, Y. (2020). Fate of nitrogen in agriculture and environment: agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biological Research, 53. https://doi.org/10.1186/s40659-020-00312-4.
  • Aryal, J., Sapkota, T., Krupnik, T., Rahut, D., Jat, M., & Stirling, C. (2021). Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia. Environmental Science and Pollution Research International, 28, 51480 - 51496. https://doi.org/10.1007/s11356-021-13975-7.
  • Chen, Y., Fan, P., Mo, Z., Kong, L., Tian, H., Duan, M., Li, L., Wu, L., Wang, Z., Tang, X., & Pan, S. (2020). Deep Placement of Nitrogen Fertilizer Affects Grain Yield, Nitrogen Recovery Efficiency, and Root Characteristics in Direct-Seeded Rice in South China. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-020-10107-2.
  • Cui, Z., Zhang, H., Chen, X., Zhang, C., Ma, W., Huang, C., ... & Dou, Z. (2018). Pursuing sustainable productivity with millions of smallholder farmers. Nature, 555(7696), 363-366.
  • Dai, Z., Su, W., Chen, H., Barberán, A., Zhao, H., Yu, M., ... & Xu, J. (2018). Long‐term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro‐ecosystems across the globe. Global change biology, 24(8), 3452-3461.
  • Delgado, J., & Follett, R. (2011). Advances in Nitrogen Management for Water Quality. Journal of Soil and Water Conservation, 66, 25A - 26A. https://doi.org/10.2489/jswc.66.1.25A.
  • Fageria, N., & Baligar, V. (2005). Enhancing Nitrogen Use Efficiency in Crop Plants. Advances in Agronomy, 88, 97-185. https://doi.org/10.1016/S0065-2113(05)88004-6.
  • Fernandes, M., & Rossiello, R. (1995). Mineral Nitrogen in Plant Physiology and Plant Nutrition. Critical Reviews in Plant Sciences, 14, 111-148. https://doi.org/10.1080/07352689509701924.
  • Hirel, B., Tétu, T., Lea, P., & Dubois, F. (2011). Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture. Sustainability, 3, 1452-1485. https://doi.org/10.3390/SU3091452.
  • Islam, S. M., Gaihre, Y. K., Islam, M. R., Ahmed, M. N., Akter, M., Singh, U., & Sander, B. O. (2022). Mitigating greenhouse gas emissions from irrigated rice cultivation through improved fertilizer and water management. Journal of Environmental Management, 307, 114520.
  • Jat, R., Wani, S., Sahrawat, K., Singh, P., Dhaka, S., & Dhaka, B. (2012). Recent approaches in nitrogen management for sustainable agricultural production and eco-safety. Archives of Agronomy and Soil Science, 58, 1033 - 1060. https://doi.org/10.1080/03650340.2011.557368.
  • Kara, B., (2006). Kahramanmaraş Koşullarında Farklı Gübre Düzeylerinin Farklı Mısır Çeşitlerine Etkisinin Belirlenmesi ve Ceres-Mısır Bitki Gelişiminin Değerlendirilmesi (Doktora Tezi), Çukurova Üniversitesi, Fen Bilimleri Enstitüsü.
  • Karaşahin, M. (2014). Nitrogen uptake efficiency in plant production and the negative effects of reactive nitrogen on the environment. Academic Platform-Journal of Engineering and Science, 2(3), 15-21.
  • Ke, J., He, R., Hou, P., Ding, C., Ding, Y., Wang, S., Liu, Z., Tang, S., Ding, C., Chen, L., & Li, G. (2018). Combined controlled-released nitrogen fertilizers and deep placement effects of N leaching, rice yield and N recovery in machine-transplanted rice. Agriculture, Ecosystems & Environment. https://doi.org/10.1016/J.AGEE.2018.06.023.
  • Li, L., Zhang, Z., Tian, H., Ashraf, U., Mo, Z., Tang, X., ... & Pan, S. (2021). Productivity and profitability of mechanized deep nitrogen fertilization in mechanical pot‐seedling transplanting rice in South China. Agronomy Journal, 113(2), 1664-1680.
  • Liu, L., Shen, T., Yang, Y., Gao, B., Li, Y. C., Xie, J., ... & Chen, J. (2018). Bio-based large tablet controlled-release urea: synthesis, characterization, and controlled-released mechanisms. Journal of agricultural and food chemistry, 66(43), 11265-11272.
  • Liu, Q., Chen, X., Wu, K., & Fu, X. (2015). Nitrogen signaling and use efficiency in plants: what's new?. Current opinion in plant biology, 27, 192-8 . https://doi.org/10.1016/j.pbi.2015.08.002.
  • Liu, T., Fan, D., Zhang, X., Chen, J., Li, C., & Cao, C. (2015). Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Research, 184, 80-90. https://doi.org/10.1016/J.FCR.2015.09.011.
  • Liu, Y., Lai, N., Gao, K., Chen, F., Yuan, L., & Mi, G. (2013). Ammonium Inhibits Primary Root Growth by Reducing the Length of Meristem and Elongation Zone and Decreasing Elemental Expansion Rate in the Root Apex in Arabidopsis thaliana. Plos ONE, 8. https://doi.org/10.1371/journal.pone.0061031.
  • Ma, Q., Sun, L., Tian, H., Rengel, Z., & Shen, J. (2021). Deep banding of phosphorus and nitrogen enhances Rosa multiflora growth and nutrient accumulation by improving root spatial distribution. Scientia Horticulturae. https://doi.org/10.1016/j.scienta.2020.109800.
  • Ma, X., Zhu, C., Yang, N., Gan, L., & Xia, K. (2016). γ-Aminobutyric acid addition alleviates ammonium toxicity by limiting ammonium accumulation in rice (Oryza sativa) seedlings.. Physiologia plantarum, 158 4, 389-401 . https://doi.org/10.1111/ppl.12473.
  • Michalsky, R., & Pfromm, P. H. (2012). Thermodynamics of metal reactants for ammonia synthesis from steam, nitrogen and biomass at atmospheric pressure. AIChE journal, 58(10), 3203-3213.
  • Midolo, G., Alkemade, R., Schipper, A., Benítez‐López, A., Perring, M., & Vries, W. (2018). Impacts of nitrogen addition on plant species richness and abundance: A global meta‐analysis. Global Ecology and Biogeography. https://doi.org/10.1111/GEB.12856.
  • Mogollón, J. M., Bouwman, A. F., Beusen, A. H., Lassaletta, L., van Grinsven, H. J., & Westhoek, H. (2021). More efficient phosphorus use can avoid cropland expansion. Nature Food, 2(7), 509-518.
  • Nasrullah, M., Liang, L., Rizwanullah, M., Yu, X., Majrashi, A., Alharby, H., Alharbi, B., & Fahad, S. (2022). Estimating Nitrogen Use Efficiency, Profitability, and Greenhouse Gas Emission Using Different Methods of Fertilization. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.869873.
  • Nkebiwe, P. M., Weinmann, M., Bar-Tal, A., & Müller, T. (2016). Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field crops research, 196, 389-401.
  • Qin, C., Yi, K., & Wu, P. (2011). Ammonium affects cell viability to inhibit root growth in Arabidopsis. Journal of Zhejiang University SCIENCE B, 12, 477-484. https://doi.org/10.1631/jzus.B1000335.
  • Quan, Z., Zhang, X., Davidson, E., Zhu, F., Li, S., Zhao, X., Chen, X., Zhang, L., He, J., Wei, W., & Fang, Y. (2021). Fates and Use Efficiency of Nitrogen Fertilizer in Maize Cropping Systems and Their Responses to Technologies and Management Practices: A Global Analysis on Field 15N Tracer Studies. Earth's Future, 9. https://doi.org/10.1029/2020EF001514.
  • Raun, W., & Johnson, G. (1999). Improving Nitrogen Use Efficiency for Cereal Production. Agronomy Journal, 91, 357-363. https://doi.org/10.2134/AGRONJ1999.00021962009100030001X.
  • Rogato, A., D’Apuzzo, E., Barbulova, A., Omrane, S., Parlati, A., Carfagna, S., Costa, A., Schiavo, F., Esposito, S., & Chiurazzi, M. (2010). Characterization of a Developmental Root Response Caused by External Ammonium Supply in Lotus japonicus1[C][W]. Plant Physiology, 154, 784 - 795. https://doi.org/10.1104/pp.110.160309.
  • Rose, T. J., Wood, R. H., Rose, M. T., & Van Zwieten, L. (2018). A re-evaluation of the agronomic effectiveness of the nitrification inhibitors DCD and DMPP and the urease inhibitor NBPT. Agriculture, Ecosystems & Environment, 252, 69-73.
  • Shahbaz, P., Haq, S., & Boz, I. (2021). Linking climate change adaptation practices with farm technical efficiency and fertilizer use: a study of wheat–maize mix cropping zone of Punjab province, Pakistan. Environmental Science and Pollution Research, 29, 16925 - 16938. https://doi.org/10.1007/s11356-021-16844-5.
  • Sharma, L., & Bali, S. (2017). A Review of Methods to Improve Nitrogen Use Efficiency in Agriculture. Sustainability, 10, 1-23. https://doi.org/10.3390/SU10010051.
  • Soumare, A., Diedhiou, A., Thuita, M., Hafidi, M., Ouhdouch, Y., Gopalakrishnan, S., & Kouisni, L. (2020). Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture. Plants, 9. https://doi.org/10.3390/plants9081011.
  • Subhan, B. (1987). Effect of nitrogen fertilizer on vegetative growt and yield of maize (Zea mays L,) cv, Bastar kuning Local. In Field Crop Abstracts (Vol. 46, No. 4).
  • Sun, Y., Wang, M., Mur, L., Shen, Q., & Guo, S. (2020). Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. International Journal of Molecular Sciences, 21. https://doi.org/10.3390/ijms21020572.
  • The, S., Snyder, R., & Tegeder, M. (2021). Targeting Nitrogen Metabolism and Transport Processes to Improve Plant Nitrogen Use Efficiency. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.628366.
  • Treseder, K. (2008). Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies.. Ecology letters, 11 10, 1111-20 . https://doi.org/10.1111/j.1461-0248.2008.01230.x.
  • Van Grinsven, H. J., Holland, M., Jacobsen, B. H., Klimont, Z., Sutton, M. A., & Jaap Willems, W. (2013). Costs and benefits of nitrogen for Europe and implications for mitigation. Environmental science & technology, 47(8), 3571-3579.
  • Vines, H., & Wedding, R. (1960). Some Effects of Ammonia on Plant Metabolism and a Possible Mechanism for Ammonia Toxicity.. Plant physiology, 35 6, 820-5 . https://doi.org/10.1104/PP.35.6.820.
  • Weber, K., & Burow, M. (2018). Nitrogen–essential macronutrient and signal controlling flowering time. Physiologia Plantarum, 162(2), 251-260.
  • Wienhold, B. J., Trooien, T. P., & Reichman, G. A. (1995). Yield and nitrogen use efficiency of irrigated corn in the northern Great Plains. Agronomy journal, 87(5), 842-846.
  • Wu, M., Liu, M., Liu, J., Li, W., Jiang, C., & Li, Z. (2017). Optimize nitrogen fertilization location in root-growing zone to increase grain yield and nitrogen use efficiency of transplanted rice in subtropical China. Journal of Integrative Agriculture, 16, 2073-2081. https://doi.org/10.1016/S2095-3119(16)61544-7.
  • Xu, G., Fan, X., & Miller, A. (2012). Plant nitrogen assimilation and use efficiency. Annual review of plant biology, 63, 153-82 . https://doi.org/10.1146/annurev-arplant-042811-105532.
  • Zhang, H., Li, W., Adams, H., Wang, A., Wu, J., Jin, C., Guan, D., & Yuan, F. (2018). Responses of Woody Plant Functional Traits to Nitrogen Addition: A Meta-Analysis of Leaf Economics, Gas Exchange, and Hydraulic Traits. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00683.
  • Zhang, H., Zhao, X., Shi, Y., Liang, Y., & Shen, R. (2021). Changes in soil bacterial communities with increasing distance from maize roots affected by ammonium and nitrate additions. Geoderma, 398, 115102. https://doi.org/10.1016/J.GEODERMA.2021.115102.
  • Zhang, L., Zhang, W., Meng, Q., Hu, Y., Schmidhalter, U., Zhong, C., Zou, G., & Chen, X. (2023). Optimizing Agronomic, Environmental, Health and Economic Performances in Summer Maize Production through Fertilizer Nitrogen Management Strategies. Plants, 12. https://doi.org/10.3390/plants12071490.
  • Zheng, W., Sui, C., Liu, Z., Geng, J., Tian, X., Yang, X., ... & Zhang, M. (2016). Long‐term effects of controlled‐release urea on crop yields and soil fertility under wheat–corn double cropping systems. Agronomy Journal, 108(4), 1703-1716.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bitki Besleme ve Toprak Verimliliği
Bölüm Derlemeler
Yazarlar

Volkan Atav 0000-0003-2719-8398

Yayımlanma Tarihi 2 Ağustos 2024
Gönderilme Tarihi 7 Haziran 2024
Kabul Tarihi 1 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 1 Sayı: 1

Kaynak Göster

APA Atav, V. (2024). Tarımsal Üretimde Derin Azotlu Gübreleme. Özal Tarım Ve Gıda Bilimleri Dergisi, 1(1), 23-31.