Derleme
BibTex RIS Kaynak Göster

Genetic Disorders Requiring Risk-Reducing Surgical Management in Our Gynecological Oncology Practice

Yıl 2022, Cilt: 31 Sayı: 2, 132 - 146, 30.06.2022
https://doi.org/10.17827/aktd.1059207

Öz

Cancer occurs as a result of the mutations in genes that are responsible for cell development and DNA integrity. Mutations can occur in germ cells (germline) (GLM) as well as others (somatic) (SM). GLM are responsible for 5-10% of cancers. Early detection of GLMs is critical for identifying at-risk individuals, following up, and designing risk-reducing procedures. Furthermore, the detection of SM in tumor tissue has recently been used to determine the necessity for extra adjuvant and targeted therapy. Although familial clustering is observed in 10-30% of ovarian (OC) and breast (BC) cancer cases. GLM in the BRCA1/2, which cause DNA repair deficiencies, are responsible for 65-85% of genetic anomalies in hereditary OC. Risk-reducing mastectomy (RRM) reduces the risk of BC by about % 90-95 in cases with pathogenic mutations (PMs) in the BRCA1/2 genes, while risk-reducing salpingo-oophorectomy (RRSO) reduces the incidence of BC (%50 ) and OC(%70-96 ), as well as a decrease in overall cancer-specific mortality. Except for BRCA1/2, OC is caused by PMs in genes like RAD51C, RAD51D and BRIP1, which affect DNA repair process. RRSO is indicated among carriers of PMs in these genes. Lynch syndrome (LS) is associated with a higher risk of colorectal and endometrial cancer. After completing their fertility, hysterectomy and bilateral RRSO are recommended for carriers of PMs in the MLH1, MSH2, and MSH6 genes. Based on the most recent guidelines, our goal in this review is to highlight the genetic alterations that necessitate risk-reducing prophylactic surgical procedures, which are becoming more common in our gynecological oncology practice. 

Destekleyen Kurum

No

Proje Numarası

No

Teşekkür

None

Kaynakça

  • 1. Paul D. The systemic hallmarks of cancer. J Cancer Metastasis Treat 2020;6:29. http://dx.doi.org/10.20517/2394-4722.2020.63
  • 2. Blackadar CB. Historical review of the causes of cancer. World J Clin Oncol. 2016;7(1):54-86. Doi: 10.5306/wjco.v7.i1.54.
  • 3. Pavlopoulou A, Spandidos DA, Michalopoulos I. Human cancer databases (review). Oncol Rep. 2015 Jan;33(1):3-18. Doi: 10.3892/or.2014.3579
  • 4. Chen L, Modesitte S, The American College of Obstetricians and Gynecologists. ACOG Comittee Opinion. Comittee on Genetics. No:793. Obstet Gynecol.2019; 134(6):e143.
  • 5. Pennington KP, Walsh T, Harrell MI, Lee MK, Pennil CC, Rendi MH, et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin. Cancer Res. 2014;20:764–775. Doi: 10.1158/1078-0432.CCR-13-2287.
  • 6. Angeli D, Salvi S, Tedaldi G. Genetic Predisposition to Breast and Ovarian Cancers: How Many and Which Genes to Test? Int. J. Mol. Sci. 2020; 21: 1128 http://dx.doi.org/10.3390/ijms21031128.
  • 7. Walsh T, Casadei S, Lee MK, Pennil CC, Nord AS, Thornton AM, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing Proc Natl Acad Sci USA 2011; 108(44):18032-7. 3. Doi: 10.1073/pnas.1115052108
  • 8. Toss A, Tomasello C, Razzaboni E, Contu G, Grandi G, Cagnacci A, et al. Hereditary Ovarian Cancer : Not Only BRCA1 and 2 genes. Biomed Reseach International 2019; ID 341723,11 pages http ;//dx.doi.org/19.1155/2015/341723.
  • 9. Foulkes W.D, Shuen A.Y. In brief: BRCA1 and BRCA2. J. Pathol. 2013;230(4): 347–349.Doi: 10.1002/path.4205.
  • 10. Wang Y, Cortez D, Yazdi P, Neff N, Elledge S.J, Qin, J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 2000; 14(8): 927–939. PMID: 10783165
  • 11. Mavaddat N, Peock S, Frost D, Ellis S, Platte R, Fineberg E, et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: Results from prospective analysis of EMBRACE. J. Natl. Cancer Inst. 2013; 105(11): 812–822. Doi: 10.1093/jnci/djt095.
  • 12. Tai Y.C, Domchek,S, Parmigiani G, Chen S. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J. Natl. Cancer Inst. 2007;99(23): 1811–1814. Doi: 10.1093/jnci/djm203.
  • 13. Ghiorzo P, Pensotti V, Fornarini G, Sciallero S, Battistuzzi L, Belli F, et al. Contribution of germline mutations in the BRCA and PALB2 genes to pancreatic cancer in Italy. Fam. Cancer 2012;11(1):41–47.Doi: 10.1007/s10689-011-9483-5.
  • 14. Leongamornlert D, Mahmud N, Tymrakiewicz M, Saunders E, Dadaev T, Castro E, et al. Germline BRCA1 mutations increase prostate cancer risk. Br. J. Cancer 2012; 106(10): 1697–1701. Doi: 10.1038/bjc.2012.146.
  • 15. Roy R, Chun J, Powell S.N. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat. Rev. Cancer 2011; 12: 68–78. Doi:10.1038/nrc3181
  • 16. Buisson R, Dion-Côté A-M, Coulombe Y, Launay H, Cai H, Stasiak AZ, et al. Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat. Struct. Mol. Biol. 2010;17(10):1247–1254. Doi: 10.1038/nsmb.1915.
  • 17. Iqbal, J, Ragone A, Lubinski J, Lynch H.T, Moller P, Ghadirian P, et al. The incidence of pancreatic cancer in BRCA1 and BRCA2 mutation carriers. Br. J. Cancer 107(12): 2005–2009 . Doi: 10.1038/bjc.2012.483
  • 18. Moran A, O’Hara C, Khan S, Shack L, Woodward E, Maher E.R, et al. Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam. Cancer 2012; 11(2):235–242. Doi: 10.1007/s10689-011-9506-2.
  • 19. National Comprehensive Cancer Network (NCCN) Guidelines: Genetic/Familial High-Risk Assessment: Breast, Ovarian and Pancreatic. Version 1. 2022. Available online: https://www.nccn.org/professionals/ physician_gls/pdf/genetics_bop.pdf (accessed on 11 August 2021).
  • 20. Ludwig KK, Neuner J, Butler A, Geurts JL, Kong AL. Risk reduction and survival benefit of prophylactic surgery in BRCA mutation carriers, a systematic review. Am J Surg. 2016;212 (4):660–669. Doi: 10.1016/j.amjsurg.2016.06.010
  • 21. Finch AP, Lubinski J, Moller P, Singer CF, Karlan B, Senter L, et al. Impact of Oophorectomy on Cancer Incidence and Mortality in Women With a BRCA1 or BRCA2 Mutation. J Clin Oncol. 2014; 32(15): 1547- 1553. Doi: 10.1200/JCO.2013.53.2820
  • 22. Hartmann LC, Lindor NM. The role of risk-reducing surgery in hereditary breast and ovarian cancer. N Engl J Med. 2016;374(5):454–468. Doi: 10.1056/NEJMra15035249.
  • 23. Rebbeck TR, Kauff ND, Domchek SM. Meta-analysis of risk reduction estimates associated with risk-reducing salpingooophorectomy in BRCA1 or BRCA2 mutation carriers. J. Natl. Cancer Inst. 2009; 101: 80–87. Doi: 10.1093/jnci/djn442.
  • 24. Heemskerk-Gerritsen BA, Seynaeve C, van Asperen CJ, Ausems MG, Collée JM, van Doorn HC, et al. Breast cancer risk after salpingo-oophorectomy in healthy BRCA1/2 mutation carriers: Revisiting the evidence for risk reduction. J. Natl. Cancer Inst. 2015; 107: djv033. Doi: 10.1093/jnci/djv033
  • 25. Kauff ND, Domchek SM, Friebel TM, Robson ME, Lee J, Garber JE, et al. Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: A multicenter, prospective study. J. Clin. Oncol. 2008; 26: 1331–1337. Doi:10.200/JGO.2007.13.9626
  • 26. Domchek SM, Friebel TM, Singer CF, Evans DG, Lynch HT, Isaacs C, et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA 2010;304:967–975. Doi: 10.1001/jama.2010.1237.
  • 27. Marchetti C, De Felice F, Palaia I, Perniola G, Musella A, Musio D, et al. Risk-reducing salpingo-oophorectomy: A meta-analysis on impact on ovarian cancer risk and all cause mortality in BRCA1 and BRCA2 mutation carriers. BMC Women’s Health . 2014;14: 150. Doi: 10.1186/s12905-014-0150-5.
  • 28. Xiao YL, Wang K, Liu Q, Li J, Zhang X, Li HY. Risk Reduction and Survival Benefit of Risk-Reducing Salpingo-oophorectomy in Hereditary Breast Cancer: Meta-analysis and . Systematic Review. Clin Breast Ca.2019; 19(1).e 48-e65 https://doi.org/10.1016/j.clbc.2018.09.011
  • 29. Eleje GU, Eke AC, Ezebialu UI, Ikechebelu IJ, Ugwu EO, Okonkwo OO. Risk‐reducing bilateral salpingo‐oophorectomy in women with BRCA1 or BRCA2 mutations. Cochrane Database Syst Rev 2018;8:CD012464 Doi: 10.1002/14651858.CD012464.
  • 30. Lancaster JM, Powell BC, Chen L, Richardson DL, on behalf of the SGO Clinical Practice Committee. Society of Gynecologic Oncology statement on risk assessment for inherited gynecologic cancer predispositions. Gynecol Oncol.2015;136(1):3-7. Doi: 10.1016/j.ygyno.2014.09.009.
  • 31. Taylor A, Brady AF, Frayling IM, Hanson H, Tischkowitz M, Turnbull C, et al on behalf of the UK Cancer Genetics Group (UK-CGG). Consensus for genes to be included on cancer panel tests offered by UK genetics services: guidelines of the UK Cancer Genetics Group J Med Genet 2018;55:372–377. Doi:10.1136/jmedgenet-2017-105188
  • 32. Castéra L, Krieger S, Rousselin A, Legros A, Baumann JJ, Bruet O, et al: Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur J Hum Genet. 2014; 22:1305-13. Doi: 10.1038/ejhg.2014.16.
  • 33. Chun J, Buechelmaier E.S, Powell S.N. Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol. Cell. Biol. 2013;33: 387–395. Doi: 10.1128/MCB.00465-12.
  • 34. Song H, Dicks E, Ramus SJ, Tyrer JP, Intermaggio MP, Hayward J, et al. Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population. J. Clin. Oncol. 2015;33:2901–2907. Doi: 10.1200/JCO.2015.61.2408.
  • 35. Golmard L, Castéra L, Krieger S, Moncoutier V, Abidallah K, Tenreiro H, et al. Contribution of germline deleterious variants in the RAD51 paralogs to breast and ovarian cancers. Eur. J. Hum. Genet. 2017; 25: 1345–1353. Doi: 10.1038/s41431-017-0021-2
  • 36. Loveday C, Turnbull C, Ramsay E, Hughes D, Ruark E, Frankum, JR, et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat. Genet. 2011; 43: 879–882. Doi: 10.1038/ng.893
  • 37. Mehta, P.A, Tolar, J. Fanconi Anemia. Peutz-Jeghers Syndrome. In GeneReviews; Adam, MP, Ardinger, H.H.,Pagon, R.A., Eds.; University of Washington: Seattle, WA, USA, 2002; [Updated 2018]. Available online:https://www.ncbi.nlm.nih.gov/books/NBK1401 (accessed on 7 February 2020).
  • 38. Walden, H, Deans, A.J. The Fanconi anemia DNA repair pathway: Structural and functional insights into a complex disorder. Annu. Rev. Biophys. 2014; 43: 257–278. Doi: 10.1146/annurev-biophys-051013-022737.
  • 39. Silvestri V, Rizzolo P, Zelli V, Valentini V, Zanna I, Bianchi S, et al. A possible role of FANCM mutations in male breast cancer susceptibility: Results from a multicenter study in Italy. Breast 2018; 3:92–97. Doi:10.1016/j.breast.2017.12.013
  • 40. Kurian AW, Antoniou AC, Domchek SM. Refining Breast Cancer Risk Stratification: Additional Genes, Additional Information. Am. Soc. Clin. Oncol. Educ. Book Am. Soc. Clin. Oncol. Annu. Meet. 2016; 35: 44–56. Doi: 10.1200/EDBK_158817.
  • 41. Weber-Lassalle N, Hauke J, Ramser J, Richters L, Groß E, Blümcke B, et al. BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer. Breast Cancer Res. 2018; 20: 7 Doi: 10.1186/S13058-018-0935-9
  • 42. Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkäs K, Roberts J, et al. Breast-cancer risk in families with mutations in PALB2. N. Engl. J. Med. 2014;371: 497–506. Doi: 10.1056/Nejmoa1400382
  • 43. Yang X, Leslie G, Doroszuk A , Schneider S, Allen J, Decker B, et al. Cancer Risks Associated with Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J. Clin. Oncol. 2020 Mar 1;38(7):674-685. Doi: 10.1200/JCO.19.01907.
  • 44. Bonadona V, Bonaïti B, Olschwagn S, Grandjouan S, Huiart L, Longy M, et al. for the French Cancer Genetics Network. Cancer Risks Associated With Germline Mutations in MLH1 , MSH2 , and MSH6 Genes in Lynch Syndrome JAMA. 2011; 305(22):2304-2310. Doi: 10.1001/jama.2011.743
  • 45. Moller P, Seppälä TT, Bernstein I, Holinski-Feder E, Sala P, Evans DG, et al. Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: a report from the Prospective Lynch Syndrome Database. 2018 Jul;67(7):1306-1316. Doi: 10.1136/gutjnl-2017-314057.
  • 46. Ryan NAJ, Morris J, Green K, Lalloo F, Woodward ER, Hill J,et al. Association of Mismatch Repair Mutation With Age at Cancer Onset in Lynch Syndrome Implications for Stratified Surveillance Strategies JAMA Oncol. 2017;3(12):1702-1706. Doi:10.1001/jamaoncol.2017.0619
  • 47. Dominguez-Valentin M, Sampson JR, Seppälä TT, Broeke SW, Plazzer JP, Nakken S, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the Prospective Lynch Syndrome Database Genetics in Medicine (2020) 22:15–25; https://doi.org/10.1038/s41436- 019-0596-9
  • 48. Hunsinger V, Marchac AC, Derder M, Hivelin M, Lecuru F, Bats AS, et al. A new strategy for prophylactic surgery in BRCA women: Combined mastectomy and laparoscopic salpingo-oophorectomy with immediate reconstruction by double DIEP flap. Chir Plast Esthet.2016;61:177-182. http://dx.doi.org/10.1016/j.anplas.2016.02.002
  • 49. D’Abbondanza JA, George R, Kives S, and Musgrave MA. Concurrent Prophylactic Mastectomy, Immediate Reconstruction, and Salpingo-Oophorectomy in High-Risk Patients: A Case Series. Plastic Surgery.2020; 28(4) :243-248 https://orcid.org/0000-0003-0278-8818
  • 50. Vermeulen RFM, Beurden MV, Korse CM, Kenter GG. Impact of risk-reducing salpingo-oophorectomy in premenopausal women. Climacteric 2017;20(3):212-221. Doi: 10.1080/13697137.2017.1285879
  • 51. Muka T, Oliver-Williams C, Kunutsor S, Laven JSE, Fauser BCJM, Chowdhury R, et al. Association of Age at Onset of Menopause and Time Since Onset of Menopause With Cardiovascular Outcomes, Intermediate Vascular Traits, and All-Cause Mortality: A Systematic Review and Meta-analysis. JAMA Cardiol 2016;1(7):767-776. Doi: 10.1001/jamacardio.2016.2415
  • 52. Kok HS, van Asselt KM, van der Schouw YT, van der Tweel I, Peeters PHM, Wilson PWF, et al. Heart disease risk determines menopausal age rather than the reverse. J Am Coll Cardiol 2006;47(10):1976-1983 Doi: 10.1016/j.jacc.2005.12.066
  • 53. Lara T, Maartje JH, Bernadette HG, Marc B, Jeanine EL, Helena CD, et al. Long-Term Morbidity and Health After Early Menopause Due to Oophorectomy in Women at Increased Risk of Ovarian Cancer. Protocol for a Nationwide Cross-Sectional Study With Prospective Follow-Up (HARMOny Study) Doı: 10.2196/24414 JMIR Res Protoc 2021; 10: e24414 |:p.1-14

Jinekolojik Onkoloji Pratiğimizde Risk Azaltıcı Cerrahi Yönetimi Gerektiren Genetik Değişiklikler

Yıl 2022, Cilt: 31 Sayı: 2, 132 - 146, 30.06.2022
https://doi.org/10.17827/aktd.1059207

Öz

Kanser, fonksiyonu hücre büyümesi ve DNA’nın bütünlüğünü koruma olan genlerdeki mutasyonlar sonucu gelişir. Mutasyonlar, germ hücrelerinde(germline)(GLM) ve diğer hücrelerde (somatik)(SM) olabilir. Kanserlerin %5-10’undan germline mutasyonlar sorumludur. Erken dönemde GLM’ların tespit edilmesi; risk altındaki bireylerin belirlenmesi, takibinin yapılması ve risk azaltıcı koruyucu stratejilerin geliştirilmesi açısından önemlidir. Ayrıca son zamanlarda tümör dokusunda SM’ların tespiti, hedefe yönelik ve adjuvan tedaviyi düzenlemede rehber olmaktadır. Over ve meme kanserlerinin yaklaşık %10-30’u ailesel kümelenme göstermekle birlikte vakaların sadece %5-10’u kalıtsaldır. Özellikle, kalıtsal over kanserlerinin yaklaşık %65-85’ini DNA onarım kusurlarına neden olan BRCA1/2 genlerinde GLM’lar sonucu oluşmaktadır. BRCA1/2 genlerinde patojenik mutasyonu olan bireyler için risk azaltıcı mastektomi (RRM) meme kanseri riskini %90-95 oranında azaltırken, salpingo-ooferektomi (RRSO) ile meme ( %50), over ve fallop tüpü kanseri insidansı da ( %70-96) azalmaktadır. Ayrıca RRSO, kansere özgü genel mortaliteyi azaltmakla ve over kanserini önlemede en etkili seçenek olarak kabul edilmektedir. BRCA1/2 dışında homolog rekombinasyon yolu DNA tamirinde rol oynayan RAD51C, RAD51D ve BRIP1 genlerdeki patojenik mutasyonlar over kanserinde rol oynamaktadır. RAD51C, RAD51D ve BRIP1, genlerinin patojenik mutasyon taşıyıcılarında rehberler, RRSO’i önermektedir. Lynch sendromu (LS), kolorektal ve endometriyal kanser gelişme riskinde artış ile karakterize otozomal dominant bir hastalıktır. LS’da endometrium ve over kanseri risk artışı en fazla olan MLH1, MSH2 ve MSH6 genlerinde patojenik mutasyon taşıyıcılarında fertilitesini tamamladıktan sonra risk azaltıcı cerrahi olarak histerektomi ve RRSO önerilmektedir. Bu derlemede amacımız, jinekolojik onkoloji pratiğimizde son zamanlarda kullanımı gittikçe artan risk azaltıcı profilaktik cerrahi uygulamaları gerektiren genetik hastalıkları son rehberler eşliğinde özetlemektir. 

Proje Numarası

No

Kaynakça

  • 1. Paul D. The systemic hallmarks of cancer. J Cancer Metastasis Treat 2020;6:29. http://dx.doi.org/10.20517/2394-4722.2020.63
  • 2. Blackadar CB. Historical review of the causes of cancer. World J Clin Oncol. 2016;7(1):54-86. Doi: 10.5306/wjco.v7.i1.54.
  • 3. Pavlopoulou A, Spandidos DA, Michalopoulos I. Human cancer databases (review). Oncol Rep. 2015 Jan;33(1):3-18. Doi: 10.3892/or.2014.3579
  • 4. Chen L, Modesitte S, The American College of Obstetricians and Gynecologists. ACOG Comittee Opinion. Comittee on Genetics. No:793. Obstet Gynecol.2019; 134(6):e143.
  • 5. Pennington KP, Walsh T, Harrell MI, Lee MK, Pennil CC, Rendi MH, et al. Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin. Cancer Res. 2014;20:764–775. Doi: 10.1158/1078-0432.CCR-13-2287.
  • 6. Angeli D, Salvi S, Tedaldi G. Genetic Predisposition to Breast and Ovarian Cancers: How Many and Which Genes to Test? Int. J. Mol. Sci. 2020; 21: 1128 http://dx.doi.org/10.3390/ijms21031128.
  • 7. Walsh T, Casadei S, Lee MK, Pennil CC, Nord AS, Thornton AM, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing Proc Natl Acad Sci USA 2011; 108(44):18032-7. 3. Doi: 10.1073/pnas.1115052108
  • 8. Toss A, Tomasello C, Razzaboni E, Contu G, Grandi G, Cagnacci A, et al. Hereditary Ovarian Cancer : Not Only BRCA1 and 2 genes. Biomed Reseach International 2019; ID 341723,11 pages http ;//dx.doi.org/19.1155/2015/341723.
  • 9. Foulkes W.D, Shuen A.Y. In brief: BRCA1 and BRCA2. J. Pathol. 2013;230(4): 347–349.Doi: 10.1002/path.4205.
  • 10. Wang Y, Cortez D, Yazdi P, Neff N, Elledge S.J, Qin, J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 2000; 14(8): 927–939. PMID: 10783165
  • 11. Mavaddat N, Peock S, Frost D, Ellis S, Platte R, Fineberg E, et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: Results from prospective analysis of EMBRACE. J. Natl. Cancer Inst. 2013; 105(11): 812–822. Doi: 10.1093/jnci/djt095.
  • 12. Tai Y.C, Domchek,S, Parmigiani G, Chen S. Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J. Natl. Cancer Inst. 2007;99(23): 1811–1814. Doi: 10.1093/jnci/djm203.
  • 13. Ghiorzo P, Pensotti V, Fornarini G, Sciallero S, Battistuzzi L, Belli F, et al. Contribution of germline mutations in the BRCA and PALB2 genes to pancreatic cancer in Italy. Fam. Cancer 2012;11(1):41–47.Doi: 10.1007/s10689-011-9483-5.
  • 14. Leongamornlert D, Mahmud N, Tymrakiewicz M, Saunders E, Dadaev T, Castro E, et al. Germline BRCA1 mutations increase prostate cancer risk. Br. J. Cancer 2012; 106(10): 1697–1701. Doi: 10.1038/bjc.2012.146.
  • 15. Roy R, Chun J, Powell S.N. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat. Rev. Cancer 2011; 12: 68–78. Doi:10.1038/nrc3181
  • 16. Buisson R, Dion-Côté A-M, Coulombe Y, Launay H, Cai H, Stasiak AZ, et al. Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat. Struct. Mol. Biol. 2010;17(10):1247–1254. Doi: 10.1038/nsmb.1915.
  • 17. Iqbal, J, Ragone A, Lubinski J, Lynch H.T, Moller P, Ghadirian P, et al. The incidence of pancreatic cancer in BRCA1 and BRCA2 mutation carriers. Br. J. Cancer 107(12): 2005–2009 . Doi: 10.1038/bjc.2012.483
  • 18. Moran A, O’Hara C, Khan S, Shack L, Woodward E, Maher E.R, et al. Risk of cancer other than breast or ovarian in individuals with BRCA1 and BRCA2 mutations. Fam. Cancer 2012; 11(2):235–242. Doi: 10.1007/s10689-011-9506-2.
  • 19. National Comprehensive Cancer Network (NCCN) Guidelines: Genetic/Familial High-Risk Assessment: Breast, Ovarian and Pancreatic. Version 1. 2022. Available online: https://www.nccn.org/professionals/ physician_gls/pdf/genetics_bop.pdf (accessed on 11 August 2021).
  • 20. Ludwig KK, Neuner J, Butler A, Geurts JL, Kong AL. Risk reduction and survival benefit of prophylactic surgery in BRCA mutation carriers, a systematic review. Am J Surg. 2016;212 (4):660–669. Doi: 10.1016/j.amjsurg.2016.06.010
  • 21. Finch AP, Lubinski J, Moller P, Singer CF, Karlan B, Senter L, et al. Impact of Oophorectomy on Cancer Incidence and Mortality in Women With a BRCA1 or BRCA2 Mutation. J Clin Oncol. 2014; 32(15): 1547- 1553. Doi: 10.1200/JCO.2013.53.2820
  • 22. Hartmann LC, Lindor NM. The role of risk-reducing surgery in hereditary breast and ovarian cancer. N Engl J Med. 2016;374(5):454–468. Doi: 10.1056/NEJMra15035249.
  • 23. Rebbeck TR, Kauff ND, Domchek SM. Meta-analysis of risk reduction estimates associated with risk-reducing salpingooophorectomy in BRCA1 or BRCA2 mutation carriers. J. Natl. Cancer Inst. 2009; 101: 80–87. Doi: 10.1093/jnci/djn442.
  • 24. Heemskerk-Gerritsen BA, Seynaeve C, van Asperen CJ, Ausems MG, Collée JM, van Doorn HC, et al. Breast cancer risk after salpingo-oophorectomy in healthy BRCA1/2 mutation carriers: Revisiting the evidence for risk reduction. J. Natl. Cancer Inst. 2015; 107: djv033. Doi: 10.1093/jnci/djv033
  • 25. Kauff ND, Domchek SM, Friebel TM, Robson ME, Lee J, Garber JE, et al. Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: A multicenter, prospective study. J. Clin. Oncol. 2008; 26: 1331–1337. Doi:10.200/JGO.2007.13.9626
  • 26. Domchek SM, Friebel TM, Singer CF, Evans DG, Lynch HT, Isaacs C, et al. Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA 2010;304:967–975. Doi: 10.1001/jama.2010.1237.
  • 27. Marchetti C, De Felice F, Palaia I, Perniola G, Musella A, Musio D, et al. Risk-reducing salpingo-oophorectomy: A meta-analysis on impact on ovarian cancer risk and all cause mortality in BRCA1 and BRCA2 mutation carriers. BMC Women’s Health . 2014;14: 150. Doi: 10.1186/s12905-014-0150-5.
  • 28. Xiao YL, Wang K, Liu Q, Li J, Zhang X, Li HY. Risk Reduction and Survival Benefit of Risk-Reducing Salpingo-oophorectomy in Hereditary Breast Cancer: Meta-analysis and . Systematic Review. Clin Breast Ca.2019; 19(1).e 48-e65 https://doi.org/10.1016/j.clbc.2018.09.011
  • 29. Eleje GU, Eke AC, Ezebialu UI, Ikechebelu IJ, Ugwu EO, Okonkwo OO. Risk‐reducing bilateral salpingo‐oophorectomy in women with BRCA1 or BRCA2 mutations. Cochrane Database Syst Rev 2018;8:CD012464 Doi: 10.1002/14651858.CD012464.
  • 30. Lancaster JM, Powell BC, Chen L, Richardson DL, on behalf of the SGO Clinical Practice Committee. Society of Gynecologic Oncology statement on risk assessment for inherited gynecologic cancer predispositions. Gynecol Oncol.2015;136(1):3-7. Doi: 10.1016/j.ygyno.2014.09.009.
  • 31. Taylor A, Brady AF, Frayling IM, Hanson H, Tischkowitz M, Turnbull C, et al on behalf of the UK Cancer Genetics Group (UK-CGG). Consensus for genes to be included on cancer panel tests offered by UK genetics services: guidelines of the UK Cancer Genetics Group J Med Genet 2018;55:372–377. Doi:10.1136/jmedgenet-2017-105188
  • 32. Castéra L, Krieger S, Rousselin A, Legros A, Baumann JJ, Bruet O, et al: Next-generation sequencing for the diagnosis of hereditary breast and ovarian cancer using genomic capture targeting multiple candidate genes. Eur J Hum Genet. 2014; 22:1305-13. Doi: 10.1038/ejhg.2014.16.
  • 33. Chun J, Buechelmaier E.S, Powell S.N. Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol. Cell. Biol. 2013;33: 387–395. Doi: 10.1128/MCB.00465-12.
  • 34. Song H, Dicks E, Ramus SJ, Tyrer JP, Intermaggio MP, Hayward J, et al. Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population. J. Clin. Oncol. 2015;33:2901–2907. Doi: 10.1200/JCO.2015.61.2408.
  • 35. Golmard L, Castéra L, Krieger S, Moncoutier V, Abidallah K, Tenreiro H, et al. Contribution of germline deleterious variants in the RAD51 paralogs to breast and ovarian cancers. Eur. J. Hum. Genet. 2017; 25: 1345–1353. Doi: 10.1038/s41431-017-0021-2
  • 36. Loveday C, Turnbull C, Ramsay E, Hughes D, Ruark E, Frankum, JR, et al. Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat. Genet. 2011; 43: 879–882. Doi: 10.1038/ng.893
  • 37. Mehta, P.A, Tolar, J. Fanconi Anemia. Peutz-Jeghers Syndrome. In GeneReviews; Adam, MP, Ardinger, H.H.,Pagon, R.A., Eds.; University of Washington: Seattle, WA, USA, 2002; [Updated 2018]. Available online:https://www.ncbi.nlm.nih.gov/books/NBK1401 (accessed on 7 February 2020).
  • 38. Walden, H, Deans, A.J. The Fanconi anemia DNA repair pathway: Structural and functional insights into a complex disorder. Annu. Rev. Biophys. 2014; 43: 257–278. Doi: 10.1146/annurev-biophys-051013-022737.
  • 39. Silvestri V, Rizzolo P, Zelli V, Valentini V, Zanna I, Bianchi S, et al. A possible role of FANCM mutations in male breast cancer susceptibility: Results from a multicenter study in Italy. Breast 2018; 3:92–97. Doi:10.1016/j.breast.2017.12.013
  • 40. Kurian AW, Antoniou AC, Domchek SM. Refining Breast Cancer Risk Stratification: Additional Genes, Additional Information. Am. Soc. Clin. Oncol. Educ. Book Am. Soc. Clin. Oncol. Annu. Meet. 2016; 35: 44–56. Doi: 10.1200/EDBK_158817.
  • 41. Weber-Lassalle N, Hauke J, Ramser J, Richters L, Groß E, Blümcke B, et al. BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer. Breast Cancer Res. 2018; 20: 7 Doi: 10.1186/S13058-018-0935-9
  • 42. Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkäs K, Roberts J, et al. Breast-cancer risk in families with mutations in PALB2. N. Engl. J. Med. 2014;371: 497–506. Doi: 10.1056/Nejmoa1400382
  • 43. Yang X, Leslie G, Doroszuk A , Schneider S, Allen J, Decker B, et al. Cancer Risks Associated with Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J. Clin. Oncol. 2020 Mar 1;38(7):674-685. Doi: 10.1200/JCO.19.01907.
  • 44. Bonadona V, Bonaïti B, Olschwagn S, Grandjouan S, Huiart L, Longy M, et al. for the French Cancer Genetics Network. Cancer Risks Associated With Germline Mutations in MLH1 , MSH2 , and MSH6 Genes in Lynch Syndrome JAMA. 2011; 305(22):2304-2310. Doi: 10.1001/jama.2011.743
  • 45. Moller P, Seppälä TT, Bernstein I, Holinski-Feder E, Sala P, Evans DG, et al. Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: a report from the Prospective Lynch Syndrome Database. 2018 Jul;67(7):1306-1316. Doi: 10.1136/gutjnl-2017-314057.
  • 46. Ryan NAJ, Morris J, Green K, Lalloo F, Woodward ER, Hill J,et al. Association of Mismatch Repair Mutation With Age at Cancer Onset in Lynch Syndrome Implications for Stratified Surveillance Strategies JAMA Oncol. 2017;3(12):1702-1706. Doi:10.1001/jamaoncol.2017.0619
  • 47. Dominguez-Valentin M, Sampson JR, Seppälä TT, Broeke SW, Plazzer JP, Nakken S, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the Prospective Lynch Syndrome Database Genetics in Medicine (2020) 22:15–25; https://doi.org/10.1038/s41436- 019-0596-9
  • 48. Hunsinger V, Marchac AC, Derder M, Hivelin M, Lecuru F, Bats AS, et al. A new strategy for prophylactic surgery in BRCA women: Combined mastectomy and laparoscopic salpingo-oophorectomy with immediate reconstruction by double DIEP flap. Chir Plast Esthet.2016;61:177-182. http://dx.doi.org/10.1016/j.anplas.2016.02.002
  • 49. D’Abbondanza JA, George R, Kives S, and Musgrave MA. Concurrent Prophylactic Mastectomy, Immediate Reconstruction, and Salpingo-Oophorectomy in High-Risk Patients: A Case Series. Plastic Surgery.2020; 28(4) :243-248 https://orcid.org/0000-0003-0278-8818
  • 50. Vermeulen RFM, Beurden MV, Korse CM, Kenter GG. Impact of risk-reducing salpingo-oophorectomy in premenopausal women. Climacteric 2017;20(3):212-221. Doi: 10.1080/13697137.2017.1285879
  • 51. Muka T, Oliver-Williams C, Kunutsor S, Laven JSE, Fauser BCJM, Chowdhury R, et al. Association of Age at Onset of Menopause and Time Since Onset of Menopause With Cardiovascular Outcomes, Intermediate Vascular Traits, and All-Cause Mortality: A Systematic Review and Meta-analysis. JAMA Cardiol 2016;1(7):767-776. Doi: 10.1001/jamacardio.2016.2415
  • 52. Kok HS, van Asselt KM, van der Schouw YT, van der Tweel I, Peeters PHM, Wilson PWF, et al. Heart disease risk determines menopausal age rather than the reverse. J Am Coll Cardiol 2006;47(10):1976-1983 Doi: 10.1016/j.jacc.2005.12.066
  • 53. Lara T, Maartje JH, Bernadette HG, Marc B, Jeanine EL, Helena CD, et al. Long-Term Morbidity and Health After Early Menopause Due to Oophorectomy in Women at Increased Risk of Ovarian Cancer. Protocol for a Nationwide Cross-Sectional Study With Prospective Follow-Up (HARMOny Study) Doı: 10.2196/24414 JMIR Res Protoc 2021; 10: e24414 |:p.1-14
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Ferah Kazancı 0000-0002-3910-0821

Feride İffet Şahin 0000-0001-7308-9673

Proje Numarası No
Yayımlanma Tarihi 30 Haziran 2022
Kabul Tarihi 14 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 31 Sayı: 2

Kaynak Göster

AMA Kazancı F, Şahin Fİ. Jinekolojik Onkoloji Pratiğimizde Risk Azaltıcı Cerrahi Yönetimi Gerektiren Genetik Değişiklikler. aktd. Haziran 2022;31(2):132-146. doi:10.17827/aktd.1059207