The Effect of Initial Compacting Pressure on the Production of Ti3Al with Low Porosity
Yıl 2021,
Cilt: 21 Sayı: 3, 710 - 717, 30.06.2021
Neşe Öztürk Körpe
,
Muhammed Karaş
,
Gökçe Kılıç
Öz
Reaction synthesis, or combustion synthesis is a production technique in which the thermal activation energy required for the formation of a compound is sustained by exothermic reaction heat released in the reaction. Ti-Al alloys are promising materials for aircraft industry, and they could be produced by self-propagating high-temperature combustion synthesis. The purpose of the present study was to research the effect of high initial compacting pressures (420 MPa, 630 MPa and 850 MPa) on the porosity of Ti3Al which produced by volume combustion synthesis. Microstructure examinations were carried out with optical microscope (OM) and scanning electron microscope (SEM). For phase analyses, X-ray diffraction device(XRD) was used. A considerable decrease in porosity was obtained because of the increase in the initial compacting pressure.
Kaynakça
- Adeli, M., Seyedein, S. H., Aboutalebi, M. R., Kobashi, M., Kanetake, N., 2010. A study on the combustion synthesis of titanium aluminite in the self-propagating mode, Journal of alloys and compounds, 497(1-2), 100-104.
- Dunand, D. C., 1995. Reactive synthesis of aluminite intermetallics, Material and Manufacturing Process, 10(3), 373-403.
- Han, X. J., Chen, M., Guo, Z. Y., 2005. A Molecular Dynamics Study for the Thermo-physical Properties of Liquid Ti–Al Alloys. International journal of thermophysics, 26(3), 869-880.
- Holt, J.B., Dunmead, S. D., 1991. Self-heating synthesis of materials. Annual review of materials science, 21(1), 305-334.
- Hugh, B., 1992. ASM Handbook-Volume 3: Alloy phase diagrams. ASM International, Materials Park, Ohio.
- Inoue, H., Sato, S., Nishi, T., Waseda, Y., 2004. Heat capacity measurements of Ti-Al intermetallic compounds by heat-flux type differential scanning calorimetry with a triple-cell system. High Temperature Materials and Processes, 23(5-6), 305-312.
- Jokisaari, J. R., Bhaduri, S., Bhaduri, S. B., 2005. Microwave activated combustion synthesis of titanium aluminides. Materials Science and Engineering: A, 394(1-2), 385-392.
- Lee, H. G., 1999. Chemical thermodynamics for metals and materials.
- Liu, C. T., Stiegher, J.O., Froes F.H., 1990. “Ordered intermetallics” in: ASM Handbook-Volume 2, 10th ed., ASM International, ISBN: 0-87170-378-5, 913-942.
- Merzhanov, A. G., 1975. Combustion processes in chemical technology and metallurgy. Chernogolovka.
- Merzhanov, A. G., 1996. Combustion processes that synthesize materials. Journal of materials processing technology, 56(1-4), 222-241.
- Moore, J. J., Feng, H. J., 1995. Combustion synthesis of advanced materials: Part I. Reaction parameters, Progress in materials science, 39(4-5), 243-273.
- Moore, J. J., 1995. Combustion synthesis of advanced materials. 2. Classification, applications and modeling, Progress in materials science, 39(4-5), 275-316.
- Murray, J. L., 1987. Aluminum-Titanium Phase Diagram, in Metals Handbook Desk Edition [ASM Handbooks Online].
- Rogachev, A. S., Mukasyan, A. S., 2014. Combustion for material synthesis. CRC press.
- Varma, A., Mukasyan, A.S., 2002. Combustion synthesis of intermetallic compounds, Self-propagating high-temperature synthesis material. New York: Taylor & Francis, 1-34.
Başlangıç Presleme Basıncının Düşük Gözenekli Ti3Al’nin Üretimine Etkisi
Yıl 2021,
Cilt: 21 Sayı: 3, 710 - 717, 30.06.2021
Neşe Öztürk Körpe
,
Muhammed Karaş
,
Gökçe Kılıç
Öz
Reaksiyon sentezi veya yanma sentezi, bir bileşiğin oluşumu için gerekli termal aktivasyon enerjisinin reaksiyonda açığa çıkan ekzotermik reaksiyon ısısı ile sürdürüldüğü bir üretim tekniğidir. Ti-Al alaşımları uçak endüstrisi için gelecek vaat eden malzemelerdir ve kendiliğinden ilerleyen yüksek sıcaklık yanma sentezi ile üretilebilirler. Bu çalışmanın amacı, yüksek başlangıç presleme basınçlarının (420 MPa, 630 MPa ve 850 MPa) hacimsel yanma sentezi ile üretilen Ti3Al bileşiğinin gözenekliliği üzerindeki etkisinin incelenmesidir. Mikro yapı incelemeleri optik mikroskop (OM) ve taramalı elektron mikroskobu (SEM) ile yapılmıştır. Faz analizleri için ise X-ışınları kırınım cihazı (XRD) kullanılmıştır. Başlangıç presleme basıncındaki artışa bağlı olarak gözeneklilikte önemli bir azalma olduğu sonucu elde edilmiştir.
Kaynakça
- Adeli, M., Seyedein, S. H., Aboutalebi, M. R., Kobashi, M., Kanetake, N., 2010. A study on the combustion synthesis of titanium aluminite in the self-propagating mode, Journal of alloys and compounds, 497(1-2), 100-104.
- Dunand, D. C., 1995. Reactive synthesis of aluminite intermetallics, Material and Manufacturing Process, 10(3), 373-403.
- Han, X. J., Chen, M., Guo, Z. Y., 2005. A Molecular Dynamics Study for the Thermo-physical Properties of Liquid Ti–Al Alloys. International journal of thermophysics, 26(3), 869-880.
- Holt, J.B., Dunmead, S. D., 1991. Self-heating synthesis of materials. Annual review of materials science, 21(1), 305-334.
- Hugh, B., 1992. ASM Handbook-Volume 3: Alloy phase diagrams. ASM International, Materials Park, Ohio.
- Inoue, H., Sato, S., Nishi, T., Waseda, Y., 2004. Heat capacity measurements of Ti-Al intermetallic compounds by heat-flux type differential scanning calorimetry with a triple-cell system. High Temperature Materials and Processes, 23(5-6), 305-312.
- Jokisaari, J. R., Bhaduri, S., Bhaduri, S. B., 2005. Microwave activated combustion synthesis of titanium aluminides. Materials Science and Engineering: A, 394(1-2), 385-392.
- Lee, H. G., 1999. Chemical thermodynamics for metals and materials.
- Liu, C. T., Stiegher, J.O., Froes F.H., 1990. “Ordered intermetallics” in: ASM Handbook-Volume 2, 10th ed., ASM International, ISBN: 0-87170-378-5, 913-942.
- Merzhanov, A. G., 1975. Combustion processes in chemical technology and metallurgy. Chernogolovka.
- Merzhanov, A. G., 1996. Combustion processes that synthesize materials. Journal of materials processing technology, 56(1-4), 222-241.
- Moore, J. J., Feng, H. J., 1995. Combustion synthesis of advanced materials: Part I. Reaction parameters, Progress in materials science, 39(4-5), 243-273.
- Moore, J. J., 1995. Combustion synthesis of advanced materials. 2. Classification, applications and modeling, Progress in materials science, 39(4-5), 275-316.
- Murray, J. L., 1987. Aluminum-Titanium Phase Diagram, in Metals Handbook Desk Edition [ASM Handbooks Online].
- Rogachev, A. S., Mukasyan, A. S., 2014. Combustion for material synthesis. CRC press.
- Varma, A., Mukasyan, A.S., 2002. Combustion synthesis of intermetallic compounds, Self-propagating high-temperature synthesis material. New York: Taylor & Francis, 1-34.