Araştırma Makalesi
BibTex RIS Kaynak Göster

Gerçek-Zamanlı GNSS VADASE Yaklaşımının Düşey Yönlü Dinamik Hareketleri Yakalayabilme Kabiliyetinin İncelenmesi

Yıl 2022, Cilt: 22 Sayı: 3, 626 - 636, 30.06.2022
https://doi.org/10.35414/akufemubid.1066489

Öz

Yeryüzünde meydana gelen dinamik hareketlerin tespit edilmesinde GNSS (Global Navigation Satellite System) sensörüne dayalı birçok konum belirleme yöntemi (Bağıl Kinematik, Gerçek Zamanlı Kinematik (RTK), Hassas Nokta Konumlama (PPP), Gerçek Zamanlı (RT)-PPP vb.) kullanılmıştır. Kullanılan bu yöntemler ikinci bir GNSS alıcısı, internet bağlantısı, uydu yörünge ve saat düzeltme bilgisi gibi harici parametreler gerektirir. Bu çalışmada herhangi bir harici parametreye ihtiyaç duymadan gerçek zamanlı (Real-Time) dinamik hareketleri doğrudan yakalayabilen VADASE (Variometric Approach for Displacement Analysis Stand-Alone Engine) yaklaşımının düşey yönlü dinamik davranışları belirleyebilme yeteneği incelenmiştir. Çoklu-GNSS gözlemlerine dayalı bu yöntem, zaman ve frekans alanında bağıl konum belirleme (RP) yöntemi referans alınarak PPP yöntemi ile karşılaştırılmıştır. Sonuçlara bakıldığında düşey dinamik hareketlerin baskın frekans değerlerinin üç yöntem için de aynı olduğu görülmüştür. Baskın frekansa karşılık gelen genlik değerlerinde ise deneylerde referans alınan RP yöntemine göre RT-VADASE yönteminde 1.6 mm ila 3.2 mm arasında değişmekteyken PPP yönteminde bu farklılık 1.1 mm ila 1.6 mm arasında değişmektedir. Ayrıca zaman alanında tüm deney durumlarına incelendiğinde RT-VADASE yönteminin PP-PPP yöntemine göre KOH değerleri arasında milimetre düzeyinde (1-2mm) küçük farklılık bulunmaktadır. Sonuçlar, RT-VADASE yaklaşımının anlık olarak düşey dinamik hareketleri doğru ve güvenilir bir şekilde tespit edebileceğini göstermektedir. Bununla birlikte, RT-VADASE yöntemi deprem, rüzgâr, trafik yükü gibi dinamik yüklerin, yapıda meydana getirebileceği etkiyi anlık olarak tespit etmek ve yapı sağlığını tehdit edebilecek durumlarda yapının hızlı tehlike değerlendirilmesi yapılarak insan hayatını tehlikeye düşürecek durumlarda erken uyarı sistemine entegre bir sensör olarak kullanılabileceği gösterilmiştir.

Teşekkür

Bu çalışmada sağlamış oldukları donanım ve yazılım destekleri için Sistem A.Ş.’ye, PP-PPP çözümde kullanılan açık kaynaklı RTKLIB yazılımı için Araştırmacı Tomoji Takasu’ya ve Çoklu-GNSS uydu yörünge ve saat düzeltmesi sağlayan Uluslararası GNSS Servisine teşekkür ederiz.

Kaynakça

  • Alcay, S., Turgut, M., 2017. Performance Evaluation of Real-Time Precise Point Positioning Method. IOP Conf. Series: Earth and Environmental Science, 95, 032023. DOI:10.1088/1755-1315/95/3/032023.
  • Alçay, S., 2019. Investigation of The Positioning Performance of Real Time Precise Point Positioning Method (RT-PPP) In Terms Of Accuracy And Precision. Omer Halis Demir University Journal of Engineering Science, 8(1), 121-133.
  • Alcay, S., Turgut, M., 2021. Evaluation of the Positioning Performance of Multi-GNSS RT-PPP Method. Arabian Journal of Geosciences, 14(155), DOI: https://doi.org/10.1007/s12517-021-065344.
  • Alkan, R. M., Mutlu, B. 2022. IGS-RTS ürünleri kullanılarak gerçek-zamanlı hassas nokta konumlama (RT-PPP) tekniğinin performans analizi: Antarktika örneği. Yerbilimleri, 43(1),76-95, 1050124.
  • Avallone, A., Marzario, M., Cirella, A., Piatanesi, A., Rovelli, A., Di Alessandro, C., D’Anastasio, E., D’Agostino, N., Giuliani, R., Mattone, M. 2011. Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: the case of the Mw6.3 L’Aquila. (central Italy) event. Journal of Geophysical. Research, 116, B02305.
  • Benedetti, E., Branzanti, M., Biagi, L., Colosimo, G., Mazzoni, A., Crespi, M., 2014. Global Navigation Satellite Systems Seismology for the 2012 Mw 6.1 Emilia Earthquake: Exploiting the VADASE Algorithm. Seismological Research Letters, 85, 649–656.
  • Bezcioğlu M., Karadeniz B., Yiğit C.Ö., Dindar A.A., Bezir F., Avcı, Ö., 2022. Gerçek Zamanlı GNSS VADASE Yaklaşımının Dinamik Deplasmanları Yakalayabilme Kabiliyetinin İncelenmesi. Harita Dergisi, 167, 1-11. Branzanti, M., Colosimo, G., Crespi, M., Mazzoni, A., 2013. GPS near-real-time coseismic displacements for the great Tohoku-oki earthquake. Institute of Electrical and Electronics Engineer Geoscience and Remote Sensing Letters, 10(2), 372-376.
  • Breuer, P., Chmielewski, T., Górski P., Konopka, E., Tarczyński, L., 2008. The Stuttgart TV Tower displacement of the top caused by the effects of sun and wind. Engineering Structures, 30, 2771–2781.
  • Cai, C. and Gao, Y., 2008. Precise Point Positioning Using Combined GPS and GLONASS Observations. Journal of Global Positioning Systems, 6(1), 13–22. doi:10.1017/S0373463313000039.
  • Colosimo, G., Crespi, M., Mazzoni, A., 2011. Real-time GPS seismology with a stand-alone receiver: A preliminary feasibility demonstration. Journal of Geophysical Research Solid Earth, 116(11), 1–14.
  • Çelebi, M., 2000. GPS in dynamic monitoring of long-period structures. Soil Dynamics and Earthquake Engineering. 20, 477–483.
  • Elsobeiey, M., Al-Harbi, S., 2016. Performance of real-time Precise Point Positioning using IGS real-time service. GPS Solutions, 20(3), 565–571.
  • Erdoğan, H., Akpınar, B., Gülal, E., Ata, E., 2007. Monitoring the dynamic behaviors of the Bosporus Bridge by GPS during Eurasia Marathon. Nonlinear Processes in Geophysics, 14, 513-523.
  • Fratarcangeli, F., Ravanelli, M., Mazzoni, A., Colosimo, G., Benedetti, E., Branzanti, M., Savastano, G., Verkhoglyadova, O., Komjathy, A., Crespi, M., 2018. The variometric approach to real‑time high‑frequency geodesy. Rendiconti Lincei. Scienze Fisiche e Naturali, 29, 95–108.
  • Ge, M., Dousa, J., Li, X., Ramatschi, M., Nischan, T., Wickert, J., 2012. A novel real-time precise positioning service system: global precise point positioning with regional augmentation. Journal of Global Positioning Sysems, 11(1), 2–10.
  • Geng, J., Teferle, F.N., Meng, X., Dodson, A.H., 2010. Towards PPP-RTK: ambiguity resolution in real-time precise point positioning. Advances in Space Research, 47(10), 1664–1673.
  • Geng, T., Xie, X., Fang, R., Su, X., Zhao, Q., Liu, G., 2016. Real-time capture of seismic waves using high-rate multi-GNSS observations: application to the 2015 mw 7.8 Nepal earthquake. Geophysical Research Letters, 43(1), 161–167.
  • Hadas, T., Bosy, J., 2015. IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solutions, 19(1), 93–105.
  • Hung, H.K., Rau, R.,J., Benedetti, E., Branzanti, M., Mazzoni, A., Colosimo, G., Crespi, M., 2017. GPS Seismology for a moderate magnitude earthquake: Lessons learned from the analysis of the 31 October 2013 ML 6.4 Ruisui (Taiwan) earthquake. Annals of Geophysics, 60(5), S0553, doi: 10.4401/ag-7399.
  • Kaloop, M. R.,Yigit, C. O., and Hu, J. H., 2018. Analysis of the dynamic behavior of structures using the high-rate GNSS-PPP method combined with a wavelet-neural model: Numerical simulation and experimental tests. Advances in Space Research, 61(6), 1512–1524.
  • Kouba, J. and Heroux, P., 2001. Precise Point Positioning using IGS orbit and clock products. GPS Solutions, 5(2), 12-28.
  • Kouba, J., 2009. A Guide to using international GNSS Service (IGS) Products. Geodetic Survey Division, Natural Resources Canada, Ottawa, 6-34.
  • Krzan, G. and Przestrzelski, P., 2016. GPS/GLONASS Precise Point Positioning with IGS Real-time service product. Acta Geodynamica et Geomaterialia, 13(1), 69–81.
  • Li, X., Ge, L., Ambikairajah, E., Rizos, C., Tamura, Y., Yoshida, A., 2006. Full-scale structural monitoring using an integrated GPS and accelerometer system. GPS Solutions, 10, 233–247.
  • Li, X., Guo, B., Lu, C., Ge, M., Wickert, J., Schuh, H., 2014. Real-time GNSS seismology using a single receiver. Geophysical Journal International, 198(1), 72–89.
  • Li, X., Zheng, K., Li, X., Liu, G., Ge, M., Wickert, J., Schuh, H., 2019. Real-time capturing of seismic waveforms using high-rate BDS, GPS and GLONASS observations: the 2017 Mw 6.5 Jiuzhaigou earthquake in China. GPS Solutions, 23(1), 1–12.
  • Martín, A., Anquela, A.B., Dimas-Pagés, A., Cos-Gayón, F., 2015. Validation of performance of real-time kinematic PPP. A possible tool for deformation monitoring. Measurement, 69, 95–108.
  • Moschas, F., Avallone, A., Saltogianni, V., Stiros, S. C., 2014. Strong motion displacement waveforms using 10-Hz precise point positioning GPS: An assessment based on free oscillation experiments. Earthquake Engineering and Structural Dynamics, 43(12), 1853–1866.
  • Nakamura, S.I., 2000. GPS measurement of wind-induced suspension bridge girder displacements. Journal of Structural Engineering, 126(12), 1413–1419.
  • Nie, Z., Zhang, R., Liu, G., Jia, Z., Wang, D., Zhou, Y., Lin, M., 2016. GNSS seismometer: Seismic phase recognition of real-time high-rate GNSS deformation waves. Journal of Applied Geophysics, 135, 328–337.
  • Park, H.S., Sohn, H.G., Kim, I.S., Park, J.H., 2008. Application of GPS to monitoring of wind-induced responses of high-rise buildings. Structural Design of Tall and Special Buildings, 17, 117–132.
  • Paziewski, J., Sieradzki, R., Baryla, R., 2018. Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: Application to precise dynamic displacement detection. Measurement Science and Technology, 29(3), 035002.
  • Roberts, G.W., Meng, X., Dodson, A., 2004. Integrating a Global Positioning System and accelerometers to monitor deflection of bridges. Journal of Surveying Engineering, 130, 65–72.
  • Shu, Y., Shi, Y., Xu, P., Niu, X., Liu, J., 2017. Error analysis of high-rate GNSS precise pointpositioning for seismic wave measurement. Advances in Space Research, 59(11), 2691–2713.
  • Tamura, Y., Matsui, M., Pagnini, L.C., Ishibashi, R., Yoshida, A. 2002. Measurement of wind-induced response of buildings using RTK-GPS. Journal of Wind Engineering and Industrial Aerodynamics, 90(12), 1783–1793.
  • Tang, X., Roberts, G. W., Li, X., Hancock, C., 2017. Real-time kinematic PPP GPS for structure monitoring applied on the Severn suspension bridge, UK. Advances in Space Research, 60(5), 925–937.
  • Tesolin, F., Vitti, A., Mazzoni, A., Crespi, M., 2019. Impact of Galileo data on the solutions of the variometric approach for displacement analysis. Advances in Space Research, 63(9), 3053-3061.
  • Wang, G.Q., 2013. Millimeter-accuracy GPS landslide monitoring using precise point positioning with single receiver phase ambiguity (PPP-SRPA) resolution: a case study in Puerto Rico. Journal of Geodetic Science, 3(1), 22–31.
  • Xu, L., Guo, J.J., Jiang, J.J., 2002. Time–frequency analysis of a suspension bridge based on GPS. Journal of Sound and Vibration, 254, 105–116.
  • Xu, P., Shi, C., Fang, R., Liu, J., Niu, X., Zhang, Q., Yanagidani, T., 2013. High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units. Journal of Geodesy, 87(4), 361–372, doi:http://dx.doi.org/ 10.10 07/s00190-012-0606-z.
  • Xu, P., Shu, Y., Niu, X., Yao, W., Chen, Q., 2019. High-rate multi-GNSS attitude determination: Experiments, comparisons with inertial measurement units and applications of GNSS rotational seismology to the 2011 Tohoku Mw9.0 earthquake. Measurement Science and Technology, 30(2), 024003.
  • Yigit, C.O. and Eralp, G., 2017. Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures. Geomatics Natural Hazards and Risk, 8(2), 893-904.
  • Yigit, C. O., 2016. Experimental assessment of post-processed kinematic precise point positioning method for structural health monitoring. Geomatics Natural Hazards Risk, 7(1), 363–380.
  • Yigit, C.O., Li, X., Inal, C., Ge, L., Yetkin, M., 2010. Preliminary evaluation of precise inclination sensor and GPS for monitoring full-scale dynamic response of a tall reinforced concrete building. Journal of Applied Geodesy, 4, 103–113.
  • Zhang, Y., Nie, Z., Wang, Z., Wu, H., Xu, X., 2021. Real-time coseismic displacement retrieval based on temporal point positioning with igs rts correction products. Sensors, 21(2), 1–17.
  • Zheng, K., Zhang, X., Li, X., Li, P., Sang, J., Ma, T., Schuh, H., 2019. Capturing coseismic displacement in real time with mixed single- and dual-frequency receivers: application to the 2018 Mw7.9 Alaska earthquake. GPS Solutions, 23(1), 1–14.
  • Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., Webb, F.H., 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research Solid Earth, 102(B3), 5005–5017.
  • İnternet kaynakları 1-ftp://igs.gnsswhu.cn/pub/whu/phasebias, (05.12.2021)

Investigation of Real-Time GNSS VADASE Approach Capability of Capturing Vertical Dynamic Movements

Yıl 2022, Cilt: 22 Sayı: 3, 626 - 636, 30.06.2022
https://doi.org/10.35414/akufemubid.1066489

Öz

Many positioning methods (Relative Kinematic, Real Time Kinematic (RTK), Pricese Point Positioning (PPP) and Real Time (RT)-PPP etc.) based on GNSS sensor have been used to detect dynamic motions occurring on the earth. These methods used require external parameters such as a second GNSS receiver, internet connection, satellite orbit and clock correction information. In this study, the VADASE (Variometric Approach for Displacement Analysis Stand-Alone Engine) approach, which can directly capture dynamic motions in real-time without the need for any additional parameters, are examined. This method, based on multi-GNSS observations, was compared with the PPP method, with reference to the Relative Positioning(RP) method in the time and frequency domain. According to the results, it was seen that the dominant frequency values of vertical dynamic motions were the same for all three methods. While the amplitude values corresponding to the dominant frequency vary between 1.6 mm and 3.2 mm in the RT-VADASE method according to the RP method referenced in the experiments, this difference varies between 1.1 mm and 1.6 mm in the PPP method. In addition, when all experimental cases are examined in the time domain, there is a small (1-2mm) difference between the KOH values of the RT-VADASE method compared to the PP-PPP method. The results show that the RT-VADASE approach can accurately and reliably detect instantaneous vertical dynamic motions. However, it has been shown that the RT-VADASE method can be used as an integrated sensor in the early warning system in situations that will endanger human life by making a rapid hazard assessment of the structure in cases that may threaten the health of the structure, instantly detecting the effect of dynamic loads such as earthquake, wind, traffic load.

Kaynakça

  • Alcay, S., Turgut, M., 2017. Performance Evaluation of Real-Time Precise Point Positioning Method. IOP Conf. Series: Earth and Environmental Science, 95, 032023. DOI:10.1088/1755-1315/95/3/032023.
  • Alçay, S., 2019. Investigation of The Positioning Performance of Real Time Precise Point Positioning Method (RT-PPP) In Terms Of Accuracy And Precision. Omer Halis Demir University Journal of Engineering Science, 8(1), 121-133.
  • Alcay, S., Turgut, M., 2021. Evaluation of the Positioning Performance of Multi-GNSS RT-PPP Method. Arabian Journal of Geosciences, 14(155), DOI: https://doi.org/10.1007/s12517-021-065344.
  • Alkan, R. M., Mutlu, B. 2022. IGS-RTS ürünleri kullanılarak gerçek-zamanlı hassas nokta konumlama (RT-PPP) tekniğinin performans analizi: Antarktika örneği. Yerbilimleri, 43(1),76-95, 1050124.
  • Avallone, A., Marzario, M., Cirella, A., Piatanesi, A., Rovelli, A., Di Alessandro, C., D’Anastasio, E., D’Agostino, N., Giuliani, R., Mattone, M. 2011. Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: the case of the Mw6.3 L’Aquila. (central Italy) event. Journal of Geophysical. Research, 116, B02305.
  • Benedetti, E., Branzanti, M., Biagi, L., Colosimo, G., Mazzoni, A., Crespi, M., 2014. Global Navigation Satellite Systems Seismology for the 2012 Mw 6.1 Emilia Earthquake: Exploiting the VADASE Algorithm. Seismological Research Letters, 85, 649–656.
  • Bezcioğlu M., Karadeniz B., Yiğit C.Ö., Dindar A.A., Bezir F., Avcı, Ö., 2022. Gerçek Zamanlı GNSS VADASE Yaklaşımının Dinamik Deplasmanları Yakalayabilme Kabiliyetinin İncelenmesi. Harita Dergisi, 167, 1-11. Branzanti, M., Colosimo, G., Crespi, M., Mazzoni, A., 2013. GPS near-real-time coseismic displacements for the great Tohoku-oki earthquake. Institute of Electrical and Electronics Engineer Geoscience and Remote Sensing Letters, 10(2), 372-376.
  • Breuer, P., Chmielewski, T., Górski P., Konopka, E., Tarczyński, L., 2008. The Stuttgart TV Tower displacement of the top caused by the effects of sun and wind. Engineering Structures, 30, 2771–2781.
  • Cai, C. and Gao, Y., 2008. Precise Point Positioning Using Combined GPS and GLONASS Observations. Journal of Global Positioning Systems, 6(1), 13–22. doi:10.1017/S0373463313000039.
  • Colosimo, G., Crespi, M., Mazzoni, A., 2011. Real-time GPS seismology with a stand-alone receiver: A preliminary feasibility demonstration. Journal of Geophysical Research Solid Earth, 116(11), 1–14.
  • Çelebi, M., 2000. GPS in dynamic monitoring of long-period structures. Soil Dynamics and Earthquake Engineering. 20, 477–483.
  • Elsobeiey, M., Al-Harbi, S., 2016. Performance of real-time Precise Point Positioning using IGS real-time service. GPS Solutions, 20(3), 565–571.
  • Erdoğan, H., Akpınar, B., Gülal, E., Ata, E., 2007. Monitoring the dynamic behaviors of the Bosporus Bridge by GPS during Eurasia Marathon. Nonlinear Processes in Geophysics, 14, 513-523.
  • Fratarcangeli, F., Ravanelli, M., Mazzoni, A., Colosimo, G., Benedetti, E., Branzanti, M., Savastano, G., Verkhoglyadova, O., Komjathy, A., Crespi, M., 2018. The variometric approach to real‑time high‑frequency geodesy. Rendiconti Lincei. Scienze Fisiche e Naturali, 29, 95–108.
  • Ge, M., Dousa, J., Li, X., Ramatschi, M., Nischan, T., Wickert, J., 2012. A novel real-time precise positioning service system: global precise point positioning with regional augmentation. Journal of Global Positioning Sysems, 11(1), 2–10.
  • Geng, J., Teferle, F.N., Meng, X., Dodson, A.H., 2010. Towards PPP-RTK: ambiguity resolution in real-time precise point positioning. Advances in Space Research, 47(10), 1664–1673.
  • Geng, T., Xie, X., Fang, R., Su, X., Zhao, Q., Liu, G., 2016. Real-time capture of seismic waves using high-rate multi-GNSS observations: application to the 2015 mw 7.8 Nepal earthquake. Geophysical Research Letters, 43(1), 161–167.
  • Hadas, T., Bosy, J., 2015. IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solutions, 19(1), 93–105.
  • Hung, H.K., Rau, R.,J., Benedetti, E., Branzanti, M., Mazzoni, A., Colosimo, G., Crespi, M., 2017. GPS Seismology for a moderate magnitude earthquake: Lessons learned from the analysis of the 31 October 2013 ML 6.4 Ruisui (Taiwan) earthquake. Annals of Geophysics, 60(5), S0553, doi: 10.4401/ag-7399.
  • Kaloop, M. R.,Yigit, C. O., and Hu, J. H., 2018. Analysis of the dynamic behavior of structures using the high-rate GNSS-PPP method combined with a wavelet-neural model: Numerical simulation and experimental tests. Advances in Space Research, 61(6), 1512–1524.
  • Kouba, J. and Heroux, P., 2001. Precise Point Positioning using IGS orbit and clock products. GPS Solutions, 5(2), 12-28.
  • Kouba, J., 2009. A Guide to using international GNSS Service (IGS) Products. Geodetic Survey Division, Natural Resources Canada, Ottawa, 6-34.
  • Krzan, G. and Przestrzelski, P., 2016. GPS/GLONASS Precise Point Positioning with IGS Real-time service product. Acta Geodynamica et Geomaterialia, 13(1), 69–81.
  • Li, X., Ge, L., Ambikairajah, E., Rizos, C., Tamura, Y., Yoshida, A., 2006. Full-scale structural monitoring using an integrated GPS and accelerometer system. GPS Solutions, 10, 233–247.
  • Li, X., Guo, B., Lu, C., Ge, M., Wickert, J., Schuh, H., 2014. Real-time GNSS seismology using a single receiver. Geophysical Journal International, 198(1), 72–89.
  • Li, X., Zheng, K., Li, X., Liu, G., Ge, M., Wickert, J., Schuh, H., 2019. Real-time capturing of seismic waveforms using high-rate BDS, GPS and GLONASS observations: the 2017 Mw 6.5 Jiuzhaigou earthquake in China. GPS Solutions, 23(1), 1–12.
  • Martín, A., Anquela, A.B., Dimas-Pagés, A., Cos-Gayón, F., 2015. Validation of performance of real-time kinematic PPP. A possible tool for deformation monitoring. Measurement, 69, 95–108.
  • Moschas, F., Avallone, A., Saltogianni, V., Stiros, S. C., 2014. Strong motion displacement waveforms using 10-Hz precise point positioning GPS: An assessment based on free oscillation experiments. Earthquake Engineering and Structural Dynamics, 43(12), 1853–1866.
  • Nakamura, S.I., 2000. GPS measurement of wind-induced suspension bridge girder displacements. Journal of Structural Engineering, 126(12), 1413–1419.
  • Nie, Z., Zhang, R., Liu, G., Jia, Z., Wang, D., Zhou, Y., Lin, M., 2016. GNSS seismometer: Seismic phase recognition of real-time high-rate GNSS deformation waves. Journal of Applied Geophysics, 135, 328–337.
  • Park, H.S., Sohn, H.G., Kim, I.S., Park, J.H., 2008. Application of GPS to monitoring of wind-induced responses of high-rise buildings. Structural Design of Tall and Special Buildings, 17, 117–132.
  • Paziewski, J., Sieradzki, R., Baryla, R., 2018. Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: Application to precise dynamic displacement detection. Measurement Science and Technology, 29(3), 035002.
  • Roberts, G.W., Meng, X., Dodson, A., 2004. Integrating a Global Positioning System and accelerometers to monitor deflection of bridges. Journal of Surveying Engineering, 130, 65–72.
  • Shu, Y., Shi, Y., Xu, P., Niu, X., Liu, J., 2017. Error analysis of high-rate GNSS precise pointpositioning for seismic wave measurement. Advances in Space Research, 59(11), 2691–2713.
  • Tamura, Y., Matsui, M., Pagnini, L.C., Ishibashi, R., Yoshida, A. 2002. Measurement of wind-induced response of buildings using RTK-GPS. Journal of Wind Engineering and Industrial Aerodynamics, 90(12), 1783–1793.
  • Tang, X., Roberts, G. W., Li, X., Hancock, C., 2017. Real-time kinematic PPP GPS for structure monitoring applied on the Severn suspension bridge, UK. Advances in Space Research, 60(5), 925–937.
  • Tesolin, F., Vitti, A., Mazzoni, A., Crespi, M., 2019. Impact of Galileo data on the solutions of the variometric approach for displacement analysis. Advances in Space Research, 63(9), 3053-3061.
  • Wang, G.Q., 2013. Millimeter-accuracy GPS landslide monitoring using precise point positioning with single receiver phase ambiguity (PPP-SRPA) resolution: a case study in Puerto Rico. Journal of Geodetic Science, 3(1), 22–31.
  • Xu, L., Guo, J.J., Jiang, J.J., 2002. Time–frequency analysis of a suspension bridge based on GPS. Journal of Sound and Vibration, 254, 105–116.
  • Xu, P., Shi, C., Fang, R., Liu, J., Niu, X., Zhang, Q., Yanagidani, T., 2013. High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units. Journal of Geodesy, 87(4), 361–372, doi:http://dx.doi.org/ 10.10 07/s00190-012-0606-z.
  • Xu, P., Shu, Y., Niu, X., Yao, W., Chen, Q., 2019. High-rate multi-GNSS attitude determination: Experiments, comparisons with inertial measurement units and applications of GNSS rotational seismology to the 2011 Tohoku Mw9.0 earthquake. Measurement Science and Technology, 30(2), 024003.
  • Yigit, C.O. and Eralp, G., 2017. Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures. Geomatics Natural Hazards and Risk, 8(2), 893-904.
  • Yigit, C. O., 2016. Experimental assessment of post-processed kinematic precise point positioning method for structural health monitoring. Geomatics Natural Hazards Risk, 7(1), 363–380.
  • Yigit, C.O., Li, X., Inal, C., Ge, L., Yetkin, M., 2010. Preliminary evaluation of precise inclination sensor and GPS for monitoring full-scale dynamic response of a tall reinforced concrete building. Journal of Applied Geodesy, 4, 103–113.
  • Zhang, Y., Nie, Z., Wang, Z., Wu, H., Xu, X., 2021. Real-time coseismic displacement retrieval based on temporal point positioning with igs rts correction products. Sensors, 21(2), 1–17.
  • Zheng, K., Zhang, X., Li, X., Li, P., Sang, J., Ma, T., Schuh, H., 2019. Capturing coseismic displacement in real time with mixed single- and dual-frequency receivers: application to the 2018 Mw7.9 Alaska earthquake. GPS Solutions, 23(1), 1–14.
  • Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., Webb, F.H., 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research Solid Earth, 102(B3), 5005–5017.
  • İnternet kaynakları 1-ftp://igs.gnsswhu.cn/pub/whu/phasebias, (05.12.2021)
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Barış Karadeniz 0000-0002-5093-5467

Mert Bezcioğlu 0000-0001-7179-8361

Cemal Özer Yiğit 0000-0002-1942-7667

Ahmet Anıl Dindar 0000-0003-3168-8322

Özgür Avcı Bu kişi benim 0000-0002-1667-2587

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 1 Şubat 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 22 Sayı: 3

Kaynak Göster

APA Karadeniz, B., Bezcioğlu, M., Yiğit, C. Ö., Dindar, A. A., vd. (2022). Gerçek-Zamanlı GNSS VADASE Yaklaşımının Düşey Yönlü Dinamik Hareketleri Yakalayabilme Kabiliyetinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(3), 626-636. https://doi.org/10.35414/akufemubid.1066489
AMA Karadeniz B, Bezcioğlu M, Yiğit CÖ, Dindar AA, Avcı Ö. Gerçek-Zamanlı GNSS VADASE Yaklaşımının Düşey Yönlü Dinamik Hareketleri Yakalayabilme Kabiliyetinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Haziran 2022;22(3):626-636. doi:10.35414/akufemubid.1066489
Chicago Karadeniz, Barış, Mert Bezcioğlu, Cemal Özer Yiğit, Ahmet Anıl Dindar, ve Özgür Avcı. “Gerçek-Zamanlı GNSS VADASE Yaklaşımının Düşey Yönlü Dinamik Hareketleri Yakalayabilme Kabiliyetinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22, sy. 3 (Haziran 2022): 626-36. https://doi.org/10.35414/akufemubid.1066489.
EndNote Karadeniz B, Bezcioğlu M, Yiğit CÖ, Dindar AA, Avcı Ö (01 Haziran 2022) Gerçek-Zamanlı GNSS VADASE Yaklaşımının Düşey Yönlü Dinamik Hareketleri Yakalayabilme Kabiliyetinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22 3 626–636.
IEEE B. Karadeniz, M. Bezcioğlu, C. Ö. Yiğit, A. A. Dindar, ve Ö. Avcı, “Gerçek-Zamanlı GNSS VADASE Yaklaşımının Düşey Yönlü Dinamik Hareketleri Yakalayabilme Kabiliyetinin İncelenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 3, ss. 626–636, 2022, doi: 10.35414/akufemubid.1066489.
ISNAD Karadeniz, Barış vd. “Gerçek-Zamanlı GNSS VADASE Yaklaşımının Düşey Yönlü Dinamik Hareketleri Yakalayabilme Kabiliyetinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22/3 (Haziran 2022), 626-636. https://doi.org/10.35414/akufemubid.1066489.
JAMA Karadeniz B, Bezcioğlu M, Yiğit CÖ, Dindar AA, Avcı Ö. Gerçek-Zamanlı GNSS VADASE Yaklaşımının Düşey Yönlü Dinamik Hareketleri Yakalayabilme Kabiliyetinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22:626–636.
MLA Karadeniz, Barış vd. “Gerçek-Zamanlı GNSS VADASE Yaklaşımının Düşey Yönlü Dinamik Hareketleri Yakalayabilme Kabiliyetinin İncelenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 22, sy. 3, 2022, ss. 626-3, doi:10.35414/akufemubid.1066489.
Vancouver Karadeniz B, Bezcioğlu M, Yiğit CÖ, Dindar AA, Avcı Ö. Gerçek-Zamanlı GNSS VADASE Yaklaşımının Düşey Yönlü Dinamik Hareketleri Yakalayabilme Kabiliyetinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2022;22(3):626-3.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.