Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimization of NSM-CFRP reinforcement on pre-cracked RCB using Taguchi method: Numerical Analysis

Yıl 2022, , 93 - 104, 30.06.2022
https://doi.org/10.53600/ajesa.1064792

Öz

In the current paper, different methods of repairing a pre-cracked reinforced concrete beam (RCB) were reviewed and described briefly. Afterward, the near-surface mounted (NSM) technique was used to simulate reinforcement of a pre-cracked RCB using carbon fiber reinforced polymer (CFRP) laminated layer. To do this end, Firstly, based on previous experimental and analytical studies the limitations of the dimensions were specified, and then using Minitab software, Taguchi L9 orthogonal array design of experiment (DoE) was applied to optimize the number of simulations and find the best dimensions for the reinforcement. Subsequently, ABAQUS software was used to analyze the flexural behavior of the NSM-CFRP Pre-cracked RCB. Finally, Force-deflection curves were exported from the simulation results and the best reinforcing pattern was selected

Destekleyen Kurum

ALTINBAS UNIVERSTIY

Proje Numarası

1

Kaynakça

  • ABAQUS, U. s. M. and C. U. s. Manual. 2012. Dassault Systemes Simulia Corp, Providence, RI, USA, 6(1).
  • Al-Abdwais, A., and R.J.C. Al-Mahaidi. 2016. Modified cement-based adhesive for near-surface mounted CFRP strengthening system, 124: 794-800.
  • Bahij, S., S.K. Adekunle, M. Al-Osta, S. Ahmad, S.U. Al-Dulaijan and M.K. Rahman. 2018. Numerical investigation of the shear behavior of reinforced ultra-high-performance concrete beams, Structural Concrete, 19(1): 305-317.
  • Barbato, M. 2009. Efficient finite element modelling of reinforced concrete beams retrofitted with fibre reinforced polymers, Computers & Structures, 87(3-4): 167-176.
  • Chaallal, O., M.-J. Nollet, and D. Perraton. 1998. Strengthening of reinforced concrete beams with externally bonded fiber-reinforced-plastic plates: design guidelines for shear and flexure, 25(4): 692-704.
  • CONCRETING, C. W. J. A. C. 2017. ACI 306R-16.
  • De Lorenzis, L. and J.G. Teng. 2007. Near-surface mounted FRP reinforcement: An emerging technique for strengthening structures, 38(2): 119-143.
  • El-Gamal, S., A. Al-Nuaimi, A. Al-Saidy, A.J.C. Al-Lawati. 2016. Efficiency of near surface mounted technique using fiber reinforced polymers for the flexural strengthening of RC beams, 118: 52-62.
  • Lee, J. and G.L. Fenves. 1998. Plastic-Damage Model for Cyclic Loading of Concrete Structures, Journal of Engineering Mechanics, 124(8): 892-900. Manual, A.S.U.s. 2012. Abaqus 6.11, http://130.149, 89(2080): v6.
  • Soliman, S.M., E. El-Salakawy and B. Benmokrane. 2011. Bond performance of near-surface-mounted FRP bars, 15(1): 103-111.
  • Triantafillou, T. 1998. Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites, 95: 107-115.

Taguchi Yöntemi Kullanarak Önceden Çatlayan Rcb Üzerinde Nsm-Cfrp Güçlendirmesinin Optimizasyonu: Sayısal Analiz

Yıl 2022, , 93 - 104, 30.06.2022
https://doi.org/10.53600/ajesa.1064792

Öz

Bu makalede, önceden çatlamış bir betonarme kirişin (RCB) onarımı için farklı yöntemler gözden geçirilmiş ve kısaca açıklanmıştır. Daha sonra, karbon fiber takviyeli polimer (CFRP) lamine katman kullanılarak önceden çatlamış bir RCB’nin takviyesini simüle etmek için yüzeye monte (NSM) tekniği kullanıldı. Bu amaçla, öncelikle önceki deneysel ve analitik çalışmalara dayalı olarak boyutların sınırlamaları belirlenmiş ve ardından Minitab yazılımı kullanılarak, simülasyon sayısını optimize etmek ve en iyi boyutları bulmak için Taguchi L9 ortogonal deney tasarımı (DoE) uygulanmıştır. Daha sonra, ABAQUS yazılımı, NSM-CFRP Pre-cracked RCB’nin eğilme davranışını analiz etmek için kullanıldı. Son olarak, simülasyon sonuçlarından Kuvvet-sapma eğrileri dışa aktarıldı ve en iyi takviye modeli seçildi.

Proje Numarası

1

Kaynakça

  • ABAQUS, U. s. M. and C. U. s. Manual. 2012. Dassault Systemes Simulia Corp, Providence, RI, USA, 6(1).
  • Al-Abdwais, A., and R.J.C. Al-Mahaidi. 2016. Modified cement-based adhesive for near-surface mounted CFRP strengthening system, 124: 794-800.
  • Bahij, S., S.K. Adekunle, M. Al-Osta, S. Ahmad, S.U. Al-Dulaijan and M.K. Rahman. 2018. Numerical investigation of the shear behavior of reinforced ultra-high-performance concrete beams, Structural Concrete, 19(1): 305-317.
  • Barbato, M. 2009. Efficient finite element modelling of reinforced concrete beams retrofitted with fibre reinforced polymers, Computers & Structures, 87(3-4): 167-176.
  • Chaallal, O., M.-J. Nollet, and D. Perraton. 1998. Strengthening of reinforced concrete beams with externally bonded fiber-reinforced-plastic plates: design guidelines for shear and flexure, 25(4): 692-704.
  • CONCRETING, C. W. J. A. C. 2017. ACI 306R-16.
  • De Lorenzis, L. and J.G. Teng. 2007. Near-surface mounted FRP reinforcement: An emerging technique for strengthening structures, 38(2): 119-143.
  • El-Gamal, S., A. Al-Nuaimi, A. Al-Saidy, A.J.C. Al-Lawati. 2016. Efficiency of near surface mounted technique using fiber reinforced polymers for the flexural strengthening of RC beams, 118: 52-62.
  • Lee, J. and G.L. Fenves. 1998. Plastic-Damage Model for Cyclic Loading of Concrete Structures, Journal of Engineering Mechanics, 124(8): 892-900. Manual, A.S.U.s. 2012. Abaqus 6.11, http://130.149, 89(2080): v6.
  • Soliman, S.M., E. El-Salakawy and B. Benmokrane. 2011. Bond performance of near-surface-mounted FRP bars, 15(1): 103-111.
  • Triantafillou, T. 1998. Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites, 95: 107-115.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Fatimaalzhra Shammari 0000-0001-6103-2282

Zeki Hasgür Bu kişi benim 0000-0002-7769-5678

Proje Numarası 1
Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 29 Ocak 2022
Kabul Tarihi 25 Mart 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Shammari, F., & Hasgür, Z. (2022). Optimization of NSM-CFRP reinforcement on pre-cracked RCB using Taguchi method: Numerical Analysis. AURUM Journal of Engineering Systems and Architecture, 6(1), 93-104. https://doi.org/10.53600/ajesa.1064792

.