Araştırma Makalesi
BibTex RIS Kaynak Göster

Viscosity Values of Ternary Au-Ag-Cu, Al-Cu-Si and Quaternary Al-Cu-Mg-Si Alloy Systems

Yıl 2023, Cilt: 23 Sayı: 4, 865 - 873, 31.08.2023
https://doi.org/10.35414/akufemubid.1198907

Öz

In this study, the viscosities of the ternary Au-Ag-Cu and Al-Cu-Si liquid alloy systems, and of the quaternary Al-Cu-Mg-Si liquid alloy system were determined as functions of gold, aluminium and copper. Using different geometric models, the first alloy system Au-Ag-Cu (xAg / xCu=0.543) was calculated at 1373 K, the second alloy systems Alx(Cu50-Si50)(1-x), Cux(Al50-Si50)(1-x) at 1375 K, the third alloy system Al-Cu7.6-Mg1.99-Si34.76 at 1500 K. All results, especially those calculated with the Muggianu model, accorded with the experimental results. It was observed that Al-Cu-Mg-Si alloys showed great compositional dependence as a function of aluminium in xSi = xCu, xMg / xCu = r and r = 0.1, 0.5, 1 ratios. The viscosity values accompanying the aluminium composition values between 0.4 and 0.8 were found to be ranging between a maximum of 1.4 mPas and a minimum of 0.3 mPas.

Kaynakça

  • Adachi, M. Schick, M. Brillo, J. Egry, I. Watanabe, M., 2010. Surface tension and density measurement of liquid Si–Cu binary alloys. Journal of Material Sciences, 45(8), 2002-2008.
  • Arslan, H. Dogan, A. Dogan, T., 2013. An analytical approach for thermodynamic properties of the six-component systems Ni-Cr-Co-Al-Mo-Ti and their subsystems. Physics of Metals and Metallography, 114(12), 1053-1060.
  • Arslan, H. Dogan, A. Dogan, T., 2015. Estimation of excess energies and activity coefficients for the penternary Ni-Cr-Co-Al-Mo system and its subsystems. Physics of Metals and Metallography, 116(6), 544-551.
  • Arslan, H. Dogan, A., 2015. An analytical investigation for thermodynamic properties of the Fe-Cr-Ni-Mg-O system. Russian Journal of Physical Chemistry A, 89(2), 180-189.
  • Arslan, H., 2014. Analytical determination of partial and integral properties of the six components systems Ni–Cr–Co–Al–Mo–Ti and their subsystems. Physica B, 438, 48-52.
  • Arslan, H., 2015. Determinations of enthalpy and partial molar enthalpy in the alloys Bi–Cd–Ga–In–Zn, Bi–Cd–Ga–Zn and Au–Cu–Sn. Materials Chemistry and Physics, 153, 384-389.
  • Assael, M. J. Armyra, A. I. Brillo, J. Stankus, S. V. Wu, J. Wakeham, W. A., Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc. Journal of Physical and Chemical Reference Data, 41(3), 033101-1.
  • Brillo, J. Egry, I. Westphal, J., 2008. Density and thermal expansion of liquid binary Al–Ag and Al–Cu alloys. International Journal of Materials Research, 99(2), 162-167.
  • Chou, K. C., 1995. A general solution model for predicting ternary thermodynamic properties. Calphad, 19(3), 315-325.
  • Chou, K. C., Wei, S. K., 1997. A new generation solution model for predicting thermodynamic properties of a multicomponent system from binaries. Metallurgical and Materials Transactions B, 28(3), 439-445.
  • Dogan, A. Arslan, H., 2015. Comparative thermodynamic prediction of integral properties of six component, Quaternary, and Ternary Systems. Metallurgical and Materials Transactions A, 46A, 753-3760.
  • Gebhardt, E. Worwag, G., 1952. Die Innere Reibung Flussiger Legierungen Aus Silber-Kupfer-Gold. Zeitschrift für Metallkunde, 43(4), 106-108.
  • Hillert, M., 1980. Empirical methods of predicting and representing thermodynamic properties of ternary solution phases. Calphad, 4(1), 1-12.
  • Hirai, M., 1993. Estimation of viscosities of liquid alloys. The Iron and Steel Institute of Japan, 33(2), 251-258.
  • Kaptay, G., 2005. A unified equation for the viscosity of pure liquid metals. Zeitschrift für Metallkunde, 96(1), 24-31.
  • Kaptay, G., Proceedings of micro CAD 2003, 23. International Conference, Section, Metallurgy, University of Miskolc, Hungary.
  • Katayama, I. Živković, D. Novaković, R. Yamashita, H., 2008. Experimental study on gallium activity in the liquid Ga-Bi-Sn alloys using the EMF method with zirconia solid electrolyte. International Journal of Materials Research, 99(12), 1330-1335.
  • Kehr, M. Schick, M. Hoyer, W. Egry, I., 2008. Viscosity of the binary system Al-Ni. High Temperatures-High Pressures, 37, 361-369.
  • Klancnik, G. Medved, J., 2011. Thermodynamic investigation of Al-Sb-Zn system. Materials and Technology, 45(4), 317-323.
  • Knott, S. Li, Z. Mikula, A., 2008. Integral enthalpy of mixing of the liquid ternary Au–Cu–Sn system. Thermochimica Acta, 470(1-2), 12-17.
  • Kobatake, H. and Schmitz, J. Brillo, J., 2014. Density and viscosity of ternary Al–Cu–Si liquid alloys. Journal of Materials Science, 49(9), 3541-3549. Kohler, F., 1960. Estimation of the thermodynamic data for a ternary system from the corresponding binary systems. Monatshefte fur Chemie, 91(4), 738-740.
  • Kozlov, L. Ya. Romanov, L. M. Petrov, N. N., 1983. Prévision de la viscosité de fondus métalliques à plusieurs composants. Izvestija vysših učebnyh Zavedenij. Černaja Metallurgija, 3, 7-11.
  • Kucharski, M., 1986. The viscosity of multicomponent systems. Zeitschrift für Metallkunde, 77(6), 393- 396.
  • Milcheva, N. Romanowska, J. Vassilev, G., 2011. Sn-Ni-Bi liquid phase thermodynamic properties. Central European Journal of Chemistry, 9(1), 149-156.
  • Moelwyn-Hughes, E. A., 1961. The dissolved state. Physical Chemistry, Pergamon Press, Oxford.
  • Muggianu, Y. M. Gambino, M. Bross, J. P., 1975. Enthalpies of formation of liquid alloys bismuth-gallium-tin at 723K-choice of an analytical representation of integral and partial thermodynamic functions of mixing for this ternary-system. Journal de Chimie Physique, 72, 83-88.
  • Plevachuk, Y. Sklyarchuk, V. Yakymovych, A. Eckert, S. Willers, B. Eigenfeld, K., 2008. Density, viscosity, and electrical conductivity of hypoeutectic Al-Cu liquid alloys. Metallurgical and Materials Transactions A, 39(12), 3040-3045. Rhim, W. K. Ohsaka, K. Paradis, P. F. Spjut, R. E., 1999. Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation. Review of Scientific Instruments, 70(6), 2796-2801.
  • Schick, M. Brillo, J. Egry, I. Hallstedt, B., 2012. Viscosity of Al–Cu liquid alloys: measurement and thermodynamic description. Journal of Materials Science, 47(23), 8145-8152.
  • Schick, M. Brillo, J. Egry, I. Hallstedt, B., 2012. Viscosity of Al–Cu liquid alloys: measurement and thermodynamic description. Journal of Materials Science, 47(23), 8145-8152.
  • Schmitz, J. Hallstedt, B. Brillo, J. Egry, I. Schick, M., 2012. Density and thermal expansion of liquid Al–Si alloys. Journal of Materials Science, 47, 3706-3712.
  • Seetharaman, S. Sichen, D., 1994. Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing. Metallurgical and Materials Transactions B, 25(4), 589595.
  • Toop, G. W., 1965. Predicting ternary activities using binary data. Transactions of the Metallurgical Society of AIME, 233, 850-855.
  • Wang, D. Overfelt, R. A., 2002. Oscillating cup viscosity measurements of aluminum alloys: A201, A319 and A356. International Journal of Thermophysics, 23(4), 1063-1067.
  • Zhang, F. Du, Y. Liu, S. Jie, W., 2015. Modeling of the viscosity in the AL–Cu–Mg–Si system: Database construction. Calphad, 49, 79-86.
  • Zhang, G. H. Wang, L. J. Chou, K. C., 2010. A comparison of different geometrical models in calculating physicochemical properties of quaternary systems. Calphad. 34(4), 504-509.
  • Zhong, X. M. Liu, Y. H. Chou, K. C. Lu, X. G. Zivkovic, D. Zivkovic, Z., 2003. Estimating ternary viscosity using the thermodynamic geometric model. Journal of Phase Equilibria, 24(1), 7-11.
  • Zivkovic, D. Kaptay, G., 35th IOC on Mining and Metalugy, 30 Sept.- 30 Oct. 2003, Hotel Jezero, Bor Lake, Serbia & Montenegro.
  • Zivkovic, D. Manasijevic, D., 2005. An optimal method to calculate the viscosity of simple liquid ternary alloys from the measured binary data. Calphad, 29(1), 312-316.
  • Zivkovic, D. Zivkovic, Z. Yonghua, L. Chou, K. C., 2001. Calorimetric Investigations of the System Pb-Bi-Mg-Sb with Oelsen's Method. Part 2. Comparison of experimentally obtained values for lead activity with results of thermodynamic predicting. Journal of Thermal Analysis and Calorimetry, 66(3), 785-793.

Üçlü Au-Ag-Cu, Al-Cu-Si ve Dörtlü Al-Cu-Mg-Si Alaşım Sistemlerinin Viskozite Değerleri

Yıl 2023, Cilt: 23 Sayı: 4, 865 - 873, 31.08.2023
https://doi.org/10.35414/akufemubid.1198907

Öz

Bu çalışmada, üçlü Au-Ag-Cu sıvı alaşım sisteminin, Al-Cu-Si sıvı alaşım sisteminin ve dörtlü Al-Cu-Mg-Si sıvı alaşım sisteminin viskoziteleri altının, aliminyumun ve bakırın bir fonksiyonu olarak Au-Ag-Cu (xAg / xCu=0.543) 1373 K de, Alx(Cu50-Si50)(1-x), Cux(Al50-Si50)(1-x) 1375 K de ve Al-Cu7.6-Mg1.99-Si34.76 1500 K de farklı geometrik modeller kullanılarak hesaplanmıştır. Tüm sonuçlar, özellikle de Muggianu modeli ile hesaplanan sonuçlar, deneysel sonuçlarla iyi bir uyum göstermiştir. xSi = xCu, xMg / xCu = r ve r = 0.1, 0.5, 1 oranlarda Al-Cu-Mg-Si alaşımlarının viskozitelerinin alüminyumun bir fonksiyonu olarak büyük bileşimsel bağımlılık gösterdiği ve Al kompozisyonunun (0.4-0.8) arasındaki değerlerine eşlik eden viskozite değerlerinin max. ve min. (1.4-0.3) mPas olduğu görüldü.

Kaynakça

  • Adachi, M. Schick, M. Brillo, J. Egry, I. Watanabe, M., 2010. Surface tension and density measurement of liquid Si–Cu binary alloys. Journal of Material Sciences, 45(8), 2002-2008.
  • Arslan, H. Dogan, A. Dogan, T., 2013. An analytical approach for thermodynamic properties of the six-component systems Ni-Cr-Co-Al-Mo-Ti and their subsystems. Physics of Metals and Metallography, 114(12), 1053-1060.
  • Arslan, H. Dogan, A. Dogan, T., 2015. Estimation of excess energies and activity coefficients for the penternary Ni-Cr-Co-Al-Mo system and its subsystems. Physics of Metals and Metallography, 116(6), 544-551.
  • Arslan, H. Dogan, A., 2015. An analytical investigation for thermodynamic properties of the Fe-Cr-Ni-Mg-O system. Russian Journal of Physical Chemistry A, 89(2), 180-189.
  • Arslan, H., 2014. Analytical determination of partial and integral properties of the six components systems Ni–Cr–Co–Al–Mo–Ti and their subsystems. Physica B, 438, 48-52.
  • Arslan, H., 2015. Determinations of enthalpy and partial molar enthalpy in the alloys Bi–Cd–Ga–In–Zn, Bi–Cd–Ga–Zn and Au–Cu–Sn. Materials Chemistry and Physics, 153, 384-389.
  • Assael, M. J. Armyra, A. I. Brillo, J. Stankus, S. V. Wu, J. Wakeham, W. A., Reference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zinc. Journal of Physical and Chemical Reference Data, 41(3), 033101-1.
  • Brillo, J. Egry, I. Westphal, J., 2008. Density and thermal expansion of liquid binary Al–Ag and Al–Cu alloys. International Journal of Materials Research, 99(2), 162-167.
  • Chou, K. C., 1995. A general solution model for predicting ternary thermodynamic properties. Calphad, 19(3), 315-325.
  • Chou, K. C., Wei, S. K., 1997. A new generation solution model for predicting thermodynamic properties of a multicomponent system from binaries. Metallurgical and Materials Transactions B, 28(3), 439-445.
  • Dogan, A. Arslan, H., 2015. Comparative thermodynamic prediction of integral properties of six component, Quaternary, and Ternary Systems. Metallurgical and Materials Transactions A, 46A, 753-3760.
  • Gebhardt, E. Worwag, G., 1952. Die Innere Reibung Flussiger Legierungen Aus Silber-Kupfer-Gold. Zeitschrift für Metallkunde, 43(4), 106-108.
  • Hillert, M., 1980. Empirical methods of predicting and representing thermodynamic properties of ternary solution phases. Calphad, 4(1), 1-12.
  • Hirai, M., 1993. Estimation of viscosities of liquid alloys. The Iron and Steel Institute of Japan, 33(2), 251-258.
  • Kaptay, G., 2005. A unified equation for the viscosity of pure liquid metals. Zeitschrift für Metallkunde, 96(1), 24-31.
  • Kaptay, G., Proceedings of micro CAD 2003, 23. International Conference, Section, Metallurgy, University of Miskolc, Hungary.
  • Katayama, I. Živković, D. Novaković, R. Yamashita, H., 2008. Experimental study on gallium activity in the liquid Ga-Bi-Sn alloys using the EMF method with zirconia solid electrolyte. International Journal of Materials Research, 99(12), 1330-1335.
  • Kehr, M. Schick, M. Hoyer, W. Egry, I., 2008. Viscosity of the binary system Al-Ni. High Temperatures-High Pressures, 37, 361-369.
  • Klancnik, G. Medved, J., 2011. Thermodynamic investigation of Al-Sb-Zn system. Materials and Technology, 45(4), 317-323.
  • Knott, S. Li, Z. Mikula, A., 2008. Integral enthalpy of mixing of the liquid ternary Au–Cu–Sn system. Thermochimica Acta, 470(1-2), 12-17.
  • Kobatake, H. and Schmitz, J. Brillo, J., 2014. Density and viscosity of ternary Al–Cu–Si liquid alloys. Journal of Materials Science, 49(9), 3541-3549. Kohler, F., 1960. Estimation of the thermodynamic data for a ternary system from the corresponding binary systems. Monatshefte fur Chemie, 91(4), 738-740.
  • Kozlov, L. Ya. Romanov, L. M. Petrov, N. N., 1983. Prévision de la viscosité de fondus métalliques à plusieurs composants. Izvestija vysših učebnyh Zavedenij. Černaja Metallurgija, 3, 7-11.
  • Kucharski, M., 1986. The viscosity of multicomponent systems. Zeitschrift für Metallkunde, 77(6), 393- 396.
  • Milcheva, N. Romanowska, J. Vassilev, G., 2011. Sn-Ni-Bi liquid phase thermodynamic properties. Central European Journal of Chemistry, 9(1), 149-156.
  • Moelwyn-Hughes, E. A., 1961. The dissolved state. Physical Chemistry, Pergamon Press, Oxford.
  • Muggianu, Y. M. Gambino, M. Bross, J. P., 1975. Enthalpies of formation of liquid alloys bismuth-gallium-tin at 723K-choice of an analytical representation of integral and partial thermodynamic functions of mixing for this ternary-system. Journal de Chimie Physique, 72, 83-88.
  • Plevachuk, Y. Sklyarchuk, V. Yakymovych, A. Eckert, S. Willers, B. Eigenfeld, K., 2008. Density, viscosity, and electrical conductivity of hypoeutectic Al-Cu liquid alloys. Metallurgical and Materials Transactions A, 39(12), 3040-3045. Rhim, W. K. Ohsaka, K. Paradis, P. F. Spjut, R. E., 1999. Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation. Review of Scientific Instruments, 70(6), 2796-2801.
  • Schick, M. Brillo, J. Egry, I. Hallstedt, B., 2012. Viscosity of Al–Cu liquid alloys: measurement and thermodynamic description. Journal of Materials Science, 47(23), 8145-8152.
  • Schick, M. Brillo, J. Egry, I. Hallstedt, B., 2012. Viscosity of Al–Cu liquid alloys: measurement and thermodynamic description. Journal of Materials Science, 47(23), 8145-8152.
  • Schmitz, J. Hallstedt, B. Brillo, J. Egry, I. Schick, M., 2012. Density and thermal expansion of liquid Al–Si alloys. Journal of Materials Science, 47, 3706-3712.
  • Seetharaman, S. Sichen, D., 1994. Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing. Metallurgical and Materials Transactions B, 25(4), 589595.
  • Toop, G. W., 1965. Predicting ternary activities using binary data. Transactions of the Metallurgical Society of AIME, 233, 850-855.
  • Wang, D. Overfelt, R. A., 2002. Oscillating cup viscosity measurements of aluminum alloys: A201, A319 and A356. International Journal of Thermophysics, 23(4), 1063-1067.
  • Zhang, F. Du, Y. Liu, S. Jie, W., 2015. Modeling of the viscosity in the AL–Cu–Mg–Si system: Database construction. Calphad, 49, 79-86.
  • Zhang, G. H. Wang, L. J. Chou, K. C., 2010. A comparison of different geometrical models in calculating physicochemical properties of quaternary systems. Calphad. 34(4), 504-509.
  • Zhong, X. M. Liu, Y. H. Chou, K. C. Lu, X. G. Zivkovic, D. Zivkovic, Z., 2003. Estimating ternary viscosity using the thermodynamic geometric model. Journal of Phase Equilibria, 24(1), 7-11.
  • Zivkovic, D. Kaptay, G., 35th IOC on Mining and Metalugy, 30 Sept.- 30 Oct. 2003, Hotel Jezero, Bor Lake, Serbia & Montenegro.
  • Zivkovic, D. Manasijevic, D., 2005. An optimal method to calculate the viscosity of simple liquid ternary alloys from the measured binary data. Calphad, 29(1), 312-316.
  • Zivkovic, D. Zivkovic, Z. Yonghua, L. Chou, K. C., 2001. Calorimetric Investigations of the System Pb-Bi-Mg-Sb with Oelsen's Method. Part 2. Comparison of experimentally obtained values for lead activity with results of thermodynamic predicting. Journal of Thermal Analysis and Calorimetry, 66(3), 785-793.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yoğun Madde Fiziği
Bölüm Makaleler
Yazarlar

Hüseyin Arslan 0000-0003-1509-7725

Erken Görünüm Tarihi 29 Ağustos 2023
Yayımlanma Tarihi 31 Ağustos 2023
Gönderilme Tarihi 3 Kasım 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 23 Sayı: 4

Kaynak Göster

APA Arslan, H. (2023). Üçlü Au-Ag-Cu, Al-Cu-Si ve Dörtlü Al-Cu-Mg-Si Alaşım Sistemlerinin Viskozite Değerleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(4), 865-873. https://doi.org/10.35414/akufemubid.1198907
AMA Arslan H. Üçlü Au-Ag-Cu, Al-Cu-Si ve Dörtlü Al-Cu-Mg-Si Alaşım Sistemlerinin Viskozite Değerleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ağustos 2023;23(4):865-873. doi:10.35414/akufemubid.1198907
Chicago Arslan, Hüseyin. “Üçlü Au-Ag-Cu, Al-Cu-Si Ve Dörtlü Al-Cu-Mg-Si Alaşım Sistemlerinin Viskozite Değerleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, sy. 4 (Ağustos 2023): 865-73. https://doi.org/10.35414/akufemubid.1198907.
EndNote Arslan H (01 Ağustos 2023) Üçlü Au-Ag-Cu, Al-Cu-Si ve Dörtlü Al-Cu-Mg-Si Alaşım Sistemlerinin Viskozite Değerleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 4 865–873.
IEEE H. Arslan, “Üçlü Au-Ag-Cu, Al-Cu-Si ve Dörtlü Al-Cu-Mg-Si Alaşım Sistemlerinin Viskozite Değerleri”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 4, ss. 865–873, 2023, doi: 10.35414/akufemubid.1198907.
ISNAD Arslan, Hüseyin. “Üçlü Au-Ag-Cu, Al-Cu-Si Ve Dörtlü Al-Cu-Mg-Si Alaşım Sistemlerinin Viskozite Değerleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/4 (Ağustos 2023), 865-873. https://doi.org/10.35414/akufemubid.1198907.
JAMA Arslan H. Üçlü Au-Ag-Cu, Al-Cu-Si ve Dörtlü Al-Cu-Mg-Si Alaşım Sistemlerinin Viskozite Değerleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:865–873.
MLA Arslan, Hüseyin. “Üçlü Au-Ag-Cu, Al-Cu-Si Ve Dörtlü Al-Cu-Mg-Si Alaşım Sistemlerinin Viskozite Değerleri”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 4, 2023, ss. 865-73, doi:10.35414/akufemubid.1198907.
Vancouver Arslan H. Üçlü Au-Ag-Cu, Al-Cu-Si ve Dörtlü Al-Cu-Mg-Si Alaşım Sistemlerinin Viskozite Değerleri. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(4):865-73.