Araştırma Makalesi
BibTex RIS Kaynak Göster

Süperkapasitör Uygulamaları için Nikel/Nikel Köpük Elektrodun İyonik Sıvı İçerisinden Elektrokimyasal Olarak Sentezi

Yıl 2019, Cilt: 19 Sayı: 3, 586 - 594, 31.12.2019
https://doi.org/10.35414/akufemubid.587112

Öz

Nikel temelli elektrot,
enerji depolama malzemeleri için kolin klorür ve üre bazlı iyonik sıvı
içerisinden nikel köpük akım toplayıcı üzerine elektrokimyasal olarak
depolandı. Kaplamaların KOH elektrolitinde nikel köpük üzerindeki
elektrokimyasal davranışı, dönüşümlü voltametri tekniği ile incelendi. İyonik
bir sıvıdan elektrodepolanan elektrotlar, pozitif potansiyelde (0 ile 0.6 V
arasında) redoks reaksiyonuna sahip oldukları için katot elektrotu olarak
kullanılabilir. SEM ile kaplanmamış ve kaplanmış nikel köpüğün yüzey
morfolojisi incelendi. Nikel köpüğün kendisi 2B dökme nikelden daha büyük bir
yüzey alanına sahiptir. Nikelin iyonik sıvıdan elektrodepolanmasında yüksek
yüzey alanına sahip mikropartiküller elde edilmiştir. Bu yüzden nikel kaplı
nikel köpük elektrot ile bazik elektrolit arasındaki iyon ve elektron transfer
hızı artırıldı. Nikel temelli nikel köpük elektrotunun KOH elektroliti
içerisindeki reaksiyon mekanizması, difüzyon kontrollü olarak gerçekleşti.
Bağlayıcı içermeyen nikel köpük üzerindeki nikel bazlı elektrot, 5 mV s-1
tarama hızında 1055 F g-1'lik spesifik kapasitansa sahiptir. İyonik
sıvı içerisinden nikel köpük yüzey üzerine elde edilen nikel temelli
kaplamalar, enerji depolama cihazlarında katot elektrot olarak kullanılabilir.

Teşekkür

YÖK 100/2000 DOKTORA PROGRAMI

Kaynakça

  • Aghazadeh, Mustafa, Amir Rashidi, Mohammad Reza Ganjali, and Mohammad Ghannadi Maragheh. 2016. “Nickel Oxide Nano-Rods/Plates as a High Performance Electrode Materials for Supercapacitors; Electrosynthesis and Evolution of Charge Storage Ability.” Int. J. Electrochem. Sci 11: 11002–15.
  • Algharaibeh, Zaher, Xiaorong Liu, and Peter G Pickup. 2009. “An Asymmetric Anthraquinone-Modified Carbon/Ruthenium Oxide Supercapacitor.” Journal of Power Sources 187(2): 640–43.Arico, Antonino Salvatore et al. 2011. “Nanostructured Materials for Advanced Energy Conversion and Storage Devices.” In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific, 148–59.
  • Boukhalfa, Sofiane, Kara Evanoff, and Gleb Yushin. 2012. “Atomic Layer Deposition of Vanadium Oxide on Carbon Nanotubes for High-Power Supercapacitor Electrodes.” Energy & Environmental Science 5(5): 6872–79.
  • Chu, Steven, and Arun Majumdar. 2012. “Opportunities and Challenges for a Sustainable Energy Future.” nature 488(7411): 294.
  • ÇINAR DEMİR, Kübra. 2018. “Elektrokimyasal Büyütme Tekniğiyle Büyütülen Geçirgen NiO Ince Filmlerin Hazırlanması ve Karakterizasyonu.” Pamukkale University Journal of Engineering Sciences 24(7).
  • Dubal, Deepak P., Girish S. Gund, Chandrakant D. Lokhande, and Rudolf Holze. 2013. “CuO Cauliflowers for Supercapacitor Application: Novel Potentiodynamic Deposition.” Materials Research Bulletin 48(2): 923–28. http://dx.doi.org/10.1016/j.materresbull.2012.11.081.
  • Greiner, Mark T et al. 2012. “Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies.” Advanced Functional Materials 22(21): 4557–68.
  • Hu, Chi-Chang, Yao-Huang Huang, and Kwang-Huei Chang. 2002. “Annealing Effects on the Physicochemical Characteristics of Hydrous Ruthenium and Ruthenium–Iridium Oxides for Electrochemical Supercapacitors.” Journal of Power Sources 108(1–2): 117–27.
  • Kandalkar, Sunil G, J L Gunjakar, and C D Lokhande. 2008. “Preparation of Cobalt Oxide Thin Films and Its Use in Supercapacitor Application.” Applied Surface Science 254(17): 5540–44.
  • Kar, Mega, Oscar Tutusaus, Douglas R MacFarlane, and Rana Mohtadi. 2019. “Novel and Versatile Room Temperature Ionic Liquids for Energy Storage.” Energy & Environmental Science.
  • Lu, Qi et al. 2011. “Supercapacitor Electrodes with High‐energy and Power Densities Prepared from Monolithic NiO/Ni Nanocomposites.” Angewandte Chemie International Edition 50(30): 6847–50.
  • Lu, Wen, Liangti Qu, Kent Henry, and Liming Dai. 2009. “High Performance Electrochemical Capacitors from Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes.” Journal of Power Sources 189(2): 1270–77.
  • Mendoza-Sánchez, Beatriz et al. 2013. “An Investigation of Nanostructured Thin Film α-MoO3 Based Supercapacitor Electrodes in an Aqueous Electrolyte.” Electrochimica Acta 91: 253–60.
  • Plieth, Walfried. 2008. Electrochemistry for Materials Science. Elsevier.
  • Pusawale, S N, P R Deshmukh, and C D Lokhande. 2011. “Chemical Synthesis of Nanocrystalline SnO2 Thin Films for Supercapacitor Application.” Applied Surface Science 257(22): 9498–9502.
  • Ribeiro, Paulo F et al. 2001. “Energy Storage Systems for Advanced Power Applications.” Proceedings of the IEEE 89(12): 1744–56.
  • Sharma, R K, A C Rastogi, and S B Desu. 2008. “Manganese Oxide Embedded Polypyrrole Nanocomposites for Electrochemical Supercapacitor.” Electrochimica Acta 53(26): 7690–95.Simon, Patrice, and Yury Gogotsi. 2010. “Materials for Electrochemical Capacitors.” In Nanoscience And Technology: A Collection of Reviews from Nature Journals, World Scientific, 320–29.
  • Smith, Emma L, Andrew P Abbott, and Karl S Ryder. 2014. “Deep Eutectic Solvents (DESs) and Their Applications.” Chemical reviews 114(21): 11060–82.
  • Wang, Da-Wei et al. 2009. “Fabrication of Graphene/Polyaniline Composite Paper via in Situ Anodic Electropolymerization for High-Performance Flexible Electrode.” ACS nano 3(7): 1745–52.
  • Wang, Guoping, Lei Zhang, and Jiujun Zhang. 2012. “A Review of Electrode Materials for Electrochemical Supercapacitors.” Chemical Society Reviews 41(2): 797–828.
  • Wang, Hailiang et al. 2011. “Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability.” Nano letters 11(7): 2644–47.
  • Winter, Martin, and Ralph J Brodd. 2004. “What Are Batteries, Fuel Cells, and Supercapacitors?”
  • Wu, Huali et al. 2019. “CNT-Assembled Dodecahedra Core@ Nickel Hydroxide Nanosheet Shell Enabled Sulfur Cathode for High-Performance Lithium-Sulfur Batteries.” Nano Energy 55: 82–92.
  • Xiong, Xunhui et al. 2015. “Three-Dimensional Ultrathin Ni(OH)2 Nanosheets Grown on Nickel Foam for High-Performance Supercapacitors.” Nano Energy 11: 154–61.
  • Yadav, Abhijit A, and U J Chavan. 2018. “Electrochemical Supercapacitive Performance of Spray-Deposited NiO Electrodes.” Journal of Electronic Materials 47(7): 3770–78.
  • Yu, Zenan, Laurene Tetard, Lei Zhai, and Jayan Thomas. 2015. “Supercapacitor Electrode Materials: Nanostructures from 0 to 3 Dimensions.” Energy & Environmental Science 8(3): 702–30.
  • Zhang, Yong et al. 2009. “Progress of Electrochemical Capacitor Electrode Materials : A Review.” International Journal of Hydrogen Energy 34(11): 4889–99.
  • Zhi, Mingjia et al. 2013. “Nanostructured Carbon–Metal Oxide Composite Electrodes for Supercapacitors: A Review.” Nanoscale 5(1): 72–88.
Yıl 2019, Cilt: 19 Sayı: 3, 586 - 594, 31.12.2019
https://doi.org/10.35414/akufemubid.587112

Öz

Kaynakça

  • Aghazadeh, Mustafa, Amir Rashidi, Mohammad Reza Ganjali, and Mohammad Ghannadi Maragheh. 2016. “Nickel Oxide Nano-Rods/Plates as a High Performance Electrode Materials for Supercapacitors; Electrosynthesis and Evolution of Charge Storage Ability.” Int. J. Electrochem. Sci 11: 11002–15.
  • Algharaibeh, Zaher, Xiaorong Liu, and Peter G Pickup. 2009. “An Asymmetric Anthraquinone-Modified Carbon/Ruthenium Oxide Supercapacitor.” Journal of Power Sources 187(2): 640–43.Arico, Antonino Salvatore et al. 2011. “Nanostructured Materials for Advanced Energy Conversion and Storage Devices.” In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific, 148–59.
  • Boukhalfa, Sofiane, Kara Evanoff, and Gleb Yushin. 2012. “Atomic Layer Deposition of Vanadium Oxide on Carbon Nanotubes for High-Power Supercapacitor Electrodes.” Energy & Environmental Science 5(5): 6872–79.
  • Chu, Steven, and Arun Majumdar. 2012. “Opportunities and Challenges for a Sustainable Energy Future.” nature 488(7411): 294.
  • ÇINAR DEMİR, Kübra. 2018. “Elektrokimyasal Büyütme Tekniğiyle Büyütülen Geçirgen NiO Ince Filmlerin Hazırlanması ve Karakterizasyonu.” Pamukkale University Journal of Engineering Sciences 24(7).
  • Dubal, Deepak P., Girish S. Gund, Chandrakant D. Lokhande, and Rudolf Holze. 2013. “CuO Cauliflowers for Supercapacitor Application: Novel Potentiodynamic Deposition.” Materials Research Bulletin 48(2): 923–28. http://dx.doi.org/10.1016/j.materresbull.2012.11.081.
  • Greiner, Mark T et al. 2012. “Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies.” Advanced Functional Materials 22(21): 4557–68.
  • Hu, Chi-Chang, Yao-Huang Huang, and Kwang-Huei Chang. 2002. “Annealing Effects on the Physicochemical Characteristics of Hydrous Ruthenium and Ruthenium–Iridium Oxides for Electrochemical Supercapacitors.” Journal of Power Sources 108(1–2): 117–27.
  • Kandalkar, Sunil G, J L Gunjakar, and C D Lokhande. 2008. “Preparation of Cobalt Oxide Thin Films and Its Use in Supercapacitor Application.” Applied Surface Science 254(17): 5540–44.
  • Kar, Mega, Oscar Tutusaus, Douglas R MacFarlane, and Rana Mohtadi. 2019. “Novel and Versatile Room Temperature Ionic Liquids for Energy Storage.” Energy & Environmental Science.
  • Lu, Qi et al. 2011. “Supercapacitor Electrodes with High‐energy and Power Densities Prepared from Monolithic NiO/Ni Nanocomposites.” Angewandte Chemie International Edition 50(30): 6847–50.
  • Lu, Wen, Liangti Qu, Kent Henry, and Liming Dai. 2009. “High Performance Electrochemical Capacitors from Aligned Carbon Nanotube Electrodes and Ionic Liquid Electrolytes.” Journal of Power Sources 189(2): 1270–77.
  • Mendoza-Sánchez, Beatriz et al. 2013. “An Investigation of Nanostructured Thin Film α-MoO3 Based Supercapacitor Electrodes in an Aqueous Electrolyte.” Electrochimica Acta 91: 253–60.
  • Plieth, Walfried. 2008. Electrochemistry for Materials Science. Elsevier.
  • Pusawale, S N, P R Deshmukh, and C D Lokhande. 2011. “Chemical Synthesis of Nanocrystalline SnO2 Thin Films for Supercapacitor Application.” Applied Surface Science 257(22): 9498–9502.
  • Ribeiro, Paulo F et al. 2001. “Energy Storage Systems for Advanced Power Applications.” Proceedings of the IEEE 89(12): 1744–56.
  • Sharma, R K, A C Rastogi, and S B Desu. 2008. “Manganese Oxide Embedded Polypyrrole Nanocomposites for Electrochemical Supercapacitor.” Electrochimica Acta 53(26): 7690–95.Simon, Patrice, and Yury Gogotsi. 2010. “Materials for Electrochemical Capacitors.” In Nanoscience And Technology: A Collection of Reviews from Nature Journals, World Scientific, 320–29.
  • Smith, Emma L, Andrew P Abbott, and Karl S Ryder. 2014. “Deep Eutectic Solvents (DESs) and Their Applications.” Chemical reviews 114(21): 11060–82.
  • Wang, Da-Wei et al. 2009. “Fabrication of Graphene/Polyaniline Composite Paper via in Situ Anodic Electropolymerization for High-Performance Flexible Electrode.” ACS nano 3(7): 1745–52.
  • Wang, Guoping, Lei Zhang, and Jiujun Zhang. 2012. “A Review of Electrode Materials for Electrochemical Supercapacitors.” Chemical Society Reviews 41(2): 797–828.
  • Wang, Hailiang et al. 2011. “Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability.” Nano letters 11(7): 2644–47.
  • Winter, Martin, and Ralph J Brodd. 2004. “What Are Batteries, Fuel Cells, and Supercapacitors?”
  • Wu, Huali et al. 2019. “CNT-Assembled Dodecahedra Core@ Nickel Hydroxide Nanosheet Shell Enabled Sulfur Cathode for High-Performance Lithium-Sulfur Batteries.” Nano Energy 55: 82–92.
  • Xiong, Xunhui et al. 2015. “Three-Dimensional Ultrathin Ni(OH)2 Nanosheets Grown on Nickel Foam for High-Performance Supercapacitors.” Nano Energy 11: 154–61.
  • Yadav, Abhijit A, and U J Chavan. 2018. “Electrochemical Supercapacitive Performance of Spray-Deposited NiO Electrodes.” Journal of Electronic Materials 47(7): 3770–78.
  • Yu, Zenan, Laurene Tetard, Lei Zhai, and Jayan Thomas. 2015. “Supercapacitor Electrode Materials: Nanostructures from 0 to 3 Dimensions.” Energy & Environmental Science 8(3): 702–30.
  • Zhang, Yong et al. 2009. “Progress of Electrochemical Capacitor Electrode Materials : A Review.” International Journal of Hydrogen Energy 34(11): 4889–99.
  • Zhi, Mingjia et al. 2013. “Nanostructured Carbon–Metal Oxide Composite Electrodes for Supercapacitors: A Review.” Nanoscale 5(1): 72–88.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Naime Özdemir 0000-0003-4744-1316

Perihan Yılmaz Erdoğan 0000-0002-1375-603X

Huseyin Zengin 0000-0002-5540-725X

Abdulcabbar Yavuz 0000-0002-7216-0586

Yayımlanma Tarihi 31 Aralık 2019
Gönderilme Tarihi 4 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 19 Sayı: 3

Kaynak Göster

APA Özdemir, N., Yılmaz Erdoğan, P., Zengin, H., Yavuz, A. (2019). Süperkapasitör Uygulamaları için Nikel/Nikel Köpük Elektrodun İyonik Sıvı İçerisinden Elektrokimyasal Olarak Sentezi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19(3), 586-594. https://doi.org/10.35414/akufemubid.587112
AMA Özdemir N, Yılmaz Erdoğan P, Zengin H, Yavuz A. Süperkapasitör Uygulamaları için Nikel/Nikel Köpük Elektrodun İyonik Sıvı İçerisinden Elektrokimyasal Olarak Sentezi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Aralık 2019;19(3):586-594. doi:10.35414/akufemubid.587112
Chicago Özdemir, Naime, Perihan Yılmaz Erdoğan, Huseyin Zengin, ve Abdulcabbar Yavuz. “Süperkapasitör Uygulamaları için Nikel/Nikel Köpük Elektrodun İyonik Sıvı İçerisinden Elektrokimyasal Olarak Sentezi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19, sy. 3 (Aralık 2019): 586-94. https://doi.org/10.35414/akufemubid.587112.
EndNote Özdemir N, Yılmaz Erdoğan P, Zengin H, Yavuz A (01 Aralık 2019) Süperkapasitör Uygulamaları için Nikel/Nikel Köpük Elektrodun İyonik Sıvı İçerisinden Elektrokimyasal Olarak Sentezi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19 3 586–594.
IEEE N. Özdemir, P. Yılmaz Erdoğan, H. Zengin, ve A. Yavuz, “Süperkapasitör Uygulamaları için Nikel/Nikel Köpük Elektrodun İyonik Sıvı İçerisinden Elektrokimyasal Olarak Sentezi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 19, sy. 3, ss. 586–594, 2019, doi: 10.35414/akufemubid.587112.
ISNAD Özdemir, Naime vd. “Süperkapasitör Uygulamaları için Nikel/Nikel Köpük Elektrodun İyonik Sıvı İçerisinden Elektrokimyasal Olarak Sentezi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 19/3 (Aralık 2019), 586-594. https://doi.org/10.35414/akufemubid.587112.
JAMA Özdemir N, Yılmaz Erdoğan P, Zengin H, Yavuz A. Süperkapasitör Uygulamaları için Nikel/Nikel Köpük Elektrodun İyonik Sıvı İçerisinden Elektrokimyasal Olarak Sentezi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19:586–594.
MLA Özdemir, Naime vd. “Süperkapasitör Uygulamaları için Nikel/Nikel Köpük Elektrodun İyonik Sıvı İçerisinden Elektrokimyasal Olarak Sentezi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 19, sy. 3, 2019, ss. 586-94, doi:10.35414/akufemubid.587112.
Vancouver Özdemir N, Yılmaz Erdoğan P, Zengin H, Yavuz A. Süperkapasitör Uygulamaları için Nikel/Nikel Köpük Elektrodun İyonik Sıvı İçerisinden Elektrokimyasal Olarak Sentezi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2019;19(3):586-94.