Araştırma Makalesi
BibTex RIS Kaynak Göster

Removal of Manganese (II) Ions from Aqueous Solutions with Raw Orange Peel: Equilibrium, Kinetic and Thermodynamic Studies

Yıl 2022, Cilt: 22 Sayı: 1, 45 - 56, 28.02.2022
https://doi.org/10.35414/akufemubid.1032148

Öz

This study describes the evaluation of raw orange peel (HPK) for removal of Mn2+ ions from aqueous solutions. The effects of different variables such as pH, initial metal ion concentration, contact time and temperature were investigated for adsorption efficiency. It was determined that the best starting concentration was 100 mg/L, the adsorption contact time was 100 minutes, and the solution pH was 5.37 as the most suitable working conditions. The surface properties of the orange peel waste were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy and Fourier transform infrared spectroscopy (FT-IR). The results showed that the isotherm data fit the Langmuir isotherm model (compared to the Freundlich, Dubinin-Radushkevich, and Temkin models) corresponding to chemical adsorption and possible irreversibility of the process. The adsorption capacity for Mn2+ was calculated to be 7.6923, 7.3964 and 8.1632 mg/g at 298, 308 and 318 K, respectively. As a result of the adsorption kinetic data, when the kinetics of the Mn2+ metal ion were examined (Pseudo-first-order, False-second-order, Weber-Morris and Elovich kinetic models), it was determined that its adsorption conformed to the pseudo-second-order kinetic model. Thermodynamic studies showed that the adsorption of Mn2+ ion on orange peel is spontaneous and endothermic. HPK has been found to be an effective and alternative material for the uptake of Mn2+ ions from the aqueous medium due to its high removal capacity, availability and low cost.

Kaynakça

  • Abukhadra, M. R., Dardir, F. M., Shaban, M., Ahmed, E. A., & Soliman, M. F. 2018. Superior removal of Co2+, Cu2+ and Zn2+ contaminants from water utilizing spongy Ni/Fe carbonate–fluorapatite; preparation, application and mechanism. Ecotoxicology and environmental safety, 157, 358-368. https://doi.org/10.1016/j.ecoenv.2018.03.085
  • Aguado, J., Arsuaga, J. M., Arencibia, A., Lindo, M., & Gascón, V. 2009. Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of hazardous materials, 163(1), 213-221.
  • Aksu, Z., & İşoğlu, İ. A. 2005. Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochemistry, 40(9), 3031-3044.
  • Altunkaynak, Y., Canpolat, M. & Yavuz, Ö. 2021. Adsorption of cobalt (II) ions from aqueous solution using orange peel waste: equilibrium, kinetic and thermodynamic studies. Journal of the Iranian Chemical Society, https://doi.org/10.1007/s13738-021-02458-8
  • Ates, A. 2014. Role of modification of natural zeolite in removal of manganese from aqueous solutions. Powder Technology, 264, 86-95.
  • Baltrėnaitė-Gedienė, E., Leonavičienė, T., & Baltrėnas, P. 2020. Comparison of CU (II), MN (II) and ZN (II) adsorption on biochar using diagnostic and simulation models. Chemosphere, 245, 125562.
  • De Angelis, G., Medeghini, L., Conte, A. M., & Mignardi, S. 2017. Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. Journal of Cleaner Production, 164, 1497-1506. https://doi.org/10.1016/j.jclepro.2017.07.085
  • De Souza, J. V. T. M., Diniz, K. M., Massocatto, C. L., Tarley, C. R. T., Caetano, J., & Dragunski, D. C. 2012. Removal of Pb (II) from aqueous solution with orange sub-products chemically modified as biosorbent. BioResources, 7(2), 2300-2318.
  • Foo, K. Y., & Hameed, B. H. 2010. Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), 2-10.https://doi.org/10.1016/j.cej.2009.09.013
  • Guilarduci, V. V. D. S., Mesquita, J. P. D., Martelli, P. B., & Gorgulho, H. D. F. 2006. Phenol adsorption on commercial active carbon under alkaline conditions. Química Nova, 29(6), 1226-1232.
  • Guo, X., & Wang, J. 2019. A general kinetic model for adsorption: theoretical analysis and modeling. Journal of Molecular Liquids, 288, 111100.https://doi.org/10.1016/j.molliq.2019.111100
  • Gupta, V. K. 1998. Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent. Industrial & Engineering Chemistry Research, 37(1), 192-202.
  • Ho, Y. S., & McKay, G. 1998. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process safety and environmental protection, 76(4), 332-340. https://doi.org/10.1016/j.biortech.2007.05.070
  • Huang, M., Zhang, Y., Xiang, W., Zhou, T., Wu, X., & Mao, J. 2019. Efficient adsorption of Mn (II) by layered double hydroxides intercalated with diethylenetriaminepentaacetic acid and the mechanistic study. Journal of Environmental Sciences, 85, 56-65.
  • Khobragade, M. U., & Pal, A. 2014. Investigation on the adsorption of Mn (II) on surfactant-modified alumina: Batch and column studies. Journal of Environmental Chemical Engineering, 2(4), 2295-2305.
  • Kim, H., Ko, R. A., Lee, S., & Chon, K. 2020. Removal efficiencies of manganese and iron using pristine and phosphoric acid pre-treated biochars made from banana peels. Water, 12(4), 1173.
  • Li, X., Zhang, D., Sheng, F., & Qing, H. (2018). Adsorption characteristics of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ) by four kinds of immobilized fungi residues. Ecotoxicology and environmental safety, 147, 357-366. https://doi.org/10.1016/j.ecoenv.2017.08.058
  • Lima, E. C., Hosseini-Bandegharaei, A., Moreno-Piraján, J. C., & Anastopoulos, I. 2019. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of molecular liquids, 273, 425-434. https://doi.org/10.1016/j.molliq.2018.10.048
  • Neculita, C. M., & Rosa, E. 2019. A review of the implications and challenges of manganese removal from mine drainage. Chemosphere, 214, 491-510.
  • Nguyen, C., & Do, D. D. 2001. The Dubinin–Radushkevich equation and the underlying microscopic adsorption description. Carbon, 39(9), 1327-1336. https://doi.org/10.1016/S0008-6223(00)00265-7.
  • Ofudje, E. A., Williams, O. D., Asogwa, K. K., & Awotula, A. O. 2013. Assessment of Langmuir, Freundlich and Rubunin-Radushhkevich Adsorption Isotherms in the study of the biosorption of Mn (II) ions from aqueous solution by untreated and acid-treated corn shaft. international journal of scientific and engineering research, 4(7), 1628-1634.
  • Ren, C., Ding, X., Li, W., Wu, H., & Yang, H. 2017. Highly efficient adsorption of heavy metals onto novel magnetic porous composites modified with amino groups. Journal of Chemical & Engineering Data, 62(6), 1865-1875.
  • Samanta, A., Das, S., & Jana, S. 2018. Exploring β-FeOOH nanorods as an efficient adsorbent for arsenic and organic dyes.
  • Taha, A. A., Shreadah, M. A., Ahmed, A. M., & Heiba, H. F. 2016. Multi-component adsorption of Pb (II), Cd (II), and Ni (II) onto Egyptian Na-activated bentonite; equilibrium, kinetics, thermodynamics, and application for seawater desalination. Journal of Environmental Chemical Engineering, 4(1), 1166-1180. https://doi.org/10.1016/j.jece.2016.01.025
  • Tang, W., Gong, J., Wu, L., Li, Y., Zhang, M., & Zeng, X. 2016. DGGE diversity of manganese mine samples and isolation of a Lysinibacillus sp. efficient in removal of high Mn (II) concentrations. Chemosphere, 165, 277-283.
  • Vimala, R., & Das, N. 2009. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study. Journal of hazardous materials, 168(1), 376-382.
  • Wu, F. C., Tseng, R. L., & Juang, R. S. 2009. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical engineering journal, 153(1-3), 1-8.
  • Wu, Y., Fan, Y., Zhang, M., Ming, Z., Yang, S., Arkin, A., & Fang, P. 2016. Functionalized agricultural biomass as a low-cost adsorbent: utilization of rice straw incorporated with amine groups for the adsorption of Cr (VI) and Ni (II) from single and binary systems. Biochemical Engineering Journal, 105, 27-35. https://doi.org/10.1016/j.bej.2015.08.017
  • Yavuz, Ö., Altunkaynak, Y., & Güzel, F. 2003. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water research, 37(4), 948-952.

Ham Portakal Kabuğu ile Sulu Çözeltilerden Mangan (II) İyonlarının Uzaklaştırılması: Denge, Kinetik ve Termodinamik Çalışmalar

Yıl 2022, Cilt: 22 Sayı: 1, 45 - 56, 28.02.2022
https://doi.org/10.35414/akufemubid.1032148

Öz

Bu çalışma, sulu çözeltilerden Mn2+ iyonlarının uzaklaştırılması için ham portakal kabuğunun (HPK) değerlendirilmesini anlatmaktadır. Adsorpsiyon verimi için pH, başlangıç metal iyonu derişimi, temas süresi ve sıcaklık gibi farklı değişkenlerin etkileri araştırıldı. Mn2+ iyonu için, en iyi başlangıç konsantrasyonunun 100 mg/L, adsorpsiyon temas süresinin 100 dakika ve çözelti pH'ının 5.37 olduğu şartların en uygun çalışma koşulları olduğu belirlendi. Portakal kabuğu atığının yüzey özellikleri, taramalı elektron mikroskobu (SEM), enerji dağılımlı spektroskopi ve Fourier dönüşümü kızılötesi spektroskopisi (FT-IR) kullanılarak araştırıldı. Sonuçlar, izoterm verilerinin, kimyasal adsorpsiyona ve işlemin olası tersinmezliğine karşılık gelen Langmuir izoterm modeline (Freundlich, Dubinin- Radushkevich ve Temkin modelleriyle karşılaştırıldığında) uyduğunu gösterdi. Adsorpsiyon kapasitesinin Mn2+ için 298, 308 ve 318 K’de sırasıyla 7.6923, 7.3964 ve 8.1632 mg/g olduğu hesaplanmıştır Adsorpsiyon kinetik verileri sonucunda Mn2+ metal iyonunun kinetiği incelendiğinde, (Yalancı birinci derece, Yalancı ikinci derece, Weber- Morris ve Elovich kinetik modelleri) adsorpsiyonunun Yalanci ikinci derece kinetik modele (pseudo-second-order) uyduğu belirlendi. Termodinamik çalışmalar Mn2+ iyonunun portakal kabuğu üzerine adsorpsiyonunun kendiliğinden ve endotermik olduğunu gösterdi. Atık portakal kabuklarının, yüksek uzaklaştırma kapasitesi, kolay bulunabilirliği, düşük maliyeti, kullanılabilir bir tarımsal atık olması, geri dönüşümü ve çevreye zarar vermemesi gibi nedenlerle sulu ortamdan Mn2+ iyonlarının alınmasında farklı adsorbanlarla karşılaştırıldığında, etkili ve alternatif bir malzeme olduğu görülmüştür.

Kaynakça

  • Abukhadra, M. R., Dardir, F. M., Shaban, M., Ahmed, E. A., & Soliman, M. F. 2018. Superior removal of Co2+, Cu2+ and Zn2+ contaminants from water utilizing spongy Ni/Fe carbonate–fluorapatite; preparation, application and mechanism. Ecotoxicology and environmental safety, 157, 358-368. https://doi.org/10.1016/j.ecoenv.2018.03.085
  • Aguado, J., Arsuaga, J. M., Arencibia, A., Lindo, M., & Gascón, V. 2009. Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of hazardous materials, 163(1), 213-221.
  • Aksu, Z., & İşoğlu, İ. A. 2005. Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochemistry, 40(9), 3031-3044.
  • Altunkaynak, Y., Canpolat, M. & Yavuz, Ö. 2021. Adsorption of cobalt (II) ions from aqueous solution using orange peel waste: equilibrium, kinetic and thermodynamic studies. Journal of the Iranian Chemical Society, https://doi.org/10.1007/s13738-021-02458-8
  • Ates, A. 2014. Role of modification of natural zeolite in removal of manganese from aqueous solutions. Powder Technology, 264, 86-95.
  • Baltrėnaitė-Gedienė, E., Leonavičienė, T., & Baltrėnas, P. 2020. Comparison of CU (II), MN (II) and ZN (II) adsorption on biochar using diagnostic and simulation models. Chemosphere, 245, 125562.
  • De Angelis, G., Medeghini, L., Conte, A. M., & Mignardi, S. 2017. Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. Journal of Cleaner Production, 164, 1497-1506. https://doi.org/10.1016/j.jclepro.2017.07.085
  • De Souza, J. V. T. M., Diniz, K. M., Massocatto, C. L., Tarley, C. R. T., Caetano, J., & Dragunski, D. C. 2012. Removal of Pb (II) from aqueous solution with orange sub-products chemically modified as biosorbent. BioResources, 7(2), 2300-2318.
  • Foo, K. Y., & Hameed, B. H. 2010. Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), 2-10.https://doi.org/10.1016/j.cej.2009.09.013
  • Guilarduci, V. V. D. S., Mesquita, J. P. D., Martelli, P. B., & Gorgulho, H. D. F. 2006. Phenol adsorption on commercial active carbon under alkaline conditions. Química Nova, 29(6), 1226-1232.
  • Guo, X., & Wang, J. 2019. A general kinetic model for adsorption: theoretical analysis and modeling. Journal of Molecular Liquids, 288, 111100.https://doi.org/10.1016/j.molliq.2019.111100
  • Gupta, V. K. 1998. Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent. Industrial & Engineering Chemistry Research, 37(1), 192-202.
  • Ho, Y. S., & McKay, G. 1998. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process safety and environmental protection, 76(4), 332-340. https://doi.org/10.1016/j.biortech.2007.05.070
  • Huang, M., Zhang, Y., Xiang, W., Zhou, T., Wu, X., & Mao, J. 2019. Efficient adsorption of Mn (II) by layered double hydroxides intercalated with diethylenetriaminepentaacetic acid and the mechanistic study. Journal of Environmental Sciences, 85, 56-65.
  • Khobragade, M. U., & Pal, A. 2014. Investigation on the adsorption of Mn (II) on surfactant-modified alumina: Batch and column studies. Journal of Environmental Chemical Engineering, 2(4), 2295-2305.
  • Kim, H., Ko, R. A., Lee, S., & Chon, K. 2020. Removal efficiencies of manganese and iron using pristine and phosphoric acid pre-treated biochars made from banana peels. Water, 12(4), 1173.
  • Li, X., Zhang, D., Sheng, F., & Qing, H. (2018). Adsorption characteristics of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ) by four kinds of immobilized fungi residues. Ecotoxicology and environmental safety, 147, 357-366. https://doi.org/10.1016/j.ecoenv.2017.08.058
  • Lima, E. C., Hosseini-Bandegharaei, A., Moreno-Piraján, J. C., & Anastopoulos, I. 2019. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van't Hoof equation for calculation of thermodynamic parameters of adsorption. Journal of molecular liquids, 273, 425-434. https://doi.org/10.1016/j.molliq.2018.10.048
  • Neculita, C. M., & Rosa, E. 2019. A review of the implications and challenges of manganese removal from mine drainage. Chemosphere, 214, 491-510.
  • Nguyen, C., & Do, D. D. 2001. The Dubinin–Radushkevich equation and the underlying microscopic adsorption description. Carbon, 39(9), 1327-1336. https://doi.org/10.1016/S0008-6223(00)00265-7.
  • Ofudje, E. A., Williams, O. D., Asogwa, K. K., & Awotula, A. O. 2013. Assessment of Langmuir, Freundlich and Rubunin-Radushhkevich Adsorption Isotherms in the study of the biosorption of Mn (II) ions from aqueous solution by untreated and acid-treated corn shaft. international journal of scientific and engineering research, 4(7), 1628-1634.
  • Ren, C., Ding, X., Li, W., Wu, H., & Yang, H. 2017. Highly efficient adsorption of heavy metals onto novel magnetic porous composites modified with amino groups. Journal of Chemical & Engineering Data, 62(6), 1865-1875.
  • Samanta, A., Das, S., & Jana, S. 2018. Exploring β-FeOOH nanorods as an efficient adsorbent for arsenic and organic dyes.
  • Taha, A. A., Shreadah, M. A., Ahmed, A. M., & Heiba, H. F. 2016. Multi-component adsorption of Pb (II), Cd (II), and Ni (II) onto Egyptian Na-activated bentonite; equilibrium, kinetics, thermodynamics, and application for seawater desalination. Journal of Environmental Chemical Engineering, 4(1), 1166-1180. https://doi.org/10.1016/j.jece.2016.01.025
  • Tang, W., Gong, J., Wu, L., Li, Y., Zhang, M., & Zeng, X. 2016. DGGE diversity of manganese mine samples and isolation of a Lysinibacillus sp. efficient in removal of high Mn (II) concentrations. Chemosphere, 165, 277-283.
  • Vimala, R., & Das, N. 2009. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: a comparative study. Journal of hazardous materials, 168(1), 376-382.
  • Wu, F. C., Tseng, R. L., & Juang, R. S. 2009. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chemical engineering journal, 153(1-3), 1-8.
  • Wu, Y., Fan, Y., Zhang, M., Ming, Z., Yang, S., Arkin, A., & Fang, P. 2016. Functionalized agricultural biomass as a low-cost adsorbent: utilization of rice straw incorporated with amine groups for the adsorption of Cr (VI) and Ni (II) from single and binary systems. Biochemical Engineering Journal, 105, 27-35. https://doi.org/10.1016/j.bej.2015.08.017
  • Yavuz, Ö., Altunkaynak, Y., & Güzel, F. 2003. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water research, 37(4), 948-952.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Yalçın Altunkaynak 0000-0003-2562-9297

Mutlu Canpolat 0000-0002-3771-6737

Yayımlanma Tarihi 28 Şubat 2022
Gönderilme Tarihi 3 Aralık 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 22 Sayı: 1

Kaynak Göster

APA Altunkaynak, Y., & Canpolat, M. (2022). Ham Portakal Kabuğu ile Sulu Çözeltilerden Mangan (II) İyonlarının Uzaklaştırılması: Denge, Kinetik ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(1), 45-56. https://doi.org/10.35414/akufemubid.1032148
AMA Altunkaynak Y, Canpolat M. Ham Portakal Kabuğu ile Sulu Çözeltilerden Mangan (II) İyonlarının Uzaklaştırılması: Denge, Kinetik ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Şubat 2022;22(1):45-56. doi:10.35414/akufemubid.1032148
Chicago Altunkaynak, Yalçın, ve Mutlu Canpolat. “Ham Portakal Kabuğu Ile Sulu Çözeltilerden Mangan (II) İyonlarının Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, sy. 1 (Şubat 2022): 45-56. https://doi.org/10.35414/akufemubid.1032148.
EndNote Altunkaynak Y, Canpolat M (01 Şubat 2022) Ham Portakal Kabuğu ile Sulu Çözeltilerden Mangan (II) İyonlarının Uzaklaştırılması: Denge, Kinetik ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 1 45–56.
IEEE Y. Altunkaynak ve M. Canpolat, “Ham Portakal Kabuğu ile Sulu Çözeltilerden Mangan (II) İyonlarının Uzaklaştırılması: Denge, Kinetik ve Termodinamik Çalışmalar”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 1, ss. 45–56, 2022, doi: 10.35414/akufemubid.1032148.
ISNAD Altunkaynak, Yalçın - Canpolat, Mutlu. “Ham Portakal Kabuğu Ile Sulu Çözeltilerden Mangan (II) İyonlarının Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/1 (Şubat 2022), 45-56. https://doi.org/10.35414/akufemubid.1032148.
JAMA Altunkaynak Y, Canpolat M. Ham Portakal Kabuğu ile Sulu Çözeltilerden Mangan (II) İyonlarının Uzaklaştırılması: Denge, Kinetik ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:45–56.
MLA Altunkaynak, Yalçın ve Mutlu Canpolat. “Ham Portakal Kabuğu Ile Sulu Çözeltilerden Mangan (II) İyonlarının Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 1, 2022, ss. 45-56, doi:10.35414/akufemubid.1032148.
Vancouver Altunkaynak Y, Canpolat M. Ham Portakal Kabuğu ile Sulu Çözeltilerden Mangan (II) İyonlarının Uzaklaştırılması: Denge, Kinetik ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(1):45-56.