Derleme
BibTex RIS Kaynak Göster

Effect of Alkaline Cooking (Nixtamalization) on Main Corn Components

Yıl 2018, Cilt: 16 Sayı: 2, 231 - 240, 05.08.2018
https://doi.org/10.24323/akademik-gida.449869

Öz

Alkaline cooking is a process including cooking of
corn grains with the addition of calcium hydroxide, a period of steeping in
cooking water (nejayote), and then washing. This process, which is a very old
process, was first developed in Mesoamerica, the homeland of corn, and is known
as “Nixtamalization”. In alkaline cooked corn, peeling of skin is easier,
protein and starch are modified, rheological and thermal properties change. Since
corn can be consumed by celiac (gluten enteropathy) patients, this practice is
an important step in the preparation of corn-based foods because it provides
the convenience of corn skin peeling and effects corn components. In this
study, the effect of alkaline cooking on major parts of corn such as pericarp,
starch, protein and fat is reviewed.

Kaynakça

  • [1] IGC (International Grains Council). (2017). Grain Market Report. http://www.igc.int/downloads/ gmrsummary/gmrsumme.pdf (Erişim Tarihi: 15.11.2017)
  • [2] TÜİK (Türkiye İstatistik Kurumu). (2017). Bitkisel Üretim İstatistikleri. http://rapory.tuik.gov.tr/27-02-2017-16:26:33-12403665714308876232 129171335.html (Erişim Tarihi: 27.02.2017).
  • [3] TMO (Toprak Mahsülleri Ofisi). (2014). Hububat Sektör Raporu-2014. http://www.tmo.gov.tr/Upload/ Document/raporlar/2014hububatsektor raporu.pdf (Erişim Tarihi: 08.03.2017).
  • [4] Şahin, S. (2001). Türkiye’de mısır ekim alanlarının dağılışı ve mısır üretimi. Gazi Eğitim Fakültesi Dergisi, 21(1), 73-90.
  • [5] Shukla, R., Cheryan, M. (2001). Zein: The industrial protein from corn. Industrial Crops and Products, 13, 171-192.
  • [6] Elgün, A., Ertugay, Z. (2002). Tahıl İşleme Teknolojisi. Atatürk Üniversitesi. Ziraat Fakültesi Yayınları No:718, Erzurum.
  • [7] Lásztity, R. (1995). The Chemistry of Cereal Proteins. Second Edition, CRC Press, Baco Raton, FL, USA.
  • [8] Matz, S.A. (1991). The Chemistry and Technology of Cereals as Food and Feed (2nd ed) Van Nostrand Reinhold, New York.
  • [9] Iglesias, B.F., Ferraguti, F.J., Azcona, J.O., Charrière, M.V., Schang, M.J. (2014). Effect of nitrogen and sulfur fertilization of corn on grain nutrient composition. In Annual Meeting Poultry Science Association, 103. July 14-17 2014. Texas. US.
  • [10] Das, A.K., Singh, V. (2015). Antioxidative free and bound phenolic constituents in pericarp, germ and endosperm of Indian dent (Zea mays var. indentata) and flint (Zea mays var. indurata) maize. Journal of Functional Foods, 13, 363–374.
  • [11] Arteaga, S. (2013). Aflatoxin detoxification method combining mesoamerican nixtamalization and clay absorption techniques. Honors and Undergraduate Research. Texas A&M University, USA, 15 p.
  • [12] Méndez-Montealvo, G., García-Suárez, F., Paredes-López, O., Bello-Pérez, L. (2008). Effect of nixtamalization on morphological and rheological characteristics of maize starch. Journal of Cereal Science, 48(2), 420-425.
  • [13] Janve, B., Yang, W., Kozman, A., Sims, C., Teixeira, A., Gunderson, M.A., Rababah, T.M. (2013). Enhancement of corn nixtamalization by power ultrasound. Food and Bioprocess Technology, 6(5), 1269-1280.
  • [14] Hernández-Becerra, E., Gutierrez-Oñate, M.P., Martinez-Soto, G., Vega-Rojas, L.J., Acosta-Osorio, A.A., Contreras-Padilla, M., Rodríguez-García, M.E. (2016). Physicochemical characterization of corn–sorghum nixtamalized flours as a function of the steeping time. Journal of Food Measurement and Characterization, 10(3), 434-443.
  • [15] Vázquez-Carrillo, M.G., Santiago-Ramos, D., Domínguez-Rendón, E., Audelo-Benites, M.A. (2017). Effects of two different pozole preparation processes on quality variables and pasting properties of processed maize grain. Journal of Food Quality, doi:10.1155/2017/8627363.
  • [16] Rosales, A., Agama-Acevedo, E., Arturo Bello-Pérez, L., Gutiérrez-Dorado, R., Palacios-Rojas, N. (2016). Effect of traditional and extrusion nixtamalization on carotenoid retention in tortillas made from provitamin a biofortified maize (Zea mays L.). Journal of Agricultural and Food Chemistry, 64(44), 8289-8295.
  • [17] De Girolamo, A., Lattanzio, V.M.T., Schena, R., Visconti, A., Pascale, M. (2016). Effect of alkaline cooking of maize on the content of fumonisins B1 and B2 and their hydrolysed forms. Food Chemistry, 192, 1083-1089.
  • [18] Campechano Carrera, E.M., de Dios Figueroa Cárdenas, J., Arámbula Villa, G., Martínez Flores, H.E., Jiménez Sandoval, S.J., Bárcenas, L., Gabriel, J. (2012). New ecological nixtamalisation process for tortilla production and its impact on the chemical properties of whole corn flour and wastewater effluents. International Journal of Food Science & Technology, 47(3), 564-571.
  • [19] Sánchez‐Madrigal, M.Á., Meléndez‐Pizarro, C.O., Martínez‐Bustos, F., Ruiz‐Gutiérrez, M.G., Quintero‐Ramos, A., Márquez‐Meléndez, R., Campos‐Venegas, K. (2014). Structural, functional, thermal and rheological properties of nixtamalised and extruded blue maize (Zea mays L.) flour with different calcium sources. International Journal of Food Science & Technology, 49(2), 578-586.
  • [20] Bello-Pérez, L.A., Flores-Silva, P.C., Camelo-Méndez, G.A., Paredes-López, O., Figueroa-Cárdenas, J.D. (2015). Effect of the nixtamalization process on the dietary fiber content, starch digestibility, and antioxidant capacity of blue maize tortilla. Cereal Chemistry, 92(3), 265-270.
  • [21] Bello-Perez, L.A., Flores-Silva, P.C., Agama-Acevedo, E., Figueroa-Cardenas, J.D., Lopez-Valenzuela, J.A., Campanella, O.H. (2014). Effect of the nixtamalization with calcium carbonate on the indigestible carbohydrate content and starch digestibility of corn tortilla. Journal of Cereal Science, 60(2), 421-425.
  • [22] Moreno, R.M.M., Figueroa, J.D.C., Santiago-Ramos, D., Villa, G.A., Sandoval, S.J., Rayas-Duarte, P., Flores, H.E.M. (2015). The effect of different nixtamalisation processes on some physicochemical properties, nutritional composition and glycemic index. Journal of Cereal Science, 65, 140-146.
  • [23] Salazar, R., Arámbula-Villa, G., Luna-Bárcenas, G., Figueroa-Cárdenas, J.D., Azuara, E., Vázquez-Landaverde, P.A. (2014). Effect of added calcium hydroxide during corn nixtamalization on acrylamide content in tortilla chips. LWT-Food Science and Technology, 56, 87-92.
  • [24] Fernández-Muñoz, J.L., San Martín-Martinez, E., Díaz-Góngora, J.A.I., Calderon, A., Alvarado-Escobar, A., Ortiz-Cárdenas, H., Leal-Perezb, M. (2006). Steeping time and cooking temperature dependence of calcium ion diffusion during microwave nixtamalization of corn. Journal of Food Engineering, 76, 568-572.
  • [25] Argun, M.Ş. (2016). Ülkemizde Yetiştirilen Bazı Mısır Çeşitlerine Uygulanan Alkali Pişirme İşleminin Mısır Unlarının Karakteristik Özellikleri Üzerine Etkilerinin Araştırılması. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, Van, Türkiye, 123 s.
  • [26] Argun, M.Ş., Doğan, İ.S. (2017). Effects of varying nixtamalization conditions on the calcium absorption and pasting properties of dent and flint corn flours. Journal of Food Process Engineering, 40, e12436. doi:10.1111/jfpe.12436.
  • [27] Guzmán, A.Q., Flores, M.E.J., Feria, J.S., Montealvo, M.G.M., Wang, Y.J. (2011). Rheological and thermal properties of masa as related to changes in corn protein during nixtamalization. Journal of Cereal Science, 53(1), 139–147.
  • [28] Gwirtz, J.A., Garcia‐Casal, M.N. (2014). Processing maize flour and corn meal food products. Annals of the New York Academy of Sciences, 1312(1), 66-75.
  • [29] Figueroa, J.D.C., Rodriguez-Chong, A., Véles-Medina, J.J. (2011). Proceso ecológico de nixtamalización para la producción de harinas, masa y tortillas integrales. Mexican Patent No. 289339 (pp. 1–22).
  • [30] Mariscal-Moreno, R.M., Figueroa, J.D.C., Santiago-Ramos, D., Villa, G.A., Sandoval, S.J., Rayas-Duarte, P., Flores, H.E.M. (2015). The effect of different nixtamalisation processes on some physicochemical properties, nutritional composition and glycemic index. Journal of Cereal Science, 65, 140–146.
  • [31] Santiago-Ramos, D., Figueroa-Cárdenas, J.D.D., Véles-Medina, J.J., Mariscal-Moreno, R.M., Reynoso-Camacho, R., Ramos-Gómez, M., Morales-Sánchez, E. (2015). Resistant starch formation in tortillas from an ecological nixtamalization process. Cereal Chemistry, 92(2), 185–192.
  • [32] Gutiérrez-Cortez, E., Rojas-Molina, I., Rojas, A., Arjona, J.L., Cornejo-Villegas, M. A., Zepeda-Benítez, Y., Velázquez-Hernández R., Ibarra-Alvarado, C., Rodríguez-García, M. E. (2010). Microstructural changes in the maize kernel pericarp during cooking stage in nixtamalization process. Journal of Cereal Science, 51(1), 81-88.
  • [33] Sánchez-Madrigal, M.Á., Quintero-Ramos, A., Martínez-Bustos, F., Meléndez-Pizarro, C.O., Ruiz-Gutiérrez, M.G., Camacho-Dávila, A., Ramírez-Wong, B. (2015). Effect of different calcium sources on the bioactive compounds stability of extruded and nixtamalized blue maize flours. Journal of Food Science and Technology, 52(5), 2701-2710.
  • [34] Pérez-Carrillo, E., Frías-Escobar, A., Gutiérrez-Mendívil, K., Guajardo-Flores, S., Serna-Saldívar, S.O. (2017). Effect of maize starch substitution on physicochemical and sensory attributes of gluten-free cookies produced from nixtamalized flour. Journal of Food Processing, doi:10.1155/2017/6365182.
  • [35] Rostro, M., Sánchez-González, M., Rivas, S., Moure, A., Domínguez, H., Parajó, J.C. (2014). Non-isothermal autohydrolysis of nixtamalized maize pericarp: Production of nutraceutical extracts. LWT-Food Science and Technology, 58(2), 550-556.
  • [36] Bryant C.M., Hamaker B.R. (1997). Effect of lime on gelatinization of corn flour and starch. Cereal Chemistry, 74(2), 171-175.
  • [37] Mondragón, M., Bello-Pérez, L.A., Agama, E, Melo, A, Betancur-Ancona, D, Peña, J.L. (2004). Effect of nixtamalization on the modification of the crystalline structure of maize starch. Carbohydrate Polymers, 55(4), 411-418.
  • [38] Rojas-Molina, I., Gutierrez-Cortez, E., Palacios-Fonseca, A., Baños, L., Pons-Hernandez, J.L., Guzmán-Maldonado, S.H., Pineda-Gomez, P., Rodríguez, M.E. (2007). Study of structural and thermal changes in endosperm of quality protein maize during traditional nixtamalization process. Cereal Chemistry, 84(4), 304-312.
  • [39] Guzmán, A.Q., Flores, M.E.J., Escobedo, R.M., Guerrero, L.C., Feria J.S. (2009). Changes on the structure, consistency, physicochemical and viscoelastic properties of corn (Zea mays sp.) under different nixtamalization conditions. Carbohydrate Polymers, 78(4), 908-916.
  • [40] Mondragón, M., Mendoza-Martínez, A.M., Bello-Pérez, L.A., Peña, J.L. (2006). Viscoelastic behavior of nixtamalized maize starch gels. Carbohydrate Polymers, 65, 314-320.
  • [41] Lobato-Calleros, C., Hernandez-Jaimes, C., Chavez-Esquivel, G., Meraz, M., Sosa, E., Lara, V.H., Vernon-Carter, E.J. (2015). Effect of lime concentration on gelatinized maize starch dispersions properties. Food Chemistry, 172, 353-360.
  • [42] Santiago-Ramos, D., Figueroa-Cárdenas, J.D., Véles-Medina, J.J., Mariscal-Moreno, R.M. (2017). Changes in the thermal and structural properties of maize starch during nixtamalization and tortilla-making processes as affected by grain hardness. Journal of Cereal Science, 74, 72-78.
  • [43] Guzmán, A.Q., Flores, M.E.J., Feria, J.S., Montealvo, M.G.M., Wang, Y.J. (2010). Effects of polymerization changes in maize proteins during nixtamalization on the thermal and viscoelastic properties of masa in model systems. Journal of Cereal Science, 52, 152-160.
  • [44] Brenda, C.J., Marcela, G.M., de Dios, F.C.J., Eduardo, M.S. (2014). Effect of steeping time and calcium hydroxide concentration on the water absorption and pasting profile of corn grits. Journal of Food Engineering, 122, 72-77.
  • [45] Santos, E.M., Quintanar-Guzman, A., Solorza-Feria, J., Sanchez-Ortega, I., Rodriguez, J.A., Wang, Y.J. (2014). Thermal and rheological properties of masa from nixtamalized corn subjected to a sequential protein extraction. Journal of Cereal Science, 60(3), 490-496.
  • [46] Rojas, L.J.V., Molina, I.R., Cortez, E.G., Londoño, N.R., Osorio, A.A.A., López, A.D.R., García, M.E.R. (2017). Physicochemical properties of nixtamalized corn flours with and without germ. Food Chemistry, 220, 490-497.
  • [47] Figueroa, J.D.C., Medina, J.J.V., Landaverde, M.A.H., Cuevas, F.A., Martínez, M.G., Martínez, E.C., Palacios, N., Willcox, M. (2013). Effect of annealing from traditional nixtamalisation process on the microstructural, thermal, and rheological properties of starch and quality of pozole. Journal of Cereal Science, 58, 457-464.
  • [48] Santiago-Ramos, D., Figueroa-Cárdenas, J.D., Véles-Medina, J.J., Reynoso-Camacho, R., Ramos-Gómez, M., Gaytán-Martínez, M., Morales-Sánchez, E. (2015). Effects of annealing and concentration of calcium salts on thermal and rheological properties of maize starch during an ecological nixtamalization process. Cereal Chemistry, 92(5), 475-480.
  • [49] Spier, F., Zavareze, E.D.R., Marques e Silva, R., Elias, M.C., Dias, A.R.G. (2013). Effect of alkali and oxidative treatments on the physicochemical, pasting, thermal and morphological properties of corn starch. Journal of the Science of Food and Agriculture, 93(9), 2331-2337.
  • [50] Sefa-Dedeh, S., Cornelius, B., Sakyi-Dawson, E., Afoakwa, E.O. (2004). Effect of nixtamalization on the chemical and functional properties of maize. Food Chemistry, 86(3), 317-324.
  • [51] Flores-Morales, A., Jiménez-Estrada, M., Mora-Escobedo, R. (2012). Determination of the structural changes by FT-IR, Raman, and CP/MAS 13 C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydrate Polymers, 87(1), 61-68.
  • [52] Sáyago-Ayerdi, S.G., Tovar, J., Zamora-Gasga, V.M., Bello-Pérez, L.A. (2014). Starch digestibility and predicted glycaemic index (pGI) in starchy foods consumed in Mexico. Starch, 66, 91-101.
  • [53] Raigond, P., Ezekiel, R., Raigond, B. (2015). Resistant starch in food: a review. Journal of the Science of Food and Agriculture, 95, 1968-1978.
  • [54] Escalante-Aburto, A., Ponce-García, N., Ramírez-Wong, B., Santiago-Ramos, D., Véles-Medina, J. J., de Dios Figueroa Cárdenas, J. (2016). Effect of extrusion factors and particle size on starch properties of nixtamalized whole blue corn snacks. Starch, 68, 1111-1120.
  • [55] Hojilla-Evangelista, M.P. (2012). Extraction and functional properties of non-zein proteins in corn germ from wet-milling. Journal of the American Oil Chemists' Society, 89(1), 167-174.
  • [56] Rodríguez Méndez, L.I., Figueroa, J.D.C., Ramos Gómez, M., Méndez Lagunas, L.L. (2013). Nutraceutical properties of flour and tortillas made with an ecological nixtamalization process. Journal of Food Science, 78(10), 1529-1534.
  • [57] Mendez-Albores, A., Zamora-Rodriguez, D., Arambula-Villa, G., Vazquez-Duran, A., Moreno-Martinez, E. (2014). Impact of different alkaline-heating processes on technological and nutritional properties of maize tortillas. Journal of Food & Nutrition Research, 53(1), 60-70.
  • [58] Moreno-Rivas, S.C., Medina-Rodríguez, C.L., Torres-Chávez, P.I., Ramírez-Wong, B., Platt-Lucero, L.C. (2014). Changes in the solubility of corn proteins through interaction with the arabinoxylans in extruded nixtamalized corn flour treated with xylanase. Plant Foods for Human Nutrition, 69(2), 148-154.
  • [59] Chaidez-Laguna, L.D., Torres-Chavez, P., Ramírez-Wong, B., Marquez-Ríos, E., Islas-Rubio, A. R., Carvajal-Millan, E. (2016). Corn proteins solubility changes during extrusion and traditional nixtamalization for tortilla processing: A study using size exclusion chromatography. Journal of Cereal Science, 69, 351-357.
  • [60] de Mesa-Stonestreet, N. J., Alavi, S., Gwirtz, J. (2012). Extrusion-enzyme liquefaction as a method for producing sorghum protein concentrates. Journal of Food Engineering, 108(2), 365-375.
  • [61] Singh, N., Singh, S., Shevkani, K. (2011). Maize: composition, bioactive constituents, and unleavened bread. In: Flour and Breads and Their Fortification in Health and Disease Prevention, Edited by Preedy, Watson & Patel, Academic Press, London, UK, 89-101p.
  • [62] Serna-Saldivar, S.O. (2015). Nutritional and nutraceutical features of regular and protein fortified corn tortillas. In: Bread and Its Fortification: Nutrition and Health Benefits, Edited by Rosell, Bajerska & Sheikha, CRC Press, Boca Raton, FL, USA, 322-354p.
  • [63] Figueroa, J.D.C., Medina, J.J.V., Tolentino‐López, E.M., Gaytán‐Martínez, M., Aragón‐Cuevas, F., Palacios, N., Willcox, M. (2013). Effect of traditional nixtamalization process on starch annealing and the relation to pozole quality. Journal of Food Process Engineering, 36(5), 704-714.
  • [64] Figueroa‐Cárdenas, J.D., Véles‐Medina, J.J., Esquivel‐Martínez, A.M., Mariscal‐Moreno, R.M., Santiago‐Ramos, D., Hernández‐Estrada, Z.J. (2016). Effect of processing procedure on the formation of resistant starch in tamales. Starch, 68(11-12), 1121-1128.
  • [65] Guadarrama-Lezama, A. Y., Carrillo-Navas, H., Vernon-Carter, E.J., Alvarez-Ramirez, J. (2016). Rheological and thermal properties of dough and textural and microstructural features of bread obtained from nixtamalized corn/wheat flour blends. Journal of Cereal Science, 69, 158-165.
  • [66] Thachil, M.T., Chouksey, M.K., Gudipati, V. (2014). Amylose‐lipid complex formation during extrusion cooking: effect of added lipid type and amylose level on corn‐based puffed snacks. International Journal of Food Science & Technology, 49(2), 309-316.
  • [67] Mendez-Montealvo, G., Sánchez-Rivera, M. M., Paredes-López, O., Bello-Perez, L.A. (2006). Thermal and rheological properties of nixtamalized maize starch. International Journal of Biological Macromolecules, 40(1), 59-63.
  • [68] Yahuaca-Juárez, B., Martínez-Flores, H.E., Huerta-Ruelas, J.A., Vazquez-Landaverde, P.A., Pless, R.C., Tello-Santillán, R. (2013). Effect of thermal-alkaline processing conditions on the quality level of corn oil. CyTA-Journal of Food, 11(sup1), 1-7.
  • [69] Meng, S., Ma, Y., Cui, J., Sun, D.W. (2014). Preparation of corn starch–fatty acid complexes by high‐pressure homogenization. Starch, 66(9-10), 809-817.

Başlıca Mısır Bileşenleri Üzerine Alkali Pişirmenin (Nikstamalizasyon) Etkileri

Yıl 2018, Cilt: 16 Sayı: 2, 231 - 240, 05.08.2018
https://doi.org/10.24323/akademik-gida.449869

Öz

Alkali pişirme, mısır danelerinin kalsiyum hidroksit
ilavesiyle pişirilmesi, pişirme suyu (nejayote) içinde bir müddet
dinlendirilmesi ve daha sonra da yıkanmasını içeren bir işlemdir. Çok eski bir
proses olan bu işlem ilk defa mısırın anavatanı olan Orta Amerika’da
geliştirilmiş ve “Nikstamalizasyon” olarak bilinmektedir. Alkali pişirmeye tabi
tutulmuş mısırlarda kabuk soyulması kolaylaşır, protein ve nişasta modifiye
olur, reolojik ve termal özellikler değişir. Mısır, çölyak (gluten
enteropatisi) hastaları tarafından da tüketilebildiği için bu uygulama mısırın
kabuğunun soyulmasında sağladığı kolaylık ve bileşenleri üzerine söz konusu
etkilerinden dolayı mısırdan üretilen gıdaların hazırlanmasında önemli bir
aşamadır. Bu çalışmada alkali pişirmenin mısırın başlıca kısımları olan
perikarp, nişasta, protein ve yağların üzerine etkileri derlenmiştir.

Kaynakça

  • [1] IGC (International Grains Council). (2017). Grain Market Report. http://www.igc.int/downloads/ gmrsummary/gmrsumme.pdf (Erişim Tarihi: 15.11.2017)
  • [2] TÜİK (Türkiye İstatistik Kurumu). (2017). Bitkisel Üretim İstatistikleri. http://rapory.tuik.gov.tr/27-02-2017-16:26:33-12403665714308876232 129171335.html (Erişim Tarihi: 27.02.2017).
  • [3] TMO (Toprak Mahsülleri Ofisi). (2014). Hububat Sektör Raporu-2014. http://www.tmo.gov.tr/Upload/ Document/raporlar/2014hububatsektor raporu.pdf (Erişim Tarihi: 08.03.2017).
  • [4] Şahin, S. (2001). Türkiye’de mısır ekim alanlarının dağılışı ve mısır üretimi. Gazi Eğitim Fakültesi Dergisi, 21(1), 73-90.
  • [5] Shukla, R., Cheryan, M. (2001). Zein: The industrial protein from corn. Industrial Crops and Products, 13, 171-192.
  • [6] Elgün, A., Ertugay, Z. (2002). Tahıl İşleme Teknolojisi. Atatürk Üniversitesi. Ziraat Fakültesi Yayınları No:718, Erzurum.
  • [7] Lásztity, R. (1995). The Chemistry of Cereal Proteins. Second Edition, CRC Press, Baco Raton, FL, USA.
  • [8] Matz, S.A. (1991). The Chemistry and Technology of Cereals as Food and Feed (2nd ed) Van Nostrand Reinhold, New York.
  • [9] Iglesias, B.F., Ferraguti, F.J., Azcona, J.O., Charrière, M.V., Schang, M.J. (2014). Effect of nitrogen and sulfur fertilization of corn on grain nutrient composition. In Annual Meeting Poultry Science Association, 103. July 14-17 2014. Texas. US.
  • [10] Das, A.K., Singh, V. (2015). Antioxidative free and bound phenolic constituents in pericarp, germ and endosperm of Indian dent (Zea mays var. indentata) and flint (Zea mays var. indurata) maize. Journal of Functional Foods, 13, 363–374.
  • [11] Arteaga, S. (2013). Aflatoxin detoxification method combining mesoamerican nixtamalization and clay absorption techniques. Honors and Undergraduate Research. Texas A&M University, USA, 15 p.
  • [12] Méndez-Montealvo, G., García-Suárez, F., Paredes-López, O., Bello-Pérez, L. (2008). Effect of nixtamalization on morphological and rheological characteristics of maize starch. Journal of Cereal Science, 48(2), 420-425.
  • [13] Janve, B., Yang, W., Kozman, A., Sims, C., Teixeira, A., Gunderson, M.A., Rababah, T.M. (2013). Enhancement of corn nixtamalization by power ultrasound. Food and Bioprocess Technology, 6(5), 1269-1280.
  • [14] Hernández-Becerra, E., Gutierrez-Oñate, M.P., Martinez-Soto, G., Vega-Rojas, L.J., Acosta-Osorio, A.A., Contreras-Padilla, M., Rodríguez-García, M.E. (2016). Physicochemical characterization of corn–sorghum nixtamalized flours as a function of the steeping time. Journal of Food Measurement and Characterization, 10(3), 434-443.
  • [15] Vázquez-Carrillo, M.G., Santiago-Ramos, D., Domínguez-Rendón, E., Audelo-Benites, M.A. (2017). Effects of two different pozole preparation processes on quality variables and pasting properties of processed maize grain. Journal of Food Quality, doi:10.1155/2017/8627363.
  • [16] Rosales, A., Agama-Acevedo, E., Arturo Bello-Pérez, L., Gutiérrez-Dorado, R., Palacios-Rojas, N. (2016). Effect of traditional and extrusion nixtamalization on carotenoid retention in tortillas made from provitamin a biofortified maize (Zea mays L.). Journal of Agricultural and Food Chemistry, 64(44), 8289-8295.
  • [17] De Girolamo, A., Lattanzio, V.M.T., Schena, R., Visconti, A., Pascale, M. (2016). Effect of alkaline cooking of maize on the content of fumonisins B1 and B2 and their hydrolysed forms. Food Chemistry, 192, 1083-1089.
  • [18] Campechano Carrera, E.M., de Dios Figueroa Cárdenas, J., Arámbula Villa, G., Martínez Flores, H.E., Jiménez Sandoval, S.J., Bárcenas, L., Gabriel, J. (2012). New ecological nixtamalisation process for tortilla production and its impact on the chemical properties of whole corn flour and wastewater effluents. International Journal of Food Science & Technology, 47(3), 564-571.
  • [19] Sánchez‐Madrigal, M.Á., Meléndez‐Pizarro, C.O., Martínez‐Bustos, F., Ruiz‐Gutiérrez, M.G., Quintero‐Ramos, A., Márquez‐Meléndez, R., Campos‐Venegas, K. (2014). Structural, functional, thermal and rheological properties of nixtamalised and extruded blue maize (Zea mays L.) flour with different calcium sources. International Journal of Food Science & Technology, 49(2), 578-586.
  • [20] Bello-Pérez, L.A., Flores-Silva, P.C., Camelo-Méndez, G.A., Paredes-López, O., Figueroa-Cárdenas, J.D. (2015). Effect of the nixtamalization process on the dietary fiber content, starch digestibility, and antioxidant capacity of blue maize tortilla. Cereal Chemistry, 92(3), 265-270.
  • [21] Bello-Perez, L.A., Flores-Silva, P.C., Agama-Acevedo, E., Figueroa-Cardenas, J.D., Lopez-Valenzuela, J.A., Campanella, O.H. (2014). Effect of the nixtamalization with calcium carbonate on the indigestible carbohydrate content and starch digestibility of corn tortilla. Journal of Cereal Science, 60(2), 421-425.
  • [22] Moreno, R.M.M., Figueroa, J.D.C., Santiago-Ramos, D., Villa, G.A., Sandoval, S.J., Rayas-Duarte, P., Flores, H.E.M. (2015). The effect of different nixtamalisation processes on some physicochemical properties, nutritional composition and glycemic index. Journal of Cereal Science, 65, 140-146.
  • [23] Salazar, R., Arámbula-Villa, G., Luna-Bárcenas, G., Figueroa-Cárdenas, J.D., Azuara, E., Vázquez-Landaverde, P.A. (2014). Effect of added calcium hydroxide during corn nixtamalization on acrylamide content in tortilla chips. LWT-Food Science and Technology, 56, 87-92.
  • [24] Fernández-Muñoz, J.L., San Martín-Martinez, E., Díaz-Góngora, J.A.I., Calderon, A., Alvarado-Escobar, A., Ortiz-Cárdenas, H., Leal-Perezb, M. (2006). Steeping time and cooking temperature dependence of calcium ion diffusion during microwave nixtamalization of corn. Journal of Food Engineering, 76, 568-572.
  • [25] Argun, M.Ş. (2016). Ülkemizde Yetiştirilen Bazı Mısır Çeşitlerine Uygulanan Alkali Pişirme İşleminin Mısır Unlarının Karakteristik Özellikleri Üzerine Etkilerinin Araştırılması. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, Van, Türkiye, 123 s.
  • [26] Argun, M.Ş., Doğan, İ.S. (2017). Effects of varying nixtamalization conditions on the calcium absorption and pasting properties of dent and flint corn flours. Journal of Food Process Engineering, 40, e12436. doi:10.1111/jfpe.12436.
  • [27] Guzmán, A.Q., Flores, M.E.J., Feria, J.S., Montealvo, M.G.M., Wang, Y.J. (2011). Rheological and thermal properties of masa as related to changes in corn protein during nixtamalization. Journal of Cereal Science, 53(1), 139–147.
  • [28] Gwirtz, J.A., Garcia‐Casal, M.N. (2014). Processing maize flour and corn meal food products. Annals of the New York Academy of Sciences, 1312(1), 66-75.
  • [29] Figueroa, J.D.C., Rodriguez-Chong, A., Véles-Medina, J.J. (2011). Proceso ecológico de nixtamalización para la producción de harinas, masa y tortillas integrales. Mexican Patent No. 289339 (pp. 1–22).
  • [30] Mariscal-Moreno, R.M., Figueroa, J.D.C., Santiago-Ramos, D., Villa, G.A., Sandoval, S.J., Rayas-Duarte, P., Flores, H.E.M. (2015). The effect of different nixtamalisation processes on some physicochemical properties, nutritional composition and glycemic index. Journal of Cereal Science, 65, 140–146.
  • [31] Santiago-Ramos, D., Figueroa-Cárdenas, J.D.D., Véles-Medina, J.J., Mariscal-Moreno, R.M., Reynoso-Camacho, R., Ramos-Gómez, M., Morales-Sánchez, E. (2015). Resistant starch formation in tortillas from an ecological nixtamalization process. Cereal Chemistry, 92(2), 185–192.
  • [32] Gutiérrez-Cortez, E., Rojas-Molina, I., Rojas, A., Arjona, J.L., Cornejo-Villegas, M. A., Zepeda-Benítez, Y., Velázquez-Hernández R., Ibarra-Alvarado, C., Rodríguez-García, M. E. (2010). Microstructural changes in the maize kernel pericarp during cooking stage in nixtamalization process. Journal of Cereal Science, 51(1), 81-88.
  • [33] Sánchez-Madrigal, M.Á., Quintero-Ramos, A., Martínez-Bustos, F., Meléndez-Pizarro, C.O., Ruiz-Gutiérrez, M.G., Camacho-Dávila, A., Ramírez-Wong, B. (2015). Effect of different calcium sources on the bioactive compounds stability of extruded and nixtamalized blue maize flours. Journal of Food Science and Technology, 52(5), 2701-2710.
  • [34] Pérez-Carrillo, E., Frías-Escobar, A., Gutiérrez-Mendívil, K., Guajardo-Flores, S., Serna-Saldívar, S.O. (2017). Effect of maize starch substitution on physicochemical and sensory attributes of gluten-free cookies produced from nixtamalized flour. Journal of Food Processing, doi:10.1155/2017/6365182.
  • [35] Rostro, M., Sánchez-González, M., Rivas, S., Moure, A., Domínguez, H., Parajó, J.C. (2014). Non-isothermal autohydrolysis of nixtamalized maize pericarp: Production of nutraceutical extracts. LWT-Food Science and Technology, 58(2), 550-556.
  • [36] Bryant C.M., Hamaker B.R. (1997). Effect of lime on gelatinization of corn flour and starch. Cereal Chemistry, 74(2), 171-175.
  • [37] Mondragón, M., Bello-Pérez, L.A., Agama, E, Melo, A, Betancur-Ancona, D, Peña, J.L. (2004). Effect of nixtamalization on the modification of the crystalline structure of maize starch. Carbohydrate Polymers, 55(4), 411-418.
  • [38] Rojas-Molina, I., Gutierrez-Cortez, E., Palacios-Fonseca, A., Baños, L., Pons-Hernandez, J.L., Guzmán-Maldonado, S.H., Pineda-Gomez, P., Rodríguez, M.E. (2007). Study of structural and thermal changes in endosperm of quality protein maize during traditional nixtamalization process. Cereal Chemistry, 84(4), 304-312.
  • [39] Guzmán, A.Q., Flores, M.E.J., Escobedo, R.M., Guerrero, L.C., Feria J.S. (2009). Changes on the structure, consistency, physicochemical and viscoelastic properties of corn (Zea mays sp.) under different nixtamalization conditions. Carbohydrate Polymers, 78(4), 908-916.
  • [40] Mondragón, M., Mendoza-Martínez, A.M., Bello-Pérez, L.A., Peña, J.L. (2006). Viscoelastic behavior of nixtamalized maize starch gels. Carbohydrate Polymers, 65, 314-320.
  • [41] Lobato-Calleros, C., Hernandez-Jaimes, C., Chavez-Esquivel, G., Meraz, M., Sosa, E., Lara, V.H., Vernon-Carter, E.J. (2015). Effect of lime concentration on gelatinized maize starch dispersions properties. Food Chemistry, 172, 353-360.
  • [42] Santiago-Ramos, D., Figueroa-Cárdenas, J.D., Véles-Medina, J.J., Mariscal-Moreno, R.M. (2017). Changes in the thermal and structural properties of maize starch during nixtamalization and tortilla-making processes as affected by grain hardness. Journal of Cereal Science, 74, 72-78.
  • [43] Guzmán, A.Q., Flores, M.E.J., Feria, J.S., Montealvo, M.G.M., Wang, Y.J. (2010). Effects of polymerization changes in maize proteins during nixtamalization on the thermal and viscoelastic properties of masa in model systems. Journal of Cereal Science, 52, 152-160.
  • [44] Brenda, C.J., Marcela, G.M., de Dios, F.C.J., Eduardo, M.S. (2014). Effect of steeping time and calcium hydroxide concentration on the water absorption and pasting profile of corn grits. Journal of Food Engineering, 122, 72-77.
  • [45] Santos, E.M., Quintanar-Guzman, A., Solorza-Feria, J., Sanchez-Ortega, I., Rodriguez, J.A., Wang, Y.J. (2014). Thermal and rheological properties of masa from nixtamalized corn subjected to a sequential protein extraction. Journal of Cereal Science, 60(3), 490-496.
  • [46] Rojas, L.J.V., Molina, I.R., Cortez, E.G., Londoño, N.R., Osorio, A.A.A., López, A.D.R., García, M.E.R. (2017). Physicochemical properties of nixtamalized corn flours with and without germ. Food Chemistry, 220, 490-497.
  • [47] Figueroa, J.D.C., Medina, J.J.V., Landaverde, M.A.H., Cuevas, F.A., Martínez, M.G., Martínez, E.C., Palacios, N., Willcox, M. (2013). Effect of annealing from traditional nixtamalisation process on the microstructural, thermal, and rheological properties of starch and quality of pozole. Journal of Cereal Science, 58, 457-464.
  • [48] Santiago-Ramos, D., Figueroa-Cárdenas, J.D., Véles-Medina, J.J., Reynoso-Camacho, R., Ramos-Gómez, M., Gaytán-Martínez, M., Morales-Sánchez, E. (2015). Effects of annealing and concentration of calcium salts on thermal and rheological properties of maize starch during an ecological nixtamalization process. Cereal Chemistry, 92(5), 475-480.
  • [49] Spier, F., Zavareze, E.D.R., Marques e Silva, R., Elias, M.C., Dias, A.R.G. (2013). Effect of alkali and oxidative treatments on the physicochemical, pasting, thermal and morphological properties of corn starch. Journal of the Science of Food and Agriculture, 93(9), 2331-2337.
  • [50] Sefa-Dedeh, S., Cornelius, B., Sakyi-Dawson, E., Afoakwa, E.O. (2004). Effect of nixtamalization on the chemical and functional properties of maize. Food Chemistry, 86(3), 317-324.
  • [51] Flores-Morales, A., Jiménez-Estrada, M., Mora-Escobedo, R. (2012). Determination of the structural changes by FT-IR, Raman, and CP/MAS 13 C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydrate Polymers, 87(1), 61-68.
  • [52] Sáyago-Ayerdi, S.G., Tovar, J., Zamora-Gasga, V.M., Bello-Pérez, L.A. (2014). Starch digestibility and predicted glycaemic index (pGI) in starchy foods consumed in Mexico. Starch, 66, 91-101.
  • [53] Raigond, P., Ezekiel, R., Raigond, B. (2015). Resistant starch in food: a review. Journal of the Science of Food and Agriculture, 95, 1968-1978.
  • [54] Escalante-Aburto, A., Ponce-García, N., Ramírez-Wong, B., Santiago-Ramos, D., Véles-Medina, J. J., de Dios Figueroa Cárdenas, J. (2016). Effect of extrusion factors and particle size on starch properties of nixtamalized whole blue corn snacks. Starch, 68, 1111-1120.
  • [55] Hojilla-Evangelista, M.P. (2012). Extraction and functional properties of non-zein proteins in corn germ from wet-milling. Journal of the American Oil Chemists' Society, 89(1), 167-174.
  • [56] Rodríguez Méndez, L.I., Figueroa, J.D.C., Ramos Gómez, M., Méndez Lagunas, L.L. (2013). Nutraceutical properties of flour and tortillas made with an ecological nixtamalization process. Journal of Food Science, 78(10), 1529-1534.
  • [57] Mendez-Albores, A., Zamora-Rodriguez, D., Arambula-Villa, G., Vazquez-Duran, A., Moreno-Martinez, E. (2014). Impact of different alkaline-heating processes on technological and nutritional properties of maize tortillas. Journal of Food & Nutrition Research, 53(1), 60-70.
  • [58] Moreno-Rivas, S.C., Medina-Rodríguez, C.L., Torres-Chávez, P.I., Ramírez-Wong, B., Platt-Lucero, L.C. (2014). Changes in the solubility of corn proteins through interaction with the arabinoxylans in extruded nixtamalized corn flour treated with xylanase. Plant Foods for Human Nutrition, 69(2), 148-154.
  • [59] Chaidez-Laguna, L.D., Torres-Chavez, P., Ramírez-Wong, B., Marquez-Ríos, E., Islas-Rubio, A. R., Carvajal-Millan, E. (2016). Corn proteins solubility changes during extrusion and traditional nixtamalization for tortilla processing: A study using size exclusion chromatography. Journal of Cereal Science, 69, 351-357.
  • [60] de Mesa-Stonestreet, N. J., Alavi, S., Gwirtz, J. (2012). Extrusion-enzyme liquefaction as a method for producing sorghum protein concentrates. Journal of Food Engineering, 108(2), 365-375.
  • [61] Singh, N., Singh, S., Shevkani, K. (2011). Maize: composition, bioactive constituents, and unleavened bread. In: Flour and Breads and Their Fortification in Health and Disease Prevention, Edited by Preedy, Watson & Patel, Academic Press, London, UK, 89-101p.
  • [62] Serna-Saldivar, S.O. (2015). Nutritional and nutraceutical features of regular and protein fortified corn tortillas. In: Bread and Its Fortification: Nutrition and Health Benefits, Edited by Rosell, Bajerska & Sheikha, CRC Press, Boca Raton, FL, USA, 322-354p.
  • [63] Figueroa, J.D.C., Medina, J.J.V., Tolentino‐López, E.M., Gaytán‐Martínez, M., Aragón‐Cuevas, F., Palacios, N., Willcox, M. (2013). Effect of traditional nixtamalization process on starch annealing and the relation to pozole quality. Journal of Food Process Engineering, 36(5), 704-714.
  • [64] Figueroa‐Cárdenas, J.D., Véles‐Medina, J.J., Esquivel‐Martínez, A.M., Mariscal‐Moreno, R.M., Santiago‐Ramos, D., Hernández‐Estrada, Z.J. (2016). Effect of processing procedure on the formation of resistant starch in tamales. Starch, 68(11-12), 1121-1128.
  • [65] Guadarrama-Lezama, A. Y., Carrillo-Navas, H., Vernon-Carter, E.J., Alvarez-Ramirez, J. (2016). Rheological and thermal properties of dough and textural and microstructural features of bread obtained from nixtamalized corn/wheat flour blends. Journal of Cereal Science, 69, 158-165.
  • [66] Thachil, M.T., Chouksey, M.K., Gudipati, V. (2014). Amylose‐lipid complex formation during extrusion cooking: effect of added lipid type and amylose level on corn‐based puffed snacks. International Journal of Food Science & Technology, 49(2), 309-316.
  • [67] Mendez-Montealvo, G., Sánchez-Rivera, M. M., Paredes-López, O., Bello-Perez, L.A. (2006). Thermal and rheological properties of nixtamalized maize starch. International Journal of Biological Macromolecules, 40(1), 59-63.
  • [68] Yahuaca-Juárez, B., Martínez-Flores, H.E., Huerta-Ruelas, J.A., Vazquez-Landaverde, P.A., Pless, R.C., Tello-Santillán, R. (2013). Effect of thermal-alkaline processing conditions on the quality level of corn oil. CyTA-Journal of Food, 11(sup1), 1-7.
  • [69] Meng, S., Ma, Y., Cui, J., Sun, D.W. (2014). Preparation of corn starch–fatty acid complexes by high‐pressure homogenization. Starch, 66(9-10), 809-817.
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme Makaleler
Yazarlar

Mustafa Şamil Argun 0000-0001-8209-3164

Yayımlanma Tarihi 5 Ağustos 2018
Gönderilme Tarihi 31 Temmuz 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 16 Sayı: 2

Kaynak Göster

APA Argun, M. Ş. (2018). Başlıca Mısır Bileşenleri Üzerine Alkali Pişirmenin (Nikstamalizasyon) Etkileri. Akademik Gıda, 16(2), 231-240. https://doi.org/10.24323/akademik-gida.449869
AMA Argun MŞ. Başlıca Mısır Bileşenleri Üzerine Alkali Pişirmenin (Nikstamalizasyon) Etkileri. Akademik Gıda. Ağustos 2018;16(2):231-240. doi:10.24323/akademik-gida.449869
Chicago Argun, Mustafa Şamil. “Başlıca Mısır Bileşenleri Üzerine Alkali Pişirmenin (Nikstamalizasyon) Etkileri”. Akademik Gıda 16, sy. 2 (Ağustos 2018): 231-40. https://doi.org/10.24323/akademik-gida.449869.
EndNote Argun MŞ (01 Ağustos 2018) Başlıca Mısır Bileşenleri Üzerine Alkali Pişirmenin (Nikstamalizasyon) Etkileri. Akademik Gıda 16 2 231–240.
IEEE M. Ş. Argun, “Başlıca Mısır Bileşenleri Üzerine Alkali Pişirmenin (Nikstamalizasyon) Etkileri”, Akademik Gıda, c. 16, sy. 2, ss. 231–240, 2018, doi: 10.24323/akademik-gida.449869.
ISNAD Argun, Mustafa Şamil. “Başlıca Mısır Bileşenleri Üzerine Alkali Pişirmenin (Nikstamalizasyon) Etkileri”. Akademik Gıda 16/2 (Ağustos 2018), 231-240. https://doi.org/10.24323/akademik-gida.449869.
JAMA Argun MŞ. Başlıca Mısır Bileşenleri Üzerine Alkali Pişirmenin (Nikstamalizasyon) Etkileri. Akademik Gıda. 2018;16:231–240.
MLA Argun, Mustafa Şamil. “Başlıca Mısır Bileşenleri Üzerine Alkali Pişirmenin (Nikstamalizasyon) Etkileri”. Akademik Gıda, c. 16, sy. 2, 2018, ss. 231-40, doi:10.24323/akademik-gida.449869.
Vancouver Argun MŞ. Başlıca Mısır Bileşenleri Üzerine Alkali Pişirmenin (Nikstamalizasyon) Etkileri. Akademik Gıda. 2018;16(2):231-40.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).