Araştırma Makalesi
BibTex RIS Kaynak Göster

Using Data Mining Techniques to Explore Patterns of Academic Achievement Effects for High School Students

Yıl 2020, Cilt: 4 Sayı: 1, 37 - 59, 30.06.2020

Öz

This research presents an applied study of the field of knowledge discovery of educational data using data mining techniques, focusing on the development of teaching and learning, by discovering the main patterns of testing the data of the academic student of the intermediate level (baccalaureate) in Baghdad - Iraq, from 2010 to 2019 to get results on the Academic Performance Index. In this study, we discover some major patterns data, Some of this patterns association exists between student changed summation and the student gain level for some subjects, also the relation between summation degrees with degree gained from some subject. This research attempts to read this result and interpretation, supply and verification level and its type to supply to the ministry decision-maker. We choose data mining technique because it’s better to use the benefit of quantity data; we use a different way from data mining technique to support discovery result clusters using (k-means) and classification use a decision tree, after first pre-processing data for database and restriction like logical data warehouse shape, we use k-means algorithm of clusters technique and (J48) algorithm of the classification technique of the decision tree, this different way and algorithms application through WEKA tool, which supports more algorithms and way of data mining Last deductive abstract and suggests some recommendation which interest for the decision-maker. Results from this research built a logical data warehouse & applying the algorithm of data mining’s algorithm, besides the difficulties of some subjects which may form its tough words or other disqualification planning

Destekleyen Kurum

Altınbaş University

Proje Numarası

1

Kaynakça

  • Abu Saa, A. 2016. Educational Data Mining and Students’ Performance Prediction. International Journal of Advanced Computer Science and Applications , 212-220.
  • Anonymous. 2018. Demographic Data. from Ryte, available in http://en.ryte.com/wiki/Demographic_ Data ,last accessed September, 2019.
  • Badr, G., Algobail, A., Almutairi, H., and Almutery, M. 2016. Predicting Students’ Performance in University Courses: A Case Study and Tool in KSU Mathematics Department. Procedia Computer Science , 80-89.
  • Baker, R. S., and Yacef, K. 2009. The State of Educational Data Mining in 2009: A Review and Future Visions. Journal of Educational Data Mining , 3-16.
  • Baker, R. S. 2010. Data Mining for Education. International Encyclopedia of Education. Oxford, UK: Elsevier.
  • David, K. K., Adepeju, S. A., and Kolo, J. A. 2015. A Decision Tree Approach for Predicting Students Academic Performance. International Journal of Education and Management Engineering , 12-19.
  • Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. 1996. From Data Mining to Knowledge Discovery in Databases, AI Magazine , 37-54.
  • Han, J. and Kamber, M. 2006. Data Mining Concepts and Techniques, San Francisco: Morgan Kaufmann.
  • Joshi, R. 2017. Accuracy, Precision, Recall & F1 Score, Interpretation of Performance Measures, available in blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/ , last accessed March, 2019.
  • Mohamed, A. S., Husain, W., and Abdul Rahid, N. 2015. A Review on Predicting Student’s Performance Using Data Mining Techniques. Procedia Computer Science , 414-422.
  • Oprea, C. 2014. Perfromance Evaluation of the Data Mining Classification Methods. Annals of the Constantin Brancusi University of Targu Jiu, Economy Series, Special Issue-Information Society and Sustainable development (pp. 249-253). ACADEMICA BRANCUSI PUBLISHER.
  • Papamitsiou, Z., and Economides, A. A. 2014. Learning Analytics and Educational Data Mining in Practice: A Systematic Review of Empirical Evidence. Educational Technology & Society , 49-64.
  • Pena-Ayala, A. 2014. Educational data mining: A survey and a data mining-based analysis of recent works. Expert Systems with Applications , 1432-1462.
  • Sen, U. K. 2015. A Brief Review Status of Educational Data Mining. International Journal of Advanced Research in Computer Science & Technology
  • Smita, and Sharma, P. 2014. Use of Data Mining in Various Field. A Survey Paper, IOSR Journal of Computer Engineering , 18-21.
  • Sultana, S. Khan, S., and Abbas, M. A. 2017. Predicting performance of electrical engineering students using cognitive and non cognitive features for identification of potential dropouts. International Journal of Electrical Engineering Education , 1-14.

Lise Öğrencilerinin Akademik Başarıya Ulaşma Davranışlarının Veri Madenciliği Yöntemleri ile İncelenmesi

Yıl 2020, Cilt: 4 Sayı: 1, 37 - 59, 30.06.2020

Öz

Bu araştırma, veri madenciliği tekniklerini kullanarak bilginin keşfinde uygulamalı bir çalışma sunuyor, Bu çalışmanın temel amacı, 2010’den 2019’e kadar olan üçüncü Orta Sertifika - Bakalorya için öğrencilerin akademik verilerinde mevcut bazı kalıpları keşfetmektir. Daha sonra Irak Eğitim Bakanlığındaki karar vericilerin eğitim politikalarını desteklemek için akademik performansa ilişkin genel göstergeler geldi. Özellikle veri hacminin yanı sıra, bu verilerin nispeten büyük zaman boyutu da arama sonuçlarından destek aldığından. Bu araştırmada, bu verilerde baskın olan bazı veri kalıplarının, eğitim açısından önemli göstergeler sağlayabilecek bir dizi örgütün varlığına göre özetlendiğini keşfettik. Bu kalıplardan, öğrencinin genel ortalaması ile bazı derslerin öğrenci başarısı arasında bir korelasyon vardır ve bazı derslerde elde edilen tahminde öğrenci başarısının değerlendirilmesi arasındaki ilişki vardır. Bu araştırma, bu sonucu okuma, yorumlama ve sunum seviyesini okumaya ve seviyesini ve kalitesini bakanlıktaki karar vericiye sunarak seviyesini doğrulamaya çalışır. Veri madenciliği teknikleri, bu verinin boyutundan yararlanmak için en uygun olarak seçilmiştir ve çünkü karar vermeyi desteklemek için sıklıkla kullanılan akıllı tümdengelim algoritmaları kullanmaktadır. Bulguları desteklemek için farklı veri madenciliği teknikleri metotları kullanıyoruz, yani küme oluşturma ve sınıflandırmada k- means algoritmasını kullanarak küme oluşturma işleminin ardından (logical data warehouse ) veritabanının ilk işlenmesi ve yeniden yapılandırılmasından sonra karar ağaçları kullanılarak kümeleme. Kümeli teknolojide K-means algoritması, karar ağacı için sınıflandırma tekniğindeki algoritma (J48), bu yöntemler ve algoritmalar weka aracı kullanılarak uygulanmıştır. Veri madenciliğinde birçok algoritma ve yöntemi destekleyen. Araştırma sonuçlarına göre mantıksal bir veri ambarı ve bazı veri madenciliği algoritmalarının Milli Eğitim Bakanlığı veri tabanına uygulanması, Öğrenci kayıtlarıyla ilgili diğer önemli sonuçlara ek olarak, birçok dersin öğrencileri bırakması ve çalışma dışı bırakması gibi, Çalışma planları ve müfredatta ya zor bir kelime ya da kusur. 

Proje Numarası

1

Kaynakça

  • Abu Saa, A. 2016. Educational Data Mining and Students’ Performance Prediction. International Journal of Advanced Computer Science and Applications , 212-220.
  • Anonymous. 2018. Demographic Data. from Ryte, available in http://en.ryte.com/wiki/Demographic_ Data ,last accessed September, 2019.
  • Badr, G., Algobail, A., Almutairi, H., and Almutery, M. 2016. Predicting Students’ Performance in University Courses: A Case Study and Tool in KSU Mathematics Department. Procedia Computer Science , 80-89.
  • Baker, R. S., and Yacef, K. 2009. The State of Educational Data Mining in 2009: A Review and Future Visions. Journal of Educational Data Mining , 3-16.
  • Baker, R. S. 2010. Data Mining for Education. International Encyclopedia of Education. Oxford, UK: Elsevier.
  • David, K. K., Adepeju, S. A., and Kolo, J. A. 2015. A Decision Tree Approach for Predicting Students Academic Performance. International Journal of Education and Management Engineering , 12-19.
  • Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. 1996. From Data Mining to Knowledge Discovery in Databases, AI Magazine , 37-54.
  • Han, J. and Kamber, M. 2006. Data Mining Concepts and Techniques, San Francisco: Morgan Kaufmann.
  • Joshi, R. 2017. Accuracy, Precision, Recall & F1 Score, Interpretation of Performance Measures, available in blog.exsilio.com/all/accuracy-precision-recall-f1-score-interpretation-of-performance-measures/ , last accessed March, 2019.
  • Mohamed, A. S., Husain, W., and Abdul Rahid, N. 2015. A Review on Predicting Student’s Performance Using Data Mining Techniques. Procedia Computer Science , 414-422.
  • Oprea, C. 2014. Perfromance Evaluation of the Data Mining Classification Methods. Annals of the Constantin Brancusi University of Targu Jiu, Economy Series, Special Issue-Information Society and Sustainable development (pp. 249-253). ACADEMICA BRANCUSI PUBLISHER.
  • Papamitsiou, Z., and Economides, A. A. 2014. Learning Analytics and Educational Data Mining in Practice: A Systematic Review of Empirical Evidence. Educational Technology & Society , 49-64.
  • Pena-Ayala, A. 2014. Educational data mining: A survey and a data mining-based analysis of recent works. Expert Systems with Applications , 1432-1462.
  • Sen, U. K. 2015. A Brief Review Status of Educational Data Mining. International Journal of Advanced Research in Computer Science & Technology
  • Smita, and Sharma, P. 2014. Use of Data Mining in Various Field. A Survey Paper, IOSR Journal of Computer Engineering , 18-21.
  • Sultana, S. Khan, S., and Abbas, M. A. 2017. Predicting performance of electrical engineering students using cognitive and non cognitive features for identification of potential dropouts. International Journal of Electrical Engineering Education , 1-14.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgisayar Yazılımı
Bölüm Araştırma Makalesi
Yazarlar

Karrar Ali 0000-0002-6924-739X

Sefer Kurnaz

Proje Numarası 1
Yayımlanma Tarihi 30 Haziran 2020
Gönderilme Tarihi 5 Şubat 2020
Kabul Tarihi 17 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 4 Sayı: 1

Kaynak Göster

APA Ali, K., & Kurnaz, S. (2020). Using Data Mining Techniques to Explore Patterns of Academic Achievement Effects for High School Students. AURUM Journal of Engineering Systems and Architecture, 4(1), 37-59.

.