Araştırma Makalesi
BibTex RIS Kaynak Göster

A Study on the Production of Riblet Patterns Providing Micro-scale Flow Control through FDM-type 3D Printers

Yıl 2024, Cilt: 24 Sayı: 1, 166 - 175, 27.02.2024
https://doi.org/10.35414/akufemubid.1285987

Öz

This study explores the Fused Deposition Modeling (FDM) additive manufacturing method as a practical alternative for flow characterization applications critical in aerospace technology. While there are significant studies in the literature on high-budget FDM devices for manufacturing high-dimensional consistency parts, research focusing on sub-millimeter riblet geometries using more accessible, practical, and flexible open-source devices remains limited. In this study, a printer that can be mechanically and programmatically modified was used to create parallel riblet patterns resembling wing structures on plates. Microscopic examinations and measurements were conducted on these riblets to address encountered issues. Observations revealed that hardware elements such as nozzle-table distance and nozzle circularity are crucial for homogeneous material extrusion. Additionally, it was observed that software-defined parameters like line width and flow rate significantly affect riblet dimensions. Particularly in experiments involving calibration of these parameters in open-source concept devices, riblet width, inter-riblet spacing, and riblet height were achieved with a high accuracy error rate of up to 1.83%, 1.33%, and 0.19%, respectively. Consequently, this study demonstrated the feasibility of producing riblets in this size and precision using widely available, cost-effective, and customizable FDM devices. Considering the significance of riblet structures in aerospace industries for flow control and surface modifications, this research aims to provide critical insights for the practical and effective production of more complex surface profiles in research and development activities.

Kaynakça

  • Bechert, D. W., Bruse, M., Hage, W., Van Der Hoeven, J. G. T. and Hoppe, G., 1997. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. Journal of Fluid Mechanics, 338, 59–87. https:/www.doi.org/10.1017/S0022112096004673
  • Bechert, D., and Bartenwerfer, M., 1989. The Viscous Flow on Surfaces with Longitudinal Ribs. Journal of Fluid Mechanics, 206, 105–129. https://www.doi.org/10.1017/S0022112089002247
  • Bhalodi, D., Zalavadiya, K., and Gurrala, P. K., 2019. Influence of temperature on polymer parts manufactured by fused deposition modeling process. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(3), 113. https://doi.org/10.1007/s40430-019-1616-z
  • Bhushan, B., Caspers, M., 2017. An overview of additive manufacturing (3D printing) for microfabrication. Microsystem Technologies, 23, 1117–1124. https://doi.org/10.1007/s00542-017-3342-8
  • Bixler, G. D. and Bhushan, B., 2013. Fluid drag reduction with shark-skin riblet inspired microstructured surfaces. Advanced Functional Materials, 23(36), 4507–4528. https://doi.org/10.1002/adfm.201203683
  • Brennan A. B., Baney R. H., Carman M. I., Estes T. G., Feinberg A. W., Wilson L. H., Schumacher J. F., 2010. Surface Topographies for Non-Toxic Bioadhesion Control. United States Patent no. 7, 650, 848.
  • Chen, H., Rao, F., Shang, X., Zhang, D., and Hagiwara, I., 2013. Biomimetic drag reduction study on herringbone riblets of bird feather. Journal of Bionic Engineering, 10(3), 341–349. https://doi.org/10.1016/S1672-6529(13)60229-2
  • Dai, W., Alkahtani, M., Hemmer, P. R., and Liang, H., 2019. Drag-reduction of 3D printed shark-skin-like surfaces. Friction, 7(6), 603–612. https://doi.org/10.1007/s40544-018-0246-2
  • Denkena B., Kohler J., Wang B., 2010. Manufacturing of functional riblet structures by profile grinding. Cirp Journal of Manufacturing Science and Technology, 3, 14. https://doi.org/10.1016/j.cirpj.2010.08.001
  • Dey, A., and Yodo, N., 2019. A systematic survey of FDM process parameter optimization and their influence on part characteristics. Journal of Manufacturing and Materials Processing, MDPI Multidisciplinary Digital Publishing Institute, 3(3), 64. https://doi.org/10.3390/jmmp3030064
  • Frenkel J., 1945. Viscous flow of crystalline bodies under the action of surface tension. Journal of Physics, 9, 385–395.
  • Geng, P, Zhao, J., Wu, W., Ye, W., Wang, Y., Wang, S., Zhang, S., 2019. Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament. Journal of Manufacturing Process, 37, 266–273. https://doi.org/10.1016/j.jmapro.2018.11.023
  • Gibson, I., Rosen, D. and Stucker, B., 2010. Additive manufacturing technologies, 3D printing, rapid prototyping, and direct digital manufacturing, SE, Springer, New York, NY, 107-112.
  • Gordeev, E. G., Galushko, A. S., and Ananikov, V. P., 2018. Improvement of quality of 3D printed objects by elimination of microscopic structural defects in fused deposition modeling. PLoS ONE, 13(6), e0198370. https://doi.org/10.1371/journal.pone.0198370
  • Guduru, K. K., and Srinivasu, G., 2020. Effect of post treatment on tensile properties of carbon reinforced PLA composite by 3D printing. In Materials Today: Proceedings, 33, 5403–5407. https://doi.org/10.1016/j.matpr.2020.03.128
  • Hirt G., Thome M., 2007. Large area rolling of functional metallic micro structures. Production Engineering, 1, 351-356. https://doi.org/10.1007/s11740-007-0067-z
  • Hossain, M. S., Espalin, D., Ramos, J., Perez, M. and Wicker, R. 2014. Improved Mechanical Properties of Fused Deposition Modeling-Manufactured Parts Through Build Parameter Modifications. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 136(6), 061002. https://doi.org/10.1115/1.4028538
  • Huang, S., Liu, P., Mokasdar, A., and Hou, L., 2013. Additive manufacturing and its societal impact: a literature review, International Journal of Advanced Manufacturing Technology, 67, 1191–1203. https://doi.org/10.1007/s00170-012-4558-5
  • Jung, Y. C. and Bhushan, B., 2010. Biomimetic structures for fluid drag reduction in laminar and turbulent flows. Journal of Physics Condensed Matter, 22(3), 035104. https://www.doi.org/10.1088/0953-8984/22/3/035104
  • Korkut V. and Yavuz H., 2020. Enhancing the tensile properties with minimal mass variation by revealing the effects of parameters in fused filament fabrication process, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(10), 525. https://doi.org/10.1007/s40430-020-02610-0
  • Marentic F. J., Morris T. L., 1992. Drag reduction article, United States Patent no. 5, 133, 516. Pearce, J. M., 2012. Building research equipment with free, open-source hardware, Science, 337, 6100, 1303–1304. https://doi.org/10.1126/science.1228183
  • Pearce, J. M., 2014. Open-Source Lab: How to Build Your Own Hardware and Reduce Research Costs, Elsevier, New York, USA, 1-5.
  • Rayna, T., and Striukova, L., 2016. From rapid prototyping to home fabrication: how 3D printing is changing business model innovation. Technological Forecasting and Social Change, 102, 214–224. https://doi.org/10.1016/j.techfore.2015.07.023
  • Sin, L. T., 2012. Polylactic Acid: PLA Biopolymer Technology and Applications, William Andrew, Boston, MA, USA. 57-66.
  • Tymrak, B., Kreiger, M. And Pearce, J., 2014. Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials and Design 58, 242–246. https://doi.org/10.1016/j.matdes.2014.02.038
  • Uriondo, A., Esperon-Miguez, M. and Perinpanayagam, S. 2015. The present and future of additive manufacturing in the aerospace sector: A review of important aspects. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(11), 2132–2147. https://doi.org/10.1177/0954410014568797
  • Vyavahare, S., Teraiya, S., Panghal, D. and Kumar, S., 2020. Fused deposition modelling: a review, Rapid Prototyping Journal, Emerald Group Holdings Ltd., 26(1), 176-201. https://doi.org/10.1108/RPJ-04-2019-0106
  • Walsh M. J. and Lindemann A. M., 1984. Optimization and application of riblets for turbulent drag reduction. 22nd Aerospace Sciences Meeting, Reno, NV, American Institute of Aeronautics and Astronautics Meeting Papers, New York. https://doi.org/10.2514/6.1984-347
  • Walsh M. J., 1983. Riblets as a viscous drag reduction technique. American Institute of Aeronautics and Astronautics Journal, 21(4), 485–486.
  • Walsh, M.J. and Weinstein, L.M., 1978. Drag and Heat Transfer on Surfaces with Small Longitudinal Fins. 11th Fluid and PlasmaDynamics Conference, American Institute of Aeronautics and Astronautics Meeting Papers, New York, 1161. https://doi.org/10.2514/6.1978-1161
  • Zaman, U. K., Boesch, E., Siadat, A., Rivette, M. and Baqai, A. A. 2019. Impact of fused deposition modeling (FDM) process parameters on strength of built parts using Taguchi’s design of experiments. International Journal of Advanced Manufacturing Technology, 101(5–8), 1215–1226. https://doi.org/10.1007/s00170-018-3014-6
  • AI-powered developer platform. https://github.com/, (17.04.2023)
  • Simplify3D, Print Quality Troubleshooting Guide. https://www.simplify3d.com/resources/print-quality-troubleshooting/, (17.04.2023)
  • DeRuvo, J., 2019. Simplify3D Troubleshooting: Common Questions Answered. https://all3dp.com/2/simplify3d-troubleshooting-the-most-common-questions-answered/, (17.04.2023)

FDM-tipi 3 Boyutlu Yazıcılar ile Mikro Ölçekte Akış Kontrolü Sağlayabilen Riblet Desenlerinin Üretimine Yönelik bir Çalışma

Yıl 2024, Cilt: 24 Sayı: 1, 166 - 175, 27.02.2024
https://doi.org/10.35414/akufemubid.1285987

Öz

Bu çalışma, havacılık ve uzay teknolojilerinde kritik öneme sahip olan akış karakterizasyonu uygulamalarına pratik bir alternatif olarak Fused Deposition Modelling (FDM)-tipi eklemeli imalat yöntemini araştırmaktadır. Literatürde, yüksek bütçe gerektiren FDM cihazlarıyla, yüksek boyutsal tutarlılıkta parça imalatı yapılabilmesi üzerine önemli çalışmalar mevcut olmasıyla birlikte; daha erişilebilir, pratik ve esnek bir kullanım imkanı sunan açık-kaynaklı cihazlar ile milimetre-altı riblet geometrileri üretiminin detayları üzerine yürütülmüş araştırmaların sayısı kısıtlıdır. Bu bağlamda çalışmada, mekanik ve yazılımsal olarak modifiye edilebilen bir yazıcı kullanılmış olup, kanat yapısını temsil eden plakalar üzerine, birbirine paralel riblet desenleri üretilmiştir. Ribletler üzerinde mikroskopik inceleme ve ölçümler gerçekleştirilerek, karşılaşılan sorunların çözümüne yönelik araştırmalar yapılmıştır. Gözlemler doğrultusunda, ilk etapta, nozzle-table mesafesi ve nozzle daireselliği gibi donanımsal unsurların homojen bir malzeme ekstrüzyonu açısından önem taşıdığı açığa çıkarılmıştır. Mekanik faktörlerin yanı-sıra, yazılımsal olarak belirlenen çizgi genişliği ve akış oranı parametrelerinin, riblet boyutları üzerinde belirleyici birer etken olduğu gözlemlenmiştir. Özellikle açık-kaynak konseptine dayalı cihazlarda bu parametrelerin kalibrasyonuna yönelik çözümler içeren deneylerin sonucunda; sırasıyla riblet genişliği, ribletler-arası boşluk mesafesi ve riblet yüksekliği olacak şekilde, hata miktarı en fazla %1,83, %1,33 ve %0,19 gibi yüksek doğrulukta riblet profilleri elde edilebilmiştir. Sonuçta, yaygın kullanılan, düşük maliyetli ve modifiye edilebilir yapıdaki FDM cihazlarıyla, bu boyutlarda ve doğrulukta riblet üretimi yapılabilmesine dair bulgular sunulmuştur. Akış kontrolü ve yüzey modifikasyonları alanlarında kullanılan riblet yapılarının havacılık ve uzay endüstrisindeki önemi göz önünde bulundurulduğunda bu çalışma, araştırma-geliştirme faaliyetlerinde kullanılabilecek daha karmaşık yüzey profillerinin, kısa sürelerde, pratik ve efektif bir şekilde üretilebilmesi için kritik bilgileri literatüre kazandırmayı amaçlamaktadır.

Kaynakça

  • Bechert, D. W., Bruse, M., Hage, W., Van Der Hoeven, J. G. T. and Hoppe, G., 1997. Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. Journal of Fluid Mechanics, 338, 59–87. https:/www.doi.org/10.1017/S0022112096004673
  • Bechert, D., and Bartenwerfer, M., 1989. The Viscous Flow on Surfaces with Longitudinal Ribs. Journal of Fluid Mechanics, 206, 105–129. https://www.doi.org/10.1017/S0022112089002247
  • Bhalodi, D., Zalavadiya, K., and Gurrala, P. K., 2019. Influence of temperature on polymer parts manufactured by fused deposition modeling process. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(3), 113. https://doi.org/10.1007/s40430-019-1616-z
  • Bhushan, B., Caspers, M., 2017. An overview of additive manufacturing (3D printing) for microfabrication. Microsystem Technologies, 23, 1117–1124. https://doi.org/10.1007/s00542-017-3342-8
  • Bixler, G. D. and Bhushan, B., 2013. Fluid drag reduction with shark-skin riblet inspired microstructured surfaces. Advanced Functional Materials, 23(36), 4507–4528. https://doi.org/10.1002/adfm.201203683
  • Brennan A. B., Baney R. H., Carman M. I., Estes T. G., Feinberg A. W., Wilson L. H., Schumacher J. F., 2010. Surface Topographies for Non-Toxic Bioadhesion Control. United States Patent no. 7, 650, 848.
  • Chen, H., Rao, F., Shang, X., Zhang, D., and Hagiwara, I., 2013. Biomimetic drag reduction study on herringbone riblets of bird feather. Journal of Bionic Engineering, 10(3), 341–349. https://doi.org/10.1016/S1672-6529(13)60229-2
  • Dai, W., Alkahtani, M., Hemmer, P. R., and Liang, H., 2019. Drag-reduction of 3D printed shark-skin-like surfaces. Friction, 7(6), 603–612. https://doi.org/10.1007/s40544-018-0246-2
  • Denkena B., Kohler J., Wang B., 2010. Manufacturing of functional riblet structures by profile grinding. Cirp Journal of Manufacturing Science and Technology, 3, 14. https://doi.org/10.1016/j.cirpj.2010.08.001
  • Dey, A., and Yodo, N., 2019. A systematic survey of FDM process parameter optimization and their influence on part characteristics. Journal of Manufacturing and Materials Processing, MDPI Multidisciplinary Digital Publishing Institute, 3(3), 64. https://doi.org/10.3390/jmmp3030064
  • Frenkel J., 1945. Viscous flow of crystalline bodies under the action of surface tension. Journal of Physics, 9, 385–395.
  • Geng, P, Zhao, J., Wu, W., Ye, W., Wang, Y., Wang, S., Zhang, S., 2019. Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament. Journal of Manufacturing Process, 37, 266–273. https://doi.org/10.1016/j.jmapro.2018.11.023
  • Gibson, I., Rosen, D. and Stucker, B., 2010. Additive manufacturing technologies, 3D printing, rapid prototyping, and direct digital manufacturing, SE, Springer, New York, NY, 107-112.
  • Gordeev, E. G., Galushko, A. S., and Ananikov, V. P., 2018. Improvement of quality of 3D printed objects by elimination of microscopic structural defects in fused deposition modeling. PLoS ONE, 13(6), e0198370. https://doi.org/10.1371/journal.pone.0198370
  • Guduru, K. K., and Srinivasu, G., 2020. Effect of post treatment on tensile properties of carbon reinforced PLA composite by 3D printing. In Materials Today: Proceedings, 33, 5403–5407. https://doi.org/10.1016/j.matpr.2020.03.128
  • Hirt G., Thome M., 2007. Large area rolling of functional metallic micro structures. Production Engineering, 1, 351-356. https://doi.org/10.1007/s11740-007-0067-z
  • Hossain, M. S., Espalin, D., Ramos, J., Perez, M. and Wicker, R. 2014. Improved Mechanical Properties of Fused Deposition Modeling-Manufactured Parts Through Build Parameter Modifications. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 136(6), 061002. https://doi.org/10.1115/1.4028538
  • Huang, S., Liu, P., Mokasdar, A., and Hou, L., 2013. Additive manufacturing and its societal impact: a literature review, International Journal of Advanced Manufacturing Technology, 67, 1191–1203. https://doi.org/10.1007/s00170-012-4558-5
  • Jung, Y. C. and Bhushan, B., 2010. Biomimetic structures for fluid drag reduction in laminar and turbulent flows. Journal of Physics Condensed Matter, 22(3), 035104. https://www.doi.org/10.1088/0953-8984/22/3/035104
  • Korkut V. and Yavuz H., 2020. Enhancing the tensile properties with minimal mass variation by revealing the effects of parameters in fused filament fabrication process, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(10), 525. https://doi.org/10.1007/s40430-020-02610-0
  • Marentic F. J., Morris T. L., 1992. Drag reduction article, United States Patent no. 5, 133, 516. Pearce, J. M., 2012. Building research equipment with free, open-source hardware, Science, 337, 6100, 1303–1304. https://doi.org/10.1126/science.1228183
  • Pearce, J. M., 2014. Open-Source Lab: How to Build Your Own Hardware and Reduce Research Costs, Elsevier, New York, USA, 1-5.
  • Rayna, T., and Striukova, L., 2016. From rapid prototyping to home fabrication: how 3D printing is changing business model innovation. Technological Forecasting and Social Change, 102, 214–224. https://doi.org/10.1016/j.techfore.2015.07.023
  • Sin, L. T., 2012. Polylactic Acid: PLA Biopolymer Technology and Applications, William Andrew, Boston, MA, USA. 57-66.
  • Tymrak, B., Kreiger, M. And Pearce, J., 2014. Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials and Design 58, 242–246. https://doi.org/10.1016/j.matdes.2014.02.038
  • Uriondo, A., Esperon-Miguez, M. and Perinpanayagam, S. 2015. The present and future of additive manufacturing in the aerospace sector: A review of important aspects. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 229(11), 2132–2147. https://doi.org/10.1177/0954410014568797
  • Vyavahare, S., Teraiya, S., Panghal, D. and Kumar, S., 2020. Fused deposition modelling: a review, Rapid Prototyping Journal, Emerald Group Holdings Ltd., 26(1), 176-201. https://doi.org/10.1108/RPJ-04-2019-0106
  • Walsh M. J. and Lindemann A. M., 1984. Optimization and application of riblets for turbulent drag reduction. 22nd Aerospace Sciences Meeting, Reno, NV, American Institute of Aeronautics and Astronautics Meeting Papers, New York. https://doi.org/10.2514/6.1984-347
  • Walsh M. J., 1983. Riblets as a viscous drag reduction technique. American Institute of Aeronautics and Astronautics Journal, 21(4), 485–486.
  • Walsh, M.J. and Weinstein, L.M., 1978. Drag and Heat Transfer on Surfaces with Small Longitudinal Fins. 11th Fluid and PlasmaDynamics Conference, American Institute of Aeronautics and Astronautics Meeting Papers, New York, 1161. https://doi.org/10.2514/6.1978-1161
  • Zaman, U. K., Boesch, E., Siadat, A., Rivette, M. and Baqai, A. A. 2019. Impact of fused deposition modeling (FDM) process parameters on strength of built parts using Taguchi’s design of experiments. International Journal of Advanced Manufacturing Technology, 101(5–8), 1215–1226. https://doi.org/10.1007/s00170-018-3014-6
  • AI-powered developer platform. https://github.com/, (17.04.2023)
  • Simplify3D, Print Quality Troubleshooting Guide. https://www.simplify3d.com/resources/print-quality-troubleshooting/, (17.04.2023)
  • DeRuvo, J., 2019. Simplify3D Troubleshooting: Common Questions Answered. https://all3dp.com/2/simplify3d-troubleshooting-the-most-common-questions-answered/, (17.04.2023)
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği, Uzay Mühendisliği
Bölüm Makaleler
Yazarlar

Volkan Korkut 0000-0002-9095-4056

Hurrem Akbıyık 0000-0002-1880-052X

Yayımlanma Tarihi 27 Şubat 2024
Gönderilme Tarihi 19 Nisan 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 24 Sayı: 1

Kaynak Göster

APA Korkut, V., & Akbıyık, H. (2024). A Study on the Production of Riblet Patterns Providing Micro-scale Flow Control through FDM-type 3D Printers. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 24(1), 166-175. https://doi.org/10.35414/akufemubid.1285987
AMA Korkut V, Akbıyık H. A Study on the Production of Riblet Patterns Providing Micro-scale Flow Control through FDM-type 3D Printers. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Şubat 2024;24(1):166-175. doi:10.35414/akufemubid.1285987
Chicago Korkut, Volkan, ve Hurrem Akbıyık. “A Study on the Production of Riblet Patterns Providing Micro-Scale Flow Control through FDM-Type 3D Printers”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24, sy. 1 (Şubat 2024): 166-75. https://doi.org/10.35414/akufemubid.1285987.
EndNote Korkut V, Akbıyık H (01 Şubat 2024) A Study on the Production of Riblet Patterns Providing Micro-scale Flow Control through FDM-type 3D Printers. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24 1 166–175.
IEEE V. Korkut ve H. Akbıyık, “A Study on the Production of Riblet Patterns Providing Micro-scale Flow Control through FDM-type 3D Printers”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 1, ss. 166–175, 2024, doi: 10.35414/akufemubid.1285987.
ISNAD Korkut, Volkan - Akbıyık, Hurrem. “A Study on the Production of Riblet Patterns Providing Micro-Scale Flow Control through FDM-Type 3D Printers”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 24/1 (Şubat 2024), 166-175. https://doi.org/10.35414/akufemubid.1285987.
JAMA Korkut V, Akbıyık H. A Study on the Production of Riblet Patterns Providing Micro-scale Flow Control through FDM-type 3D Printers. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24:166–175.
MLA Korkut, Volkan ve Hurrem Akbıyık. “A Study on the Production of Riblet Patterns Providing Micro-Scale Flow Control through FDM-Type 3D Printers”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 24, sy. 1, 2024, ss. 166-75, doi:10.35414/akufemubid.1285987.
Vancouver Korkut V, Akbıyık H. A Study on the Production of Riblet Patterns Providing Micro-scale Flow Control through FDM-type 3D Printers. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2024;24(1):166-75.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.