Microencapsulation and Characterization Studies of Brassica oleracea var. capitata L. (Cabbage) Plant Extract Using Response Surface Methodology
Yıl 2024,
Cilt: 24 Sayı: 1, 14 - 22, 27.02.2024
Elif Köksal
,
Fethiye Göde
Öz
In our study, cabbage plant extract containing the active ingredient S-methylmethionine (vitamin U) was successfully microencapsulated by complex coacervation method using two different natural polymeric wall materials consisting of Gelatin-Gum Arabic (GE-GA) and Gelatin-Sodium alginate (GE-SA). A response surface methodology (RSM) was used to optimize the encapsulation efficiency conditions. The encapsulation efficiency of the microencapsulated cabbage extract was investigated using different polymers in terms of two variables: the amount of core material (g) and the amount of crosslinker (mL). The highest yields obtained as a result of the experiments were 67.72% for gelatin-gum arabic and 54.68% for gelatin-sodium alginate. The morphological structures of the microcapsules with the highest efficiency were examined by optical microscope and scanning electron microscope (SEM). The Fourier transform infrared spectroscopy (FT-IR) was used to determine the presence of the active substance and the compounds used in microencapsulation in the system and to observe the spectrum change of the active substance in microcapsules.
Kaynakça
- Ahn, J. H., Kim, Y. P., Lee, Y. M., Seo, E. M., Lee, K. W., and Kim, H. S., 2008. Optimization of microencapsulation of seed oil by response surface methodology. Food Chemistry, 107(1), 98-105.
https://doi.org/10.1016/j.foodchem.2007.07.067.
- Aksoylu Özbek, Z., and Günç Ergönül, P., 2020. Optimisation of wall material composition of freeze–dried pumpkin seed oil microcapsules: Interaction effects of whey protein, maltodextrin, and gum Arabic by D–optimal mixture design approach. Food Hydrocolloids, 107, 105909.
https://doi.org/10.1016/j.foodhyd.2020.105909.
- Bayram, O., Köksal, E., ve Göde, F., 2020. Yanıt Yüzey Metodolojisi Şartlarında Karabaş Otu Yağının Kompleks Koaservasyon Yöntemi ile Enkapsülasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(2), 508-515.
https://doi.org/10.19113/sdufenbed.687943.
- Devi, N., Hazarika, D., Deka, C., and Kakati, D. K., 2012. Study of complex coacervation of gelatin A and sodium alginate for microencapsulation of olive oil. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 49, 936-945.
https://doi.org/10.1080/10601325.2012.722854.
- Dubey, R., Shami, T.C., and Rao, K.U.B., 2009. Microencapsulation technology and applications. Defence Science Journal, 59, 82– 95.
http://dx.doi.org/10.14429/dsj.59.1489.
- Goh, C.H., Heng, P.W.S., and Chan, L.W. 2012. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydrate Polymers, 88(1), 1-12.
https://doi.org/10.1016/j.carbpol.2011.11.012.
- Gomez-Estacaab, J., Comuniana, T.A., Monterob, P., Ferro-Furtadoc, R., and Favaro-Trindade, C.S., 2016. Encapsulation of an astaxanthin-containing lipid extract from shrimp waste by complex coacervation using a novel gelatin–cashew gum complex. Food Hydrocolloids, 61, 155-162.
https://doi.org/10.1016/j.foodhyd.2016.05.005.
- Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S., and Srawan, G. Y., 2010. Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation, 27(3), 187-197.
https://doi.org/10.3109/02652040903131301.
- Kim, W.-S., Yang, Y. J., Min, H. G., Song, M. G., Lee, J. S., Park, K.-Y., Kim, J.-J., Sung, J.-H., Choi, J.-S., and Cha, H.-J., 2010. Accelerated Wound Healing by S -Methylmethionine Sulfonium: Evidence of Dermal Fibroblast Activation via the ERK1/2 Pathway.Pharmacology, 85, 68–76.
https://doi.org/10.1159/000276495.
- Koksal, E., Bayram, O., Moral, E., and Gode, F., 2023. Microencapsulation of quinoa extract (Chenopodium quinoa Willd.) in response surface methodology conditions: Preparation and Characterization. Particulate Science and Technology, 41(2), 231-240.
https://doi.org/10.1080/02726351.2022.2072429.
- Koksal, E., Gode, F., Ozaltin, K., Karakurt, I., Suly, P., and Saha, P., 2023. Controlled Release of Vitamin U from Microencapsulated Brassica oleracea L. var.capitata Extract for Peptic Ulcer Treatment. Food and Bioprocess Technology, 16, 677-689.
http://doi.org/10.1007/s11947-022-02965-3.
- Koksal, E., and Gode, F., 2017. Production of microcapsules containing vitamin E with complex coacervation method. Süleyman Demirel University Faculty of Arts and Sciences Journal of Science, 12(1), 1-14.
- Kwak, H.-S. 2014. Nano-and Microencapsulation for Foods. John Wiley&Sons Incorporated, New York. 20-28.
Liu, H., Wang, L., Yang, T., Zhang, G., Huang, J., Sun, J., and Huo, J., 2016. Optimization and evaluation of fish oil microcapsules. Particuology, 29,162–168.
https://doi.org/10.1016/j.partic.2016.04.001.
- Mancer, D., Allemann, E., and Daoud, K., 2018. Metformin hydrochloride microencapsulation by complex coacervation: Study of size distribution and encapsulation yield using response surface methodology. Journal of Drug Delivery Science and Technology, 45, 184-195.
https://doi.org/10.1016/j.jddst.2018.03.015.
- Moral, E., Bayram, O., Köksal, E., Danaş, F., ve Göde, F., 2021. Kabak Çekirdeği Yağının Kompleks Koaservasyon Yöntemi ile Mikroenkapsülasyonu. Karaelmas Fen ve Mühendislik Dergisi, 11(2), 91-97.
- Muhoza, B., Xia, S., Wang, X., Zhang, X., Li, Y., and Zhang, S., 2020. Microencapsulation of essential oils by complex coacervation method: preparation, thermal stability, release properties and applications. Critical Reviews in Food Science and Nutrition, 62(5), 1363-1382.
https://doi.org/10.1080/10408398.2020.1843132
- Nesterenko, A., Alric, I., Silvestre, F., and Durrieu, V., 2014. Comparative study of encapsulation of vitamins with native and modified soy protein. Food Hydrocolloids, 38, 172-179.
https://doi.org/10.1016/j.foodhyd.2013.12.011.
- Obradović, N., Volić, M., Nedović, V., Rakin, M., and Bugarski, B., 2022. Microencapsulation of probiotic starter culture in protein–carbohydrate carriers using spray and freeze-drying processes: Implementation in whey-based beverages. Journal of Food Engineering, 321, 110948.
https://doi.org/10.1016/j.jfoodeng.2022.110948.
- Ocak, B. 2012. Complex coacervation of collagen hydrolysate extracted from leather solid wastes and chitosan for controlled release of lavender oil. Journal of environmental management, 100, 22-28.
https://doi.org/10.1016/j.jenvman.2012.01.026.
- Pérez-Limiñana, M. Á., Payá-Nohales, F. J., Francisca Arán-Ais, F., and Orgilés-Barceló, C., 2014. Effect of the shell-forming polymer ratio on the encapsulation of tea tree oil by complex coacervation as a natural biocide. Journal of Microencapsulation, 31(2), 176–183.
https://doi.org/10.3109/02652048.2013.824512.
- Pilkington, J. L., C. Preston, and R. L. Gomes. 2014. Comparison ofresponse surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin fromArtemisiaannua.Industrial Crops and Products, 58, 15–24.
https://doi.org/10.1016/j.indcrop.2014.03.016.
- Podse dek, A., Sosnowska, D., Redzynia, M., and Anders, B., 2006. Antioxidant capacity and content of Brassica oleracea dietary antioxidants. International Journal of Food Science and Technology, 41, 49-58.
https://doi.org/10.1111/j.1365-2621.2006.01260.x.
- Šamec, D., Piljac-Žegarac, J., Bogović, M., Halojanić, K., and Gruz, J., 2011. Antioxidant potency of White (Brassica oleracea L.var capitata) and Chinese (Brassica rapa L. var pekinensis (Lour.)) cabbage: The influence of development stage, cultivar choise and seed selection. Scienta Horticulturae, 128(2), 78-83.
https://doi.org/10.1016/j.scienta.2011.01.009.
- Siddiqui, A. O. 2019. Determination of chemical and physical parameters of different cabbage varieties under good agricultural practices (GAPs). Masters Thesis, Niğde Ömer Halis Demir University, Niğde, 64.
- Singh, M.N., Hemant, K.S.Y., Ram, M., and Shivakumar, H.G. 2010. Microencapsulation: A promising technique for controlled drug delivery. Research in Pharmaceutical Sciences, 5(2), 65-77. PMID: 21589795; PMCID: PMC3093624
- Sittipummongkol, K., Chuysinuan, P., Techasakul, S., Pisitsak, P., and Pechyen, C., 2019. Core shell microcapsules of neem seed oil extract containing azadirachtin and biodegradable polymers and their release characteristics. Polymer Bulletin, 76, 3803–3817.
https://doi.org/10.1007/s00289-018-2456-1.
- Song, J.-H., Lee, H. -R., and Shim, S.-M. 2017. Determination of S-methyl-L-methionine (SMM) from Brassicaceae family vegetables and characterization of the intestinal transport of SMM by Caco-2 cells. Journal of Food Science, 82(1), 36-43.
https://doi.org/10.1111/1750-3841.13556.
- Tözüm, M., S. 2019. Renk Değiştiren Boyarmaddelerin Mikrokapsülasyonu Ve Tekstil Materyallerine Uygulanması. Doktora Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta,279.
- Umer, H., Nigam, H., Tamboli, A.M., and Nainar, M.S., 2011. Microencapsulation: Process, Techniques and Applications. International Journal of Research in Pharmaceutical and Biomedical Sciences, 2(2), 474-481.
- Williams, A. J., Henley, W. E., Williams, C. A., Hurst, A. J., Logan, S., and Wyatt, K. M., 2013. Systematic review and meta-analysis of the association between childhood overweight and obesity and primary school diet and physical activity policies. International Journal of Behavioral Nutrition and Physical Activity, 10(1), 1-22.
http://dx.doi.org/10.1186/1479-5868-10-101.
- Zhang, Z.-Q., Pan, C.-H., and Chung, D., 2011. Tannic acid cross-linked gelatin– gum arabic coacervate microspheres for sustained release of allyl isothiocyanate: Characterization and in vitro release study. Food Research International, 44, 1000– 1007.
https://doi.org/10.1016/j.foodres.2011.02.044.
Yanıt Yüzey Metodolojisi Kullanılarak Brassica oleracea var. capitata L. (Lahana) Bitki Ekstresinin Mikroenkapsülasyon ve Karakterizasyon Çalışmaları
Yıl 2024,
Cilt: 24 Sayı: 1, 14 - 22, 27.02.2024
Elif Köksal
,
Fethiye Göde
Öz
Çalışmamızda S-metilmetiyonin (vitamin U) etken maddesini içeren lahana bitki ekstraktının, Jelatin-Arap zamkı (GE-GA) ve Jelatin-Sodyum aljinattan(GE-SA) oluşan iki farklı doğal polimerik duvar materyali kullanılarak kompleks koaservasyon yöntemiyle başarılı bir şekilde mikroenkapsüle edilmiştir. Kapsülleme verimliliği koşulları optimize etmek için bir yanıt yüzeyi metodolojisi (RSM) kullanılmıştır. Mikrokapsüllenmiş lahana ekstraktının kapsülleme verimliliği farklı polimerler kullanılarak iki değişken açısından araştırılmıştır: çekirdek madde miktarı(g) ve çapraz bağlayıcı miktarı (mL). Deneyler sonucunda elde edilen en yüksek verimler jelatin- arap zamkı için %67,72 ve jelatin-sodyum aljinat için de %54,68 olarak bulunmuştur. En yüksek verimlilik elde edilen mikrokapsüllerin morfolojik yapıları optik mikroskop ve taramalı elektron mikroskobu (SEM) ile incelenmiştir. Etken maddenin ve mikrokapsülasyonda kullanılan bileşiklerin sistemdeki varlığının belirlenmesi ve elde edilen mikrokapsüllerde etken maddenin spektrum değişiminin gözlenmesi için Fourier dönüşümü kızılötesi spektroskopi (FT-IR) kullanılmıştır.
Kaynakça
- Ahn, J. H., Kim, Y. P., Lee, Y. M., Seo, E. M., Lee, K. W., and Kim, H. S., 2008. Optimization of microencapsulation of seed oil by response surface methodology. Food Chemistry, 107(1), 98-105.
https://doi.org/10.1016/j.foodchem.2007.07.067.
- Aksoylu Özbek, Z., and Günç Ergönül, P., 2020. Optimisation of wall material composition of freeze–dried pumpkin seed oil microcapsules: Interaction effects of whey protein, maltodextrin, and gum Arabic by D–optimal mixture design approach. Food Hydrocolloids, 107, 105909.
https://doi.org/10.1016/j.foodhyd.2020.105909.
- Bayram, O., Köksal, E., ve Göde, F., 2020. Yanıt Yüzey Metodolojisi Şartlarında Karabaş Otu Yağının Kompleks Koaservasyon Yöntemi ile Enkapsülasyonu. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(2), 508-515.
https://doi.org/10.19113/sdufenbed.687943.
- Devi, N., Hazarika, D., Deka, C., and Kakati, D. K., 2012. Study of complex coacervation of gelatin A and sodium alginate for microencapsulation of olive oil. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 49, 936-945.
https://doi.org/10.1080/10601325.2012.722854.
- Dubey, R., Shami, T.C., and Rao, K.U.B., 2009. Microencapsulation technology and applications. Defence Science Journal, 59, 82– 95.
http://dx.doi.org/10.14429/dsj.59.1489.
- Goh, C.H., Heng, P.W.S., and Chan, L.W. 2012. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydrate Polymers, 88(1), 1-12.
https://doi.org/10.1016/j.carbpol.2011.11.012.
- Gomez-Estacaab, J., Comuniana, T.A., Monterob, P., Ferro-Furtadoc, R., and Favaro-Trindade, C.S., 2016. Encapsulation of an astaxanthin-containing lipid extract from shrimp waste by complex coacervation using a novel gelatin–cashew gum complex. Food Hydrocolloids, 61, 155-162.
https://doi.org/10.1016/j.foodhyd.2016.05.005.
- Jyothi, N. V. N., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S., and Srawan, G. Y., 2010. Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation, 27(3), 187-197.
https://doi.org/10.3109/02652040903131301.
- Kim, W.-S., Yang, Y. J., Min, H. G., Song, M. G., Lee, J. S., Park, K.-Y., Kim, J.-J., Sung, J.-H., Choi, J.-S., and Cha, H.-J., 2010. Accelerated Wound Healing by S -Methylmethionine Sulfonium: Evidence of Dermal Fibroblast Activation via the ERK1/2 Pathway.Pharmacology, 85, 68–76.
https://doi.org/10.1159/000276495.
- Koksal, E., Bayram, O., Moral, E., and Gode, F., 2023. Microencapsulation of quinoa extract (Chenopodium quinoa Willd.) in response surface methodology conditions: Preparation and Characterization. Particulate Science and Technology, 41(2), 231-240.
https://doi.org/10.1080/02726351.2022.2072429.
- Koksal, E., Gode, F., Ozaltin, K., Karakurt, I., Suly, P., and Saha, P., 2023. Controlled Release of Vitamin U from Microencapsulated Brassica oleracea L. var.capitata Extract for Peptic Ulcer Treatment. Food and Bioprocess Technology, 16, 677-689.
http://doi.org/10.1007/s11947-022-02965-3.
- Koksal, E., and Gode, F., 2017. Production of microcapsules containing vitamin E with complex coacervation method. Süleyman Demirel University Faculty of Arts and Sciences Journal of Science, 12(1), 1-14.
- Kwak, H.-S. 2014. Nano-and Microencapsulation for Foods. John Wiley&Sons Incorporated, New York. 20-28.
Liu, H., Wang, L., Yang, T., Zhang, G., Huang, J., Sun, J., and Huo, J., 2016. Optimization and evaluation of fish oil microcapsules. Particuology, 29,162–168.
https://doi.org/10.1016/j.partic.2016.04.001.
- Mancer, D., Allemann, E., and Daoud, K., 2018. Metformin hydrochloride microencapsulation by complex coacervation: Study of size distribution and encapsulation yield using response surface methodology. Journal of Drug Delivery Science and Technology, 45, 184-195.
https://doi.org/10.1016/j.jddst.2018.03.015.
- Moral, E., Bayram, O., Köksal, E., Danaş, F., ve Göde, F., 2021. Kabak Çekirdeği Yağının Kompleks Koaservasyon Yöntemi ile Mikroenkapsülasyonu. Karaelmas Fen ve Mühendislik Dergisi, 11(2), 91-97.
- Muhoza, B., Xia, S., Wang, X., Zhang, X., Li, Y., and Zhang, S., 2020. Microencapsulation of essential oils by complex coacervation method: preparation, thermal stability, release properties and applications. Critical Reviews in Food Science and Nutrition, 62(5), 1363-1382.
https://doi.org/10.1080/10408398.2020.1843132
- Nesterenko, A., Alric, I., Silvestre, F., and Durrieu, V., 2014. Comparative study of encapsulation of vitamins with native and modified soy protein. Food Hydrocolloids, 38, 172-179.
https://doi.org/10.1016/j.foodhyd.2013.12.011.
- Obradović, N., Volić, M., Nedović, V., Rakin, M., and Bugarski, B., 2022. Microencapsulation of probiotic starter culture in protein–carbohydrate carriers using spray and freeze-drying processes: Implementation in whey-based beverages. Journal of Food Engineering, 321, 110948.
https://doi.org/10.1016/j.jfoodeng.2022.110948.
- Ocak, B. 2012. Complex coacervation of collagen hydrolysate extracted from leather solid wastes and chitosan for controlled release of lavender oil. Journal of environmental management, 100, 22-28.
https://doi.org/10.1016/j.jenvman.2012.01.026.
- Pérez-Limiñana, M. Á., Payá-Nohales, F. J., Francisca Arán-Ais, F., and Orgilés-Barceló, C., 2014. Effect of the shell-forming polymer ratio on the encapsulation of tea tree oil by complex coacervation as a natural biocide. Journal of Microencapsulation, 31(2), 176–183.
https://doi.org/10.3109/02652048.2013.824512.
- Pilkington, J. L., C. Preston, and R. L. Gomes. 2014. Comparison ofresponse surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin fromArtemisiaannua.Industrial Crops and Products, 58, 15–24.
https://doi.org/10.1016/j.indcrop.2014.03.016.
- Podse dek, A., Sosnowska, D., Redzynia, M., and Anders, B., 2006. Antioxidant capacity and content of Brassica oleracea dietary antioxidants. International Journal of Food Science and Technology, 41, 49-58.
https://doi.org/10.1111/j.1365-2621.2006.01260.x.
- Šamec, D., Piljac-Žegarac, J., Bogović, M., Halojanić, K., and Gruz, J., 2011. Antioxidant potency of White (Brassica oleracea L.var capitata) and Chinese (Brassica rapa L. var pekinensis (Lour.)) cabbage: The influence of development stage, cultivar choise and seed selection. Scienta Horticulturae, 128(2), 78-83.
https://doi.org/10.1016/j.scienta.2011.01.009.
- Siddiqui, A. O. 2019. Determination of chemical and physical parameters of different cabbage varieties under good agricultural practices (GAPs). Masters Thesis, Niğde Ömer Halis Demir University, Niğde, 64.
- Singh, M.N., Hemant, K.S.Y., Ram, M., and Shivakumar, H.G. 2010. Microencapsulation: A promising technique for controlled drug delivery. Research in Pharmaceutical Sciences, 5(2), 65-77. PMID: 21589795; PMCID: PMC3093624
- Sittipummongkol, K., Chuysinuan, P., Techasakul, S., Pisitsak, P., and Pechyen, C., 2019. Core shell microcapsules of neem seed oil extract containing azadirachtin and biodegradable polymers and their release characteristics. Polymer Bulletin, 76, 3803–3817.
https://doi.org/10.1007/s00289-018-2456-1.
- Song, J.-H., Lee, H. -R., and Shim, S.-M. 2017. Determination of S-methyl-L-methionine (SMM) from Brassicaceae family vegetables and characterization of the intestinal transport of SMM by Caco-2 cells. Journal of Food Science, 82(1), 36-43.
https://doi.org/10.1111/1750-3841.13556.
- Tözüm, M., S. 2019. Renk Değiştiren Boyarmaddelerin Mikrokapsülasyonu Ve Tekstil Materyallerine Uygulanması. Doktora Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta,279.
- Umer, H., Nigam, H., Tamboli, A.M., and Nainar, M.S., 2011. Microencapsulation: Process, Techniques and Applications. International Journal of Research in Pharmaceutical and Biomedical Sciences, 2(2), 474-481.
- Williams, A. J., Henley, W. E., Williams, C. A., Hurst, A. J., Logan, S., and Wyatt, K. M., 2013. Systematic review and meta-analysis of the association between childhood overweight and obesity and primary school diet and physical activity policies. International Journal of Behavioral Nutrition and Physical Activity, 10(1), 1-22.
http://dx.doi.org/10.1186/1479-5868-10-101.
- Zhang, Z.-Q., Pan, C.-H., and Chung, D., 2011. Tannic acid cross-linked gelatin– gum arabic coacervate microspheres for sustained release of allyl isothiocyanate: Characterization and in vitro release study. Food Research International, 44, 1000– 1007.
https://doi.org/10.1016/j.foodres.2011.02.044.