Dual Lorentziyen Birim Küresel Timelike Eğrilerin Eğrilik Teorisi Kullanılarak Robot Uç-işlevci Hareketinin İncelenmesi
Yıl 2018,
Cilt: 18 Sayı: 2, 468 - 476, 31.08.2018
Burak Şahiner
,
Mustafa Kazaz
,
Hasan Hüseyin Uğurlu
Öz
Bu çalışmada, Lorentziyen uzayda hareket eden bir robot uç-işlevcinin hareketi, robot uç-işlevciye sabitlenmiş bir doğru tarafından oluşturulan spacelike regle yüzeye dual uzayda karşılık gelen dualLorentziyen birim küresel timelike eğrilerin eğrilik teorisi kullanılarak incelenmiştir. Bu inceleme ile robot yörünge planlamasında önemli rol oynayan robot uç-işlevcinin zamana bağlı lineer ve açısal hızı ile lineer ve açısal ivmesi belirlenmiştir.
Kaynakça
- Ayyıldız, N. andTurhan, T., 2012. A Study on a
ruledsurfacewithlightlikerulingfor a
nullcurvewith Cartan frame. Bulletin of
theKorean Mathematical Society, 49(3),
635-645.
- Blaschke, W., 1945.
DifferentialGeometrieandGeometrischkeGr
undlagenvenEinsteinsRelativitasttheorie.D
over, New York.
- Bottema, O. andRoth, B., 1979. TheoreticalKinematics.
North-HollandPubl. Co., Amsterdam, 558.
- Dillen, F. andSodsiri, W., 2005. Ruledsurfaces of
Weingartentype in Minkowski 3-
space.Journal of Geometry, 83, 10-21.
- Ekici, C., Ünlütürk, Y., Dede, M. andRyuh, B.S., 2008. On
motion of robot endeffectorusingthecurvaturetheory
of
timelikeruledsurfaceswithtimelikeruling.M
athematical Problems in Engineering,
2008,Article ID 362783.
- Guggenheimer, H.W., 1956.
DifferentialGeometry.McGraw-Hill, New
York, 378.
- Hacısalihoğlu, H.H., 1972. On thepitch of a
closedruledsurface.Mechanismand
Machine Theory, 7, 291-305.
- Hacısalihoğlu, H.H., 1983. Hareket Geometrisi ve
Kuaterniyonlar Teorisi.Gazi Universitesi
Fen-Edebiyat Fakultesi, Ankara, 338.
- O’Neill, B., 1983. Semi-RiemannianGeometrywith
Applications toRelativity.AcademicPress,
London, 468.
- Önder, M. and Uğurlu, H.H., 2013. Dual Darbouxframe of
a
timelikeruledsurfaceandDarbouxapproacht
oMannheimoffsets of
timelikeruledsurfaces.Proceeding of
theNational Academy of Sciences,
IndiaSection A: PhysicalSciences, 83(2), 163-
169.
- Önder, M. and Uğurlu, H.H., 2015. Dual Darbouxframe of
a
spacelikeruledsurfaceandDarbouxapproach
toMannheimoffsets of
spacelikeruledsurfaces. Natural
ScienceandDiscovery, 1(1), 29-41.
- Ratcliffe, J.G., 2006. Foundations of
HyperbolicManifolds.Springer, New York,
779.
- Ryuh, B.S., 1989. Robot
trajectoryplanningusingthecurvaturetheory
of ruledsurfaces. Doctoraldissertation,
PurdueUniversity, West Lafayette, Ind, USA.
- Ryuh, B.S. andPennock, G.R., 1988. Accuratemotion of a
robot end-effectorusingthecurvaturetheory
of ruledsurfaces.Journal of Mechanisms,
Transmissions, andAutomation in Design,
110(4), 383-388.
- Ryuh, B.S. andPennock, G.R., 1990.
TrajectoryplanningusingtheFergusoncurve
model andcurvaturetheory of a
ruledsurface.Journal of Mechanical Design,
112, 377-383.
- Schaaf, J.A., 1988. Curvaturetheory of linetrajectories in
spatialkinematics.Doctoraldissertation,
University of California, Davis.
- Study,E., 1903. Geometrie der Dynamen. Leipzig.
Turgut, A., 1995. Spacelikeandtimelikeruledsurfaces in 3-
dimensional
Minkowskispace.Doctoraldissertation,
Ankara University, Ankara.
Uğurlu, H.H. and Çalışkan, A., 1996.
TheStudymappingfordirectedspacelikeandt
imelikelines in Minkowski 3-space 3
1 IR
.Mathematical andComputational
Applications, 1(2), 142-148.
- Veldkamp, G.R., 1976. On theuse of dualnumbers,
vectorsandmatrices in
instantaneousspatialkinematics.Mechanis
mand Machine Theory, 2, 141-156.
Yıl 2018,
Cilt: 18 Sayı: 2, 468 - 476, 31.08.2018
Burak Şahiner
,
Mustafa Kazaz
,
Hasan Hüseyin Uğurlu
Kaynakça
- Ayyıldız, N. andTurhan, T., 2012. A Study on a
ruledsurfacewithlightlikerulingfor a
nullcurvewith Cartan frame. Bulletin of
theKorean Mathematical Society, 49(3),
635-645.
- Blaschke, W., 1945.
DifferentialGeometrieandGeometrischkeGr
undlagenvenEinsteinsRelativitasttheorie.D
over, New York.
- Bottema, O. andRoth, B., 1979. TheoreticalKinematics.
North-HollandPubl. Co., Amsterdam, 558.
- Dillen, F. andSodsiri, W., 2005. Ruledsurfaces of
Weingartentype in Minkowski 3-
space.Journal of Geometry, 83, 10-21.
- Ekici, C., Ünlütürk, Y., Dede, M. andRyuh, B.S., 2008. On
motion of robot endeffectorusingthecurvaturetheory
of
timelikeruledsurfaceswithtimelikeruling.M
athematical Problems in Engineering,
2008,Article ID 362783.
- Guggenheimer, H.W., 1956.
DifferentialGeometry.McGraw-Hill, New
York, 378.
- Hacısalihoğlu, H.H., 1972. On thepitch of a
closedruledsurface.Mechanismand
Machine Theory, 7, 291-305.
- Hacısalihoğlu, H.H., 1983. Hareket Geometrisi ve
Kuaterniyonlar Teorisi.Gazi Universitesi
Fen-Edebiyat Fakultesi, Ankara, 338.
- O’Neill, B., 1983. Semi-RiemannianGeometrywith
Applications toRelativity.AcademicPress,
London, 468.
- Önder, M. and Uğurlu, H.H., 2013. Dual Darbouxframe of
a
timelikeruledsurfaceandDarbouxapproacht
oMannheimoffsets of
timelikeruledsurfaces.Proceeding of
theNational Academy of Sciences,
IndiaSection A: PhysicalSciences, 83(2), 163-
169.
- Önder, M. and Uğurlu, H.H., 2015. Dual Darbouxframe of
a
spacelikeruledsurfaceandDarbouxapproach
toMannheimoffsets of
spacelikeruledsurfaces. Natural
ScienceandDiscovery, 1(1), 29-41.
- Ratcliffe, J.G., 2006. Foundations of
HyperbolicManifolds.Springer, New York,
779.
- Ryuh, B.S., 1989. Robot
trajectoryplanningusingthecurvaturetheory
of ruledsurfaces. Doctoraldissertation,
PurdueUniversity, West Lafayette, Ind, USA.
- Ryuh, B.S. andPennock, G.R., 1988. Accuratemotion of a
robot end-effectorusingthecurvaturetheory
of ruledsurfaces.Journal of Mechanisms,
Transmissions, andAutomation in Design,
110(4), 383-388.
- Ryuh, B.S. andPennock, G.R., 1990.
TrajectoryplanningusingtheFergusoncurve
model andcurvaturetheory of a
ruledsurface.Journal of Mechanical Design,
112, 377-383.
- Schaaf, J.A., 1988. Curvaturetheory of linetrajectories in
spatialkinematics.Doctoraldissertation,
University of California, Davis.
- Study,E., 1903. Geometrie der Dynamen. Leipzig.
Turgut, A., 1995. Spacelikeandtimelikeruledsurfaces in 3-
dimensional
Minkowskispace.Doctoraldissertation,
Ankara University, Ankara.
Uğurlu, H.H. and Çalışkan, A., 1996.
TheStudymappingfordirectedspacelikeandt
imelikelines in Minkowski 3-space 3
1 IR
.Mathematical andComputational
Applications, 1(2), 142-148.
- Veldkamp, G.R., 1976. On theuse of dualnumbers,
vectorsandmatrices in
instantaneousspatialkinematics.Mechanis
mand Machine Theory, 2, 141-156.