Araştırma Makalesi
BibTex RIS Kaynak Göster

Falcon Konsantratör ile Ermenek Linyitinden Kül ve Kükürdün Uzaklaştırılması

Yıl 2021, Cilt: 21 Sayı: 4, 927 - 933, 31.08.2021
https://doi.org/10.35414/akufemubid.871475

Öz

Bir kömürün kalitesini belirleyen en önemli içeriği kül ve kükürttür. Bu bileşenler genellikle kömür içerisinde, ince taneler halinde dissemine şekilde bulunmaktadır. Dolayısıyla kömürlerden kül ve kükürdün uzaklaştırılması oldukça zordur. Falcon konsantratör, özellikle ultra ince kömürlerin yüksek merkezkaç kuvvetleri ile zenginleştirildiği yeni teknolojilerden biridir. Bu çalışmada, Konya Ermenek linyitinin Falcon Konsantratörü ile zenginleştirilme olanakları incelenmiştir. 1,5 l/dk besleme hızı sabit tutularak, -75+38 µm tane boyutlu linyite, farklı katı oranları (%20, %30, %40 ve %50) ve farklı merkezkeç kuvvetlerinde (20G, 100G, 176G ve 300G) testler uygulanmıştır. En iyi sonuçlar, %40-50 katı oranı ve 100G’den büyük merkezkaç kuvvetlerde elde edilmiştir.

Kaynakça

  • Acar Bozkurt, P., Koç, S., Mısırlıoğlu, Z., and Canel, M., 2016. Effect of Demineralization Process on the CO2 Gasification of Lignite. Süleyman Demirel University Journal of Natural and Applied Sciences, 21(1), 201-207.
  • Altıner, M., Ürünveren, A., ve Ural, S., 2016. Kömürlerin petrografik özellikleri ile dayanımları arasındaki ilişkinin araştırılması. 1st International Mediterranean Science and Engineering Congress (s: 3249-3254). Adana.
  • Balat, M., 2007. Status of fossil energy resources: a global perspective. Energy Sources, Part B, 2, 31-47.
  • Balat, M., 2008. Energy consumption and economic growth in Turkey during the past two decades. Energy Policy, 36, 118-127.
  • Boylu, F., 2013. Modeling of free and hindered settling conditions for fine coal beneficiation through a Falcon concentrator. International Journal of Coal Preparation and Utilization, 33, 277-289.
  • Boylu, F., 2014. Autogenous medium fine coal washing through Falcon concentrator. Separation Science and Technology, 49, 627-633.
  • Can, M.F., Özgen, S. and Sabah, E., 2010. A study to recover coal from Turkish lignite fine coal tailings: comparision of Falcon concentrator and multi gravity separator. International Pittsburgh Coal Conference (pp:1897-1912). İstanbul.
  • Canel, M., Mısırlıoğlu, Z., Canel, E., and Acar Bozkurt, P., 2016. Distribution and comparing of volatile products during slow pyrolysis and hydropyrolysis of Turkish lignites. Fuel, 186, 504-517.
  • Demirbaş, M.F., 2007. Progress of fossil fuel science. Energy Sources, Part B, 2, 243-257.
  • Dingcheng, L., Qiang, X., Guangsheng, L., Junya, C. and Jun, Z., 2018. Influence of heating rate on reactivity and surface chemistry of chars derived from pyrolysis of two Chinese low rank coals. International Journal of Mining Science and Technology, 28, 613-619.
  • Falconer, A., 2003. Gravity separation: Old technique/New methods. Physical Separation in Science and Engineering, 12, 31-48.
  • Feng, J., Li, W-Y. and Xie, K-C., 2006. Thermal decomposition behaviors of lignite by pyrolysis-FTIR. Energy Sources, Part A, 28, 167-175.
  • Honaker, R.Q., Singh, N., and Govindarajan, B., 2000. Application of dense-medium in an enhanced gravity seperator for fine coal cleaning. Minerals Engineering, 13, 415-427.
  • İbrahim, S.S., Anadoly, B.E., Farahat, M.M., Selim, A.Q., and Menshawy, A.H., 2014. Separation of pyritic sulfur from Egyptian coal using Falcon concentrator. Particulate Science and Technology 32, 588-594.
  • Kemal, M. ve Arslan, V., 2010. Kömür Teknolojisi. İzmir, Türkiye: Dokuz Eylül Üniversitesi Mühendislik Fakültesi Yayınları, No.33, 45-65.
  • Kiraz, A., Sinağ, A., Tekeş, T., Mısırlıoğlu, Z., and Canel, M., 2004. Effect of pre-swelling on extractability and solvent swelling of Ermenek lignite (Turkey). Energy Sources, 26, 431-439.
  • Kroll-Rabotin, J-S., Bourgeois, F. and Climent, E., 2013. Physical analysis and modeling of the Falcon concentrator for beneficiation of ultrafine particles. International Journal of Mineral Processing, 121, 39–50.
  • Li, X., Li, C., Qi, T., Zhou, Q., Liu, G., and Peng, Z., 2013. Reaction behavior of pyrite during Bayer digestion at high temperature. The Chinese Journal of Nonferrous Metals, 23(3), 829-835.
  • Lievens, C., Ci, D., Bai, Y., Ma, L., Zhang, R., Chen, Y.J., Gai, Q., Long, Y. and Guo, X., 2013. A study of slow pyrolysis of one low rank coal via pyrolysis-GC/MS. Fuel Processing Technology, 116, 85-93.
  • Luterell, G.H., Honaker, R.Q. and Phillips, D.L., 1995. Enhanced gravity separators: new alternatives for fine coal cleaning. Proceedings, 12th International Coal Preparation Conference (pp.281-287). Kentucky.
  • Meng, F., Yu, J., Tahmasebi, A., Han, Y., Zhao, H., Lucas, J. and Wall, T., 2014. Characteristics of chars from low-temperature pyrolysis of lignite. Energy and Fuels, 28, 275-284.
  • Michaelian, K.H. and Friesen, W.I., 1990. Photoacoustic FT-i.r. spectra of separated Western Canadian coal macerals: Analysis of the CH stretching region by curve-fitting and deconvolution. Fuel, 69, 1271-1275.
  • Oruç, F., Özgen, S. and Sabah, E., 2010. An enhanced-gravity method to recover ultra-fine coal from tailings: Falcon concentrator. Fuel, 89, 2433-2437.
  • Özbayoğlu, G., Depci, T. and Ataman, N., 2009. Effect of microwave radiation on coal flotation. Energy Sources, Part A, 31, 492-499.
  • Qi, Y., Hoadley, A.F.A., Chaffee, A.L. and Garnier, G., 2011. Characterisation of Lignite as an Industrial Adsorbent. Fuel, 90, 1567-1574.
  • Schobert, H.H. and Song, C., 2002. Chemicals and materials from coal in the 21st century. Fuel, 81, 15-32.
  • Şensöğüt, C., Yıldırım, Ö.S., Çınar, İ., ve Özdeniz, A.H., 2002. Bazı yerli kömürlerin termogravimetrik karakteristiklerine istatistiksel yaklaşım. Türkiye 13. Kömür Kongresi (s: 145-150). Zonguldak.
  • Tao, Y., Luo, Z., Zhao, Y. and Tao, D., 2006. Experimental research on desulfurization of fine coal using an enhanced centrifugual gravity separator. Journal of China University of Mining and Technology, 16, 399-403.
  • Tongur, S., and Aydın, M.E., 2013. Adsorption kinetics of chloroform from aqueous solutions onto activated lignite. Clean Soil Air Water, 41(1), 32-36.
  • Tongur, S., Yorulmaz, F., Sevimli, M.F., and Kucukcongar, S., 2014. Investigation of adsorption capacity of acid yellow dye onto activated Ermenek (Karaman-Turkey) region lignite. Digital Proceeding Of The ICOEST’2014 (pp: 859-865). Antalya.
  • Tozsin, G., Acar, C. and Sivrikaya, O., 2018. Evaluation of a Turkish lignite coal cleaning by conventional and enhanced gravity separation techniques. International Journal of Coal Preparation and Utilization, 38(3), 135-148.
  • Wang, S.H. and Griffiths, P.R., 1985. Resolution enhancement of diffuse reflectance i.r. spectra of coals by Fourier self-deconvolution: 1. C-H stretching and bending modes. Fuel, 64, 229-236.
  • Xia, W., Xie, G. and Peng, Y., 2015. Recent advances in beneficiation for low rank coals. Powder Technology, 277, 206-221.
  • Xian, Y., Tao, Y., and Ma, F., 2021. Study on separation of low-rank coal macerals in enhanced gravity field. International Journal of Coal Preparation and Utilization, 1-15.
  • Yıldız, N., 2014. Cevher Hazırlama ve Zenginleştirme 1.Cilt. Ankara, Türkiye: Ertem Basım, 612-635.
  • Zhang, B., Yang, F., Akbarı, H., Mohanty M.K., Brodzik, P., Latta, P., and Hırschı, J.C., 2011. Evaluation of a new fine coal cleaning circuit consisting of a stack sizer and a Falcon enhanced gravity concentrator. International Journal of Coal Preparation and Utilization, 31, 78-95.
  • Zhang, L., Tao, Y., Yang, L. and Man, Z., 2017. Spatial distribution of fine high-sulfur lean coal in enhanced gravity field. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(22), 2098-2104.
  • Zhu, X., Tao, Y. and Sun, Q., 2017. Separation of flocculated ultrafine coal by enhanced gravity separator. Particulate Science and Technology, 35(4), 393-399.
  • IntKyn.1:www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2016/bp-statistical-review-of-world-energy-2016-full-report.pdf (11.12.2019)

Removal of Ash and Sulfur from Ermenek Lignite with the Falcon Concentrator

Yıl 2021, Cilt: 21 Sayı: 4, 927 - 933, 31.08.2021
https://doi.org/10.35414/akufemubid.871475

Öz

Ash and sulfur are the most important ingredients that determine the quality of coal. These components are generally found in coal in a disseminated form as fine grains. Therefore, it is very difficult to remove ash and sulfur from coals. The Falcon concentrator is one of the new technologies in which ultra-fine coals are enriched with high centrifugal forces. In this study, enrichment possibilities of Konya Ermenek lignite with Falcon Concentrator were investigated. By keeping the velocity of 1.5 L/min constant, -75+38 µm particle size lignite have at different solid ratios (20%, 30%, 40%, and 50%) and at different centrifugal forces (20G, 100G, 176G, and 300G) tests have been applied. The best results were obtained with 40-50% solid rates and centrifugal forces greater than 100G.

Kaynakça

  • Acar Bozkurt, P., Koç, S., Mısırlıoğlu, Z., and Canel, M., 2016. Effect of Demineralization Process on the CO2 Gasification of Lignite. Süleyman Demirel University Journal of Natural and Applied Sciences, 21(1), 201-207.
  • Altıner, M., Ürünveren, A., ve Ural, S., 2016. Kömürlerin petrografik özellikleri ile dayanımları arasındaki ilişkinin araştırılması. 1st International Mediterranean Science and Engineering Congress (s: 3249-3254). Adana.
  • Balat, M., 2007. Status of fossil energy resources: a global perspective. Energy Sources, Part B, 2, 31-47.
  • Balat, M., 2008. Energy consumption and economic growth in Turkey during the past two decades. Energy Policy, 36, 118-127.
  • Boylu, F., 2013. Modeling of free and hindered settling conditions for fine coal beneficiation through a Falcon concentrator. International Journal of Coal Preparation and Utilization, 33, 277-289.
  • Boylu, F., 2014. Autogenous medium fine coal washing through Falcon concentrator. Separation Science and Technology, 49, 627-633.
  • Can, M.F., Özgen, S. and Sabah, E., 2010. A study to recover coal from Turkish lignite fine coal tailings: comparision of Falcon concentrator and multi gravity separator. International Pittsburgh Coal Conference (pp:1897-1912). İstanbul.
  • Canel, M., Mısırlıoğlu, Z., Canel, E., and Acar Bozkurt, P., 2016. Distribution and comparing of volatile products during slow pyrolysis and hydropyrolysis of Turkish lignites. Fuel, 186, 504-517.
  • Demirbaş, M.F., 2007. Progress of fossil fuel science. Energy Sources, Part B, 2, 243-257.
  • Dingcheng, L., Qiang, X., Guangsheng, L., Junya, C. and Jun, Z., 2018. Influence of heating rate on reactivity and surface chemistry of chars derived from pyrolysis of two Chinese low rank coals. International Journal of Mining Science and Technology, 28, 613-619.
  • Falconer, A., 2003. Gravity separation: Old technique/New methods. Physical Separation in Science and Engineering, 12, 31-48.
  • Feng, J., Li, W-Y. and Xie, K-C., 2006. Thermal decomposition behaviors of lignite by pyrolysis-FTIR. Energy Sources, Part A, 28, 167-175.
  • Honaker, R.Q., Singh, N., and Govindarajan, B., 2000. Application of dense-medium in an enhanced gravity seperator for fine coal cleaning. Minerals Engineering, 13, 415-427.
  • İbrahim, S.S., Anadoly, B.E., Farahat, M.M., Selim, A.Q., and Menshawy, A.H., 2014. Separation of pyritic sulfur from Egyptian coal using Falcon concentrator. Particulate Science and Technology 32, 588-594.
  • Kemal, M. ve Arslan, V., 2010. Kömür Teknolojisi. İzmir, Türkiye: Dokuz Eylül Üniversitesi Mühendislik Fakültesi Yayınları, No.33, 45-65.
  • Kiraz, A., Sinağ, A., Tekeş, T., Mısırlıoğlu, Z., and Canel, M., 2004. Effect of pre-swelling on extractability and solvent swelling of Ermenek lignite (Turkey). Energy Sources, 26, 431-439.
  • Kroll-Rabotin, J-S., Bourgeois, F. and Climent, E., 2013. Physical analysis and modeling of the Falcon concentrator for beneficiation of ultrafine particles. International Journal of Mineral Processing, 121, 39–50.
  • Li, X., Li, C., Qi, T., Zhou, Q., Liu, G., and Peng, Z., 2013. Reaction behavior of pyrite during Bayer digestion at high temperature. The Chinese Journal of Nonferrous Metals, 23(3), 829-835.
  • Lievens, C., Ci, D., Bai, Y., Ma, L., Zhang, R., Chen, Y.J., Gai, Q., Long, Y. and Guo, X., 2013. A study of slow pyrolysis of one low rank coal via pyrolysis-GC/MS. Fuel Processing Technology, 116, 85-93.
  • Luterell, G.H., Honaker, R.Q. and Phillips, D.L., 1995. Enhanced gravity separators: new alternatives for fine coal cleaning. Proceedings, 12th International Coal Preparation Conference (pp.281-287). Kentucky.
  • Meng, F., Yu, J., Tahmasebi, A., Han, Y., Zhao, H., Lucas, J. and Wall, T., 2014. Characteristics of chars from low-temperature pyrolysis of lignite. Energy and Fuels, 28, 275-284.
  • Michaelian, K.H. and Friesen, W.I., 1990. Photoacoustic FT-i.r. spectra of separated Western Canadian coal macerals: Analysis of the CH stretching region by curve-fitting and deconvolution. Fuel, 69, 1271-1275.
  • Oruç, F., Özgen, S. and Sabah, E., 2010. An enhanced-gravity method to recover ultra-fine coal from tailings: Falcon concentrator. Fuel, 89, 2433-2437.
  • Özbayoğlu, G., Depci, T. and Ataman, N., 2009. Effect of microwave radiation on coal flotation. Energy Sources, Part A, 31, 492-499.
  • Qi, Y., Hoadley, A.F.A., Chaffee, A.L. and Garnier, G., 2011. Characterisation of Lignite as an Industrial Adsorbent. Fuel, 90, 1567-1574.
  • Schobert, H.H. and Song, C., 2002. Chemicals and materials from coal in the 21st century. Fuel, 81, 15-32.
  • Şensöğüt, C., Yıldırım, Ö.S., Çınar, İ., ve Özdeniz, A.H., 2002. Bazı yerli kömürlerin termogravimetrik karakteristiklerine istatistiksel yaklaşım. Türkiye 13. Kömür Kongresi (s: 145-150). Zonguldak.
  • Tao, Y., Luo, Z., Zhao, Y. and Tao, D., 2006. Experimental research on desulfurization of fine coal using an enhanced centrifugual gravity separator. Journal of China University of Mining and Technology, 16, 399-403.
  • Tongur, S., and Aydın, M.E., 2013. Adsorption kinetics of chloroform from aqueous solutions onto activated lignite. Clean Soil Air Water, 41(1), 32-36.
  • Tongur, S., Yorulmaz, F., Sevimli, M.F., and Kucukcongar, S., 2014. Investigation of adsorption capacity of acid yellow dye onto activated Ermenek (Karaman-Turkey) region lignite. Digital Proceeding Of The ICOEST’2014 (pp: 859-865). Antalya.
  • Tozsin, G., Acar, C. and Sivrikaya, O., 2018. Evaluation of a Turkish lignite coal cleaning by conventional and enhanced gravity separation techniques. International Journal of Coal Preparation and Utilization, 38(3), 135-148.
  • Wang, S.H. and Griffiths, P.R., 1985. Resolution enhancement of diffuse reflectance i.r. spectra of coals by Fourier self-deconvolution: 1. C-H stretching and bending modes. Fuel, 64, 229-236.
  • Xia, W., Xie, G. and Peng, Y., 2015. Recent advances in beneficiation for low rank coals. Powder Technology, 277, 206-221.
  • Xian, Y., Tao, Y., and Ma, F., 2021. Study on separation of low-rank coal macerals in enhanced gravity field. International Journal of Coal Preparation and Utilization, 1-15.
  • Yıldız, N., 2014. Cevher Hazırlama ve Zenginleştirme 1.Cilt. Ankara, Türkiye: Ertem Basım, 612-635.
  • Zhang, B., Yang, F., Akbarı, H., Mohanty M.K., Brodzik, P., Latta, P., and Hırschı, J.C., 2011. Evaluation of a new fine coal cleaning circuit consisting of a stack sizer and a Falcon enhanced gravity concentrator. International Journal of Coal Preparation and Utilization, 31, 78-95.
  • Zhang, L., Tao, Y., Yang, L. and Man, Z., 2017. Spatial distribution of fine high-sulfur lean coal in enhanced gravity field. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(22), 2098-2104.
  • Zhu, X., Tao, Y. and Sun, Q., 2017. Separation of flocculated ultrafine coal by enhanced gravity separator. Particulate Science and Technology, 35(4), 393-399.
  • IntKyn.1:www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2016/bp-statistical-review-of-world-energy-2016-full-report.pdf (11.12.2019)
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Aydan Aksoğan Korkmaz 0000-0002-3309-9719

Yayımlanma Tarihi 31 Ağustos 2021
Gönderilme Tarihi 30 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 21 Sayı: 4

Kaynak Göster

APA Aksoğan Korkmaz, A. (2021). Falcon Konsantratör ile Ermenek Linyitinden Kül ve Kükürdün Uzaklaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(4), 927-933. https://doi.org/10.35414/akufemubid.871475
AMA Aksoğan Korkmaz A. Falcon Konsantratör ile Ermenek Linyitinden Kül ve Kükürdün Uzaklaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ağustos 2021;21(4):927-933. doi:10.35414/akufemubid.871475
Chicago Aksoğan Korkmaz, Aydan. “Falcon Konsantratör Ile Ermenek Linyitinden Kül Ve Kükürdün Uzaklaştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, sy. 4 (Ağustos 2021): 927-33. https://doi.org/10.35414/akufemubid.871475.
EndNote Aksoğan Korkmaz A (01 Ağustos 2021) Falcon Konsantratör ile Ermenek Linyitinden Kül ve Kükürdün Uzaklaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21 4 927–933.
IEEE A. Aksoğan Korkmaz, “Falcon Konsantratör ile Ermenek Linyitinden Kül ve Kükürdün Uzaklaştırılması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 4, ss. 927–933, 2021, doi: 10.35414/akufemubid.871475.
ISNAD Aksoğan Korkmaz, Aydan. “Falcon Konsantratör Ile Ermenek Linyitinden Kül Ve Kükürdün Uzaklaştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21/4 (Ağustos 2021), 927-933. https://doi.org/10.35414/akufemubid.871475.
JAMA Aksoğan Korkmaz A. Falcon Konsantratör ile Ermenek Linyitinden Kül ve Kükürdün Uzaklaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21:927–933.
MLA Aksoğan Korkmaz, Aydan. “Falcon Konsantratör Ile Ermenek Linyitinden Kül Ve Kükürdün Uzaklaştırılması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 21, sy. 4, 2021, ss. 927-33, doi:10.35414/akufemubid.871475.
Vancouver Aksoğan Korkmaz A. Falcon Konsantratör ile Ermenek Linyitinden Kül ve Kükürdün Uzaklaştırılması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2021;21(4):927-33.