Araştırma Makalesi
BibTex RIS Kaynak Göster

Değişken pasif eleman rijitliği içeren bir Hill tipi kas modelinin simülasyonu ve performans analizi

Yıl 2025, Cilt: 25 Sayı: 1, 187 - 195

Öz

Hill tipi kas modelleri başta kas-iskelet sistemleri simülasyonlarında esas alınan kas kuvvetlerinin hesaplanması olmak üzere kasların çeşitli biyomekanik ve fizyolojik özelliklerinin anlaşılmasında kullanılmaktadırlar. Klasik bir modelde kasılma birimi, paralel ve elastik elemanlar aracılığıyla kas yapısındaki aktin, miyozin, titin ve diğer proteinlerin etkileşimleri matematiksel olarak ifade edilmektedir. Ancak aktif uzama sonrası ortaya çıkan ve kas yapısındaki titin proteini ile ilişkilendirilen kalıntı kuvvet artışlarının bu tip reolojik modellerle simülasyonları yetersiz görünmektedir. Bu çalışmada klasik bir Hill tipi kas modeli için pasif eleman katılığındaki değişimin toplam kas kuvvetinde ve kalıntı kuvvet artışındaki rolü incelenmiştir. Pasif eleman için katılık değeri normal değerin yanı sıra kuvvet-uzunluk eğrisinde sağ ve sol kısımlara kaydırılmış ve model cevapları elde edilmiştir. Ayrıca farklı eksantrik kasılma hızları için de simülasyonlar tekrar edilmiş, tüm durumlar için kas kuvvetleri ve kalıntı kuvvet artışları hesaplanmıştır. Sonuçlar göz önüne alındığında, normal katılık için herhangi bir kalıntı kuvvet artışı gözlenmemiştir. Ancak aktivasyon ve uzamaya bağlı olarak pasif eleman katılığının sola kaydırıldığı durumlarda pozitif kalıntı kuvvet artışları elde edilmiştir. Buna göre pasif elemanların davranışındaki uygun modifikasyonlar kalıntı kuvvet artışı gibi deneysel özelliklerin simüle edilmesinde etkili olabilmektedir.

Kaynakça

  • Abbott B.C., Aubert X.M., 1952. The force exerted by active striated muscle during and after change of length. The Journal of Physiology (Lond), 117, 77– 86. https:/doi.org/10.1113/jphysiol.1952.sp004733
  • Blümel M., Hooper S.L., Guschlbauer C., White W.E., Büschges A., 2012. Determining all parameters necessary to build Hill-type muscle models from experiments on single muscles. Biological Cybernetics, 106, 543– 558. https:/doi.org/10.1007/s00422-012-0531-5
  • Blümel M., Guschlbauer C., Daun-Gruhn S., Hooper S.L., Büschges A., 2012a. Hill-type muscle model parameters determined from experiments on single muscles show large animal-to-animal variation. Biological Cybernetics, 106, 559–571. https:/doi.org/10.1007/s00422-012-0530-6
  • Blümel M., Guschlbauer C., Hooper S.L., Büschges A., 2012b. Using individual-muscle specific instead of acrossmuscle mean data halves muscle simulation error. Biological Cybernetics, 106, 573–585.
  • Bujalski, P., Martins, J. and Stirling, L. A., 2018. Monte Carlo analysis of muscle force estimation sensitivity to muscle-tendon properties using a Hill-based muscle model. Journal of Biomechanics, 79, 67–77. https:/doi.org/10.1016/j.jbiomech.2018.07.045
  • Cadova, M., Vilimek, M. and Daniel, M.A., 2014. Comparative study of muscle force estimates using Huxley’s and Hill’s muscle model. Computer Methods in Biomechanics and Biomedical Engineering, 17(4), 311–317. https:/doi.org/10.1080/10255842.2012.683426
  • Caillet A.H., Phillips A.T.M., Farina D., Modenese L., 2023. Motoneuron-driven computational muscle modelling with motor unit resolution and subject-specific musculoskeletal anatomy. PLoS Computational Biology ,19(12): e1011606. https://doi.org/10.1371/journal.pcbi.1011606
  • Erdemir A., McLean S., Herzog W., Van Den Bogert A.J., 2007. Model-based estimation of muscle forces exerted during movements. Clinical Biomechanics, 22, 131–54. https:/doi.org/10.1016/j.clinbiomech.2006.09.005
  • Forcinito, M. M., Epstein, M. M. and Herzog ,W. W., 1998. Can a rheological muscle model predict force depression/enhancement? Journal of Biomechanics, 31, 1093–1099. https:/doi.org/10.1016/S0021-9290(98)00132-8
  • Gordon, A.M., Huxley, A.F. and Julian F.J., 1966. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. Journal of Physiology, 184(1), 170-92. https:/doi.org/10.1113/jphysiol.1966.sp007909
  • Herzog W., Lee E.J. and Rassier D.E., 2006. Residual force enhancement in skeletal muscle. Journal of Physiology, 574, 635–642. https:/doi.org/10.1113/jphysiol.2006.107748
  • Herzog W., Schappacher G., DuVall M., Leonard T.R., Herzog J.A., 2016. Residual force enhancement following eccentric contractions: a new mechanism involving titin. Physiology 31(4), 300–12. https:/doi.org/10.1152/physiol.00049.2014
  • Herzog, W., 2018. The multiple roles of titin in muscle contraction and force production. Biophysical Reviews, 10, 1187-1199. https:/doi.org/10.1007/s12551-017-0395-y
  • Herzog, W., 2014. Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions. Journal of Applied Physiology, 116, 1407-1417. https:/doi.org/10.1152/japplphysiol.00069.2013
  • Hill, A.V., 1938. The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society B: Biological Sciences, 126, 136–195. https:/doi.org/10.1098/rspb.1938.0050
  • Krylow, A. M., Sandercock, T. G., 1997. Dynamic Force Responses of Muscle Involving Eccentric Contraction. Journal of Biomechanics, 30(1), 27–33. https:/doi.org/10.1016/S0021-9290(96)00097-8
  • Understanding altered contractile properties in advanced age: insights from a systematic muscle modelling approach. Biomechanics and Modeling in Mechanobiology, 22(1):309–337. https://doi.org/10.1007/s10237-022-01651-9
  • McGowan, C. P., Neptune, R. R. and Herzog, W., 2013. A phenomenological muscle model to assess history dependent effects in human movement. Journal of Biomechanics, 46, 151-157. https:/doi.org/10.1016/j.jbiomech.2012.10.034
  • Nigg, B.M., and Herzog, W., 1994. Biomechanics of the Musculo-Skeletal System, JohnWiley&Sons, Toronto
  • Reik, S., Chapman, A.E. and Milner, T.A., 1999. Simulation of muscle force and internal kinematics of extensor carpi radialis brevis during backhand tennis stroke: implications for injury. Clinical Biomechanics, 14, 477–83. https:/doi.org/10.1016/S0268-0033(98)90097-3
  • Rockenfeller, R., Günther, M., Schmitt, S., Götz, T., 2015. Comparative sensitivity analysis of muscle activation dynamics. Computational and Mathematical Methods in Medicine, 1–16. https:/doi.org/10.1155/2015/585409
  • Schappacher-Tilp, G., Leonard, T., Desch, G., Herzog, W.A., 2015. Novel three-filament model of force generation in eccentric contraction of skeletal muscles. PLos One, 10: 10, e01 117634. https:/doi.org/10.1371/journal.pone.0117634
  • Siebert T., Rode C., Herzog W., Till O., Blickhan R., 2008. Nonlinearities make a difference: comparison of two common Hill-type models with real muscle. Biol Cybern., 98(2), 133–43.
  • Tam, C., 2022. The dynamics of skeletal muscle: a computational study. Master thesis, Department of Mathematics in Simon Fraser University, Burnaby, 91.
  • Van Den Bogert, A.J., Gerritsen, K.G.M., Cole, G.K., 1998. Human muscle modelling from a user’s perspective. Journal of Electromyography and Kinesiology, 8, 119–124. https:/doi.org/10.1016/S1050-6411(97)00028-X
  • Wakeling J.M., Febrer-Nafría M., De Groote F. 2023. A review of the efforts to develop muscle and musculoskeletal models for biomechanics in the last 50 years. Journal of Biomechanics. 155, 111657. https://doi.org/10.1016/j.jbiomech.2023.111657
  • Yeo, S.H., Verheul, J., Herzog, W. and Sueda, S., 2023. Numerical instability of Hill-type muscle models. Journal of the Royal Society Interface, 20(199), 20220430. https:/doi.org/10.1098/rsif.2022.0430
  • Zajac, F.E., 1989. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical reviews in biomedical engineering, 17(4), 359–411.

Simulation and performance analysis of a Hill-type muscle model including variable passive element stiffness

Yıl 2025, Cilt: 25 Sayı: 1, 187 - 195

Öz

Hill-type muscle models are used to perceive various biomechanical and physiological properties of muscles, particularly for calculating muscle forces used in simulations of the musculoskeletal systems. In a classical model, the interactions of actin, myosin, titin and other proteins in the muscle structure are expressed mathematically through the contractile unit, parallel and elastic elements. However, simulation of the residual force enhancement that occurs following active lengthening and thought to be associated with the titin protein in the muscle structure with such rheological models seems unsatisfactory. In this study, the role of changes in passive element stiffness in the total muscle force and residual force enhancement was investigated for a classical Hill-type muscle model. Besides its normal value, stiffness curve for the passive element was shifted to the right and left parts of the force-length relationship, and model responses were obtained. Furthermore, simulations were repeated for different eccentric contraction velocities, and muscle forces as well as residual force enhancements were calculated for all cases. Considering the results, none of residual force enhancement was observed for normal stiffness curves. However, in cases consisting of shift towards left due to activation and stretch, positive residual force enhancements were obtained. Accordingly, proper modifications in the behavior of passive elements can be effective in simulations of experimental properties such as residual force enhancement.

Kaynakça

  • Abbott B.C., Aubert X.M., 1952. The force exerted by active striated muscle during and after change of length. The Journal of Physiology (Lond), 117, 77– 86. https:/doi.org/10.1113/jphysiol.1952.sp004733
  • Blümel M., Hooper S.L., Guschlbauer C., White W.E., Büschges A., 2012. Determining all parameters necessary to build Hill-type muscle models from experiments on single muscles. Biological Cybernetics, 106, 543– 558. https:/doi.org/10.1007/s00422-012-0531-5
  • Blümel M., Guschlbauer C., Daun-Gruhn S., Hooper S.L., Büschges A., 2012a. Hill-type muscle model parameters determined from experiments on single muscles show large animal-to-animal variation. Biological Cybernetics, 106, 559–571. https:/doi.org/10.1007/s00422-012-0530-6
  • Blümel M., Guschlbauer C., Hooper S.L., Büschges A., 2012b. Using individual-muscle specific instead of acrossmuscle mean data halves muscle simulation error. Biological Cybernetics, 106, 573–585.
  • Bujalski, P., Martins, J. and Stirling, L. A., 2018. Monte Carlo analysis of muscle force estimation sensitivity to muscle-tendon properties using a Hill-based muscle model. Journal of Biomechanics, 79, 67–77. https:/doi.org/10.1016/j.jbiomech.2018.07.045
  • Cadova, M., Vilimek, M. and Daniel, M.A., 2014. Comparative study of muscle force estimates using Huxley’s and Hill’s muscle model. Computer Methods in Biomechanics and Biomedical Engineering, 17(4), 311–317. https:/doi.org/10.1080/10255842.2012.683426
  • Caillet A.H., Phillips A.T.M., Farina D., Modenese L., 2023. Motoneuron-driven computational muscle modelling with motor unit resolution and subject-specific musculoskeletal anatomy. PLoS Computational Biology ,19(12): e1011606. https://doi.org/10.1371/journal.pcbi.1011606
  • Erdemir A., McLean S., Herzog W., Van Den Bogert A.J., 2007. Model-based estimation of muscle forces exerted during movements. Clinical Biomechanics, 22, 131–54. https:/doi.org/10.1016/j.clinbiomech.2006.09.005
  • Forcinito, M. M., Epstein, M. M. and Herzog ,W. W., 1998. Can a rheological muscle model predict force depression/enhancement? Journal of Biomechanics, 31, 1093–1099. https:/doi.org/10.1016/S0021-9290(98)00132-8
  • Gordon, A.M., Huxley, A.F. and Julian F.J., 1966. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. Journal of Physiology, 184(1), 170-92. https:/doi.org/10.1113/jphysiol.1966.sp007909
  • Herzog W., Lee E.J. and Rassier D.E., 2006. Residual force enhancement in skeletal muscle. Journal of Physiology, 574, 635–642. https:/doi.org/10.1113/jphysiol.2006.107748
  • Herzog W., Schappacher G., DuVall M., Leonard T.R., Herzog J.A., 2016. Residual force enhancement following eccentric contractions: a new mechanism involving titin. Physiology 31(4), 300–12. https:/doi.org/10.1152/physiol.00049.2014
  • Herzog, W., 2018. The multiple roles of titin in muscle contraction and force production. Biophysical Reviews, 10, 1187-1199. https:/doi.org/10.1007/s12551-017-0395-y
  • Herzog, W., 2014. Mechanisms of enhanced force production in lengthening (eccentric) muscle contractions. Journal of Applied Physiology, 116, 1407-1417. https:/doi.org/10.1152/japplphysiol.00069.2013
  • Hill, A.V., 1938. The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society B: Biological Sciences, 126, 136–195. https:/doi.org/10.1098/rspb.1938.0050
  • Krylow, A. M., Sandercock, T. G., 1997. Dynamic Force Responses of Muscle Involving Eccentric Contraction. Journal of Biomechanics, 30(1), 27–33. https:/doi.org/10.1016/S0021-9290(96)00097-8
  • Understanding altered contractile properties in advanced age: insights from a systematic muscle modelling approach. Biomechanics and Modeling in Mechanobiology, 22(1):309–337. https://doi.org/10.1007/s10237-022-01651-9
  • McGowan, C. P., Neptune, R. R. and Herzog, W., 2013. A phenomenological muscle model to assess history dependent effects in human movement. Journal of Biomechanics, 46, 151-157. https:/doi.org/10.1016/j.jbiomech.2012.10.034
  • Nigg, B.M., and Herzog, W., 1994. Biomechanics of the Musculo-Skeletal System, JohnWiley&Sons, Toronto
  • Reik, S., Chapman, A.E. and Milner, T.A., 1999. Simulation of muscle force and internal kinematics of extensor carpi radialis brevis during backhand tennis stroke: implications for injury. Clinical Biomechanics, 14, 477–83. https:/doi.org/10.1016/S0268-0033(98)90097-3
  • Rockenfeller, R., Günther, M., Schmitt, S., Götz, T., 2015. Comparative sensitivity analysis of muscle activation dynamics. Computational and Mathematical Methods in Medicine, 1–16. https:/doi.org/10.1155/2015/585409
  • Schappacher-Tilp, G., Leonard, T., Desch, G., Herzog, W.A., 2015. Novel three-filament model of force generation in eccentric contraction of skeletal muscles. PLos One, 10: 10, e01 117634. https:/doi.org/10.1371/journal.pone.0117634
  • Siebert T., Rode C., Herzog W., Till O., Blickhan R., 2008. Nonlinearities make a difference: comparison of two common Hill-type models with real muscle. Biol Cybern., 98(2), 133–43.
  • Tam, C., 2022. The dynamics of skeletal muscle: a computational study. Master thesis, Department of Mathematics in Simon Fraser University, Burnaby, 91.
  • Van Den Bogert, A.J., Gerritsen, K.G.M., Cole, G.K., 1998. Human muscle modelling from a user’s perspective. Journal of Electromyography and Kinesiology, 8, 119–124. https:/doi.org/10.1016/S1050-6411(97)00028-X
  • Wakeling J.M., Febrer-Nafría M., De Groote F. 2023. A review of the efforts to develop muscle and musculoskeletal models for biomechanics in the last 50 years. Journal of Biomechanics. 155, 111657. https://doi.org/10.1016/j.jbiomech.2023.111657
  • Yeo, S.H., Verheul, J., Herzog, W. and Sueda, S., 2023. Numerical instability of Hill-type muscle models. Journal of the Royal Society Interface, 20(199), 20220430. https:/doi.org/10.1098/rsif.2022.0430
  • Zajac, F.E., 1989. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical reviews in biomedical engineering, 17(4), 359–411.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Faruk Örteş 0000-0003-4802-3810

Bahar Alanbel Ersin 0000-0002-9249-2502

Erken Görünüm Tarihi 28 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 21 Mart 2024
Kabul Tarihi 4 Eylül 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 1

Kaynak Göster

APA Örteş, F., & Alanbel Ersin, B. (2025). Değişken pasif eleman rijitliği içeren bir Hill tipi kas modelinin simülasyonu ve performans analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(1), 187-195.
AMA Örteş F, Alanbel Ersin B. Değişken pasif eleman rijitliği içeren bir Hill tipi kas modelinin simülasyonu ve performans analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ocak 2025;25(1):187-195.
Chicago Örteş, Faruk, ve Bahar Alanbel Ersin. “Değişken Pasif Eleman rijitliği içeren Bir Hill Tipi Kas Modelinin simülasyonu Ve Performans Analizi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, sy. 1 (Ocak 2025): 187-95.
EndNote Örteş F, Alanbel Ersin B (01 Ocak 2025) Değişken pasif eleman rijitliği içeren bir Hill tipi kas modelinin simülasyonu ve performans analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 1 187–195.
IEEE F. Örteş ve B. Alanbel Ersin, “Değişken pasif eleman rijitliği içeren bir Hill tipi kas modelinin simülasyonu ve performans analizi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 1, ss. 187–195, 2025.
ISNAD Örteş, Faruk - Alanbel Ersin, Bahar. “Değişken Pasif Eleman rijitliği içeren Bir Hill Tipi Kas Modelinin simülasyonu Ve Performans Analizi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/1 (Ocak 2025), 187-195.
JAMA Örteş F, Alanbel Ersin B. Değişken pasif eleman rijitliği içeren bir Hill tipi kas modelinin simülasyonu ve performans analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:187–195.
MLA Örteş, Faruk ve Bahar Alanbel Ersin. “Değişken Pasif Eleman rijitliği içeren Bir Hill Tipi Kas Modelinin simülasyonu Ve Performans Analizi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 1, 2025, ss. 187-95.
Vancouver Örteş F, Alanbel Ersin B. Değişken pasif eleman rijitliği içeren bir Hill tipi kas modelinin simülasyonu ve performans analizi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(1):187-95.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.