The Improving of Affecting Aerodynamic Drag Force To A Vehicle With Rear Deck Spoiler
Yıl 2019,
Cilt: 19 Sayı: 2, 470 - 479, 17.09.2019
Cihan Bayındırlı
,
Mehmet Çelik
Öz
In this study, the drag
force which affecting on a 1/15 scaled minibus model was improved by rear deck
spoiler. The drawing data of the model minibus was created in the Solid Works®
Program and a rear deck spoiler was designed. The spoiler was mounted on rear
deck in 10 mm (L/H=0.065) and 15 mm (L/H=0.1) distances. It was aimed to
decrease of negative pressure area where the back of the minibus by using of
this spoiler. The negative pressure-based drag force which forms a large part
of the total aerodynamic drag coefficients of land vehicles was decreased with
this method. The drag forces which effect on the minibus model was determined
in 5 different free flow velocities and Reynolds numbers in Fluent© program. Aerodynamic
drag coefficient (CD) was decreased average 4.96% and 5.27%
respectively. The flow visualizations of flow structure around model minibus
and pressure distribution on vehicle body were carried out.
Kaynakça
- Apisakkul, K.T., and Kittichaikarn, C. (2005). Numerical analysis of flow over car spoiler, The Ninth Annual National Symposium on Computational Science and Engineering Papers ANSCSE-9, Bangkok, Thailand.
- Bayındırlı, C., Çelik, M.(2018) Bir Minübüs Modeli Etrafındaki Akış Yapısının CFD Yöntemi İle İncelenmesi, IV International Academic Resarch Congress, 30 October- 3 November, Alanya, Turkey.
- Bayındırlı, C. (2019) The experimental and numerical drag minimization of a bus model by passive flow control method. Comptes rendus de l’Academie bulgare des Sciences, 72(3), 383-390.
- Bayındırlı, C. (2019) Drag reduction of a bus model by passive flow canal, International Journal of Energy Applications and Technologies 6(1) [2019] 24-30.
- Cheli, F., Ripamonti, E., Sabbioni, E., and Tomasini, G. (2011). Wind Tunnel Tests on Heavy Road Vehicles: Cross Wind Induced Loads. Journal of Wind Engineering And Industrial Aerodynamics, 99, 1011-1024.
- Çengel, Y.A., and Cimbala, J.M.,( 2008). Akışkanlar Mekaniği Temelleri ve Uygulamaları (çev. Engin. T, Öz. H.R, Küçük. H, ve Çeşmeci. Ş.) Güven Bilimsel Yayınları, 562-599.
- Gurlek, C., Sahin, B., Ozkan, G.M., PIV studies around a bus model, Experimental Thermal and Fluid Science 38, 115–126, 2012.Hassan S.M.R., Islam, T.,Ali, M., Islam, Md. Q.(2014). Numerical Study on Aerodynamic Drag Reduction of Racing Cars, Procedia Engineering 90, 308 – 313.
- Hu, Xu-xia., and Wong, E.T.T. (2011). A Numerical Study On Rear-spoiler Of Passenger Vehicle. World Academy of Science, Engineering and Technology, 57, 636-641.
- İnce, İ.T. (2010). Aerodynamic Analysis of GTD Model Administrative Service Vehicle. PhD Thesis, Gazi Universty Institute of Science, Ankara, 30-66.
- Lokhande, B., Sovani, S., and Khalighi, B. (2003). Transient simulation of the flow field around a generic pickup truck. SAE Technical Paper Series, 01-1313, 1- 19.
- Mohamed , E.A. Radhwi, M.N.; Abdel Gawad A.F. (2015). Computational investigation of aerodynamic characteristics and drag reduction of a bus model, American Journal of Aerospace Engineering; 2(1-1): 64-73.
- Muthuvel, A., Murthi, M.K. Sachin, N.P, Vinay.M.K., Sakthi, S.,Selvakumar, E., 2013. Aerodynamic Exterior Body Design of Bus, International Journal of Scientific & Engineering Research, 4- 7, 2453-2457.
- Perzon, S., Janson, J., and Höglin, L. (1999). On comparisons between CFD methods and wind tunnel tests on a bluff bod. SAE Technical Paper Series, 01-0805, 1-11.Raina, A., Khajuria A.(2018). Flow Control Around a 3D-Bluff Body Using Passive Device, International Journal of Science And Engineering 4 (1): 8-13.
- Sarı, M,F. (2007). Hafif Ticari Taşıtlarda Taşıt Ön Formuna Etkiyen Hava Direncinin Aerodinamik Analizi ve Yakıt Sarfiyatına Etkisi. Yüksek Lisans Tezi, Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir, 28-54.
- Shan H., Jiang, L., Liu, C., Love, M., Maines, B.(2008). Numerical study of passive and active flow separation control over a NACA0012 airfoil, Computers & Fluids, 37: 975–992.
Bir Taşıta Etki Eden Aerodinamik Direnç Kuvvetinin Bagaj Üstü Spoiler İle İyileştirilmesi
Yıl 2019,
Cilt: 19 Sayı: 2, 470 - 479, 17.09.2019
Cihan Bayındırlı
,
Mehmet Çelik
Öz
Bu çalışmada, 1/15 ölçekli bir minibüs modeline etki eden sürükleme
kuvveti spoiler uygulaması ile iyileştirilmiştir. Model minibüse ait çizim
datası Solid Works® Programında oluşturulmuş ve bir bagaj üstü spoileri
geliştirilmiştir. Spoiler minibüs bagajı üstüne 10 mm (L/H=0.065) ve 15 mm
(L/H=0.1) mesafelerinde konumlandırılmıştır.
Bu spoiler kullanımı ile minibüsün arka bölümünde oluşan negatif basınç
alanının azaltılması amaçlanmıştır. Geliştirilen spoiler ile kara taşıtlarının
toplam aerodinamik direnç katsayılarının büyük bir kısmını oluşturan negatif
basınç kaynaklı sürükleme kuvveti azaltılmıştır. Minibüs modeline etki eden
sürükleme kuvvetleri Fluent© programında 5 değişik serbest akış hızı ve
Reynolds sayısında belirlenmiştir. Aerodinamik direnç katsayısında sırası ile
ortalama (CD) % 4.96 ve %5.27 iyileşme sağlanmıştır. Model minibüs
etrafındaki akış yapısı ve taşıt gövdesi üzerindeki basınç dağılımına ait akış
görüntülemeleri yapılmıştır.
Kaynakça
- Apisakkul, K.T., and Kittichaikarn, C. (2005). Numerical analysis of flow over car spoiler, The Ninth Annual National Symposium on Computational Science and Engineering Papers ANSCSE-9, Bangkok, Thailand.
- Bayındırlı, C., Çelik, M.(2018) Bir Minübüs Modeli Etrafındaki Akış Yapısının CFD Yöntemi İle İncelenmesi, IV International Academic Resarch Congress, 30 October- 3 November, Alanya, Turkey.
- Bayındırlı, C. (2019) The experimental and numerical drag minimization of a bus model by passive flow control method. Comptes rendus de l’Academie bulgare des Sciences, 72(3), 383-390.
- Bayındırlı, C. (2019) Drag reduction of a bus model by passive flow canal, International Journal of Energy Applications and Technologies 6(1) [2019] 24-30.
- Cheli, F., Ripamonti, E., Sabbioni, E., and Tomasini, G. (2011). Wind Tunnel Tests on Heavy Road Vehicles: Cross Wind Induced Loads. Journal of Wind Engineering And Industrial Aerodynamics, 99, 1011-1024.
- Çengel, Y.A., and Cimbala, J.M.,( 2008). Akışkanlar Mekaniği Temelleri ve Uygulamaları (çev. Engin. T, Öz. H.R, Küçük. H, ve Çeşmeci. Ş.) Güven Bilimsel Yayınları, 562-599.
- Gurlek, C., Sahin, B., Ozkan, G.M., PIV studies around a bus model, Experimental Thermal and Fluid Science 38, 115–126, 2012.Hassan S.M.R., Islam, T.,Ali, M., Islam, Md. Q.(2014). Numerical Study on Aerodynamic Drag Reduction of Racing Cars, Procedia Engineering 90, 308 – 313.
- Hu, Xu-xia., and Wong, E.T.T. (2011). A Numerical Study On Rear-spoiler Of Passenger Vehicle. World Academy of Science, Engineering and Technology, 57, 636-641.
- İnce, İ.T. (2010). Aerodynamic Analysis of GTD Model Administrative Service Vehicle. PhD Thesis, Gazi Universty Institute of Science, Ankara, 30-66.
- Lokhande, B., Sovani, S., and Khalighi, B. (2003). Transient simulation of the flow field around a generic pickup truck. SAE Technical Paper Series, 01-1313, 1- 19.
- Mohamed , E.A. Radhwi, M.N.; Abdel Gawad A.F. (2015). Computational investigation of aerodynamic characteristics and drag reduction of a bus model, American Journal of Aerospace Engineering; 2(1-1): 64-73.
- Muthuvel, A., Murthi, M.K. Sachin, N.P, Vinay.M.K., Sakthi, S.,Selvakumar, E., 2013. Aerodynamic Exterior Body Design of Bus, International Journal of Scientific & Engineering Research, 4- 7, 2453-2457.
- Perzon, S., Janson, J., and Höglin, L. (1999). On comparisons between CFD methods and wind tunnel tests on a bluff bod. SAE Technical Paper Series, 01-0805, 1-11.Raina, A., Khajuria A.(2018). Flow Control Around a 3D-Bluff Body Using Passive Device, International Journal of Science And Engineering 4 (1): 8-13.
- Sarı, M,F. (2007). Hafif Ticari Taşıtlarda Taşıt Ön Formuna Etkiyen Hava Direncinin Aerodinamik Analizi ve Yakıt Sarfiyatına Etkisi. Yüksek Lisans Tezi, Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir, 28-54.
- Shan H., Jiang, L., Liu, C., Love, M., Maines, B.(2008). Numerical study of passive and active flow separation control over a NACA0012 airfoil, Computers & Fluids, 37: 975–992.