Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of GNP Addition on Thermal and Electrical Properties of Polycarbonate-poly(butylene terephthalate) Blends

Yıl 2025, Cilt: 25 Sayı: 1, 144 - 151

Öz

PC-PBT/GNP nanocomposite samples were fabricated via melt-compounding technique. The agglomeration state of the produced samples was investigated via optical microscopy. The thermal properties of the samples were assessed with DSC and TGA techniques. Electrical conductivity tests were also performed to determine whether a conductive pathway is established due to GNP addition. The crystallinity calculations derived from DSC measurements showed that the crystallinity of samples was reduced with increasing GNP content. The increased degradation temperatures with increasing filler content showed that a slight improvement in the thermal stability of the PC-PBT blends is achieved by increasing the filler ratio. Electrical conductivity test results indicated establishment of a conductive pathway at higher filler ratios with 1.35 x 10-4 S/m and 6.89 x 10-4 S/m conductivity values for 5 % and 7 % filler weight fractions, respectively.

Proje Numarası

123M666 (Tübitak 1002/A)

Kaynakça

  • Alshammari, B. A., Wilkinson, A. N., Alotaibi, B. M., Alotibi, M. F., 2022. Influence of Carbon Micro-and Nano-Fillers on the Viscoelastic Properties of Polyethylene Terephthalate. Polymers, 14 (12) 2440. https://doi.org/10.3390/polym14122440
  • Ajitha, A. R., Mathew, L. P., Thomas, S., 2020. Compatibilization of polymer blends by micro and nanofillers. Compatibilization of Polymer Blends: Micro and Nano Scale Phase Morphologies, Interphase Characterization, and Properties, 179–203. https://doi.org/10.1016/B978-0-12-816006-0.00006-2
  • Bai, L., Liu, Z., Yu, C., Ma, M., Chen, S., Shi, Y., He., H, Wang, X. 2022. Enhanced interfacial adhesion for effectively stress transfer inducing the plastic deformation of matrix towards high-toughness PC/PBT/ EMA-GMA blends. Polymer, 261: 125403. https://doi.org/10.1016/j.polymer.2022.125403
  • Chen, J., Gao, X., Song, W., 2019. Effect of various carbon nanofillers and different filler aspect ratios on the thermal conductivity of epoxy matrix nanocomposites. Results in Physics, 15, 102771. https://doi.org/10.1016/j.rinp.2019.102771
  • Cyras, V.P., D’Amico, D.A., Manfredi, L.B., 2018. Crystallization behavior of polymer nanocomposites, in: Crystallization in Multiphase Polymer Systems. Elsevier, 269–311. https://doi.org/10.1016/B978-0-12-809453-2.00010-4
  • Devaux, J., Godard, P., Mercier, J.P., 1982. The Transesterification of BisphenoI-A PoIycarbonate (PC) and Polybutylene Terephthalate (PBTP): A New Route to Block Copolycondensates. Polymer Engineering and Science, 22: 4, 229-233. https://doi.org/10.1002/pen.760220403
  • Ferreira, A. C., Diniz, M. F., Babetto Ferreira, A. C., 2020. Sanches, N. B., da Costa Mattos, E. FT-IR/UATR and FT-IR transmission quantitative analysis of PBT/PC blends. Polymer Testing, 85, 106447. https://doi.org/10.1016/j.polymertesting.2020.106447
  • Guchait, A., Saxena, A., Chattopadhyay, S., Mondal, T., 2022. Influence of Nanofillers on Adhesion Properties of Polymeric Composites. ACS Omega, 7 (5), 3844–3859. https://doi.org/10.1021/acsomega.1c05448
  • Gümüş, B., 2021. Effect of Montmorillonite Clay on Physical Properties of HDPE/ HGSComposites. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 21(3): 735-744. https://doi.org/10.35414/akufemubid.889971
  • Huang, T., Li, J.-L., Yang, J.-H., Zhang, N., Wang, Y., Zhou, Z.-W., 2018. Carbon nanotubes induced microstructure and property changes of polycarbonate/poly(butylene terephthalate) blend. Composites Part B, 133: 177-184. https://doi.org/10.1016/j.compositesb.2017.09.037
  • Liang, J.Z., Wang, J.Z., Tsui, G.C.P., Tang, C.Y., 2018. Thermal properties and thermal stability of polypropylene composites filled with graphene nanoplatelets. Journal of Thermoplastic Composite Material, 31: 246–264. https://doi.org/10.1177/089270571769777
  • Liu, T-Y., Cheng, Y-W., 2023. Advanced Polymer Nanocomposites, 1nd ed., Polymers, ISBN: 978-3-0365-5957-5, Basel, Switzerland.
  • Karteri, İ., Öge, M., Küçük, Y., Özdemir Öge, T., Özdemir, F. B., Karataşlı, M., Çulha, M. A., Babacan, T., 2023. Investigation of tribological properties of polypropylene (PP)— Acrylonitrile butadiene styrene (ABS) blends reinforced with graphene nano-platelets (GNPs). Tribology International. 183: 1084109. https://doi.org/10.1016/j.triboint.2023.108419
  • Krause, B., Barbier, C., Kunz, K., Pötschke, P., 2018. Comparative study of singlewalled, multiwalled, and branched carbon nanotubes melt mixed in different thermoplastic matrices. Polymer, 159: 75–85. https://doi.org/10.1016/j.polymer.2018.11.010
  • Mahmun, A., Kirtania, S., 2021. Evaluation of elastic properties of graphene nanoplatelet/epoxy nanocomposites. Materials Today: Proceedings, 44, 1531–1535, (2021). https://doi.org/10.1016/j.matpr.2020.11.735
  • Meschi Amoli, B., Hu, A., Zhou, N. Y., Zhao, B., 2015. Recent progresses on hybrid micro–nano filler systems for electrically conductive adhesives (ECAs) applications. Journal of Materials Science: Materials in Electronics, 26 (7), 4730–4745. https://doi.org/10.1007/s10854-015-3016-1
  • Mittal, G., Dhand, V., Rhee, K. Y., Park, S. J., Lee, W. R., 2015. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry, 21: 11–25. https://doi.org/10.1016/j.jiec.2014.03.022
  • Rahaman, M., Gupta, P., Hossain, M., Aldalbahi, A., 2022. Predicting Percolation Threshold Value of EMI SE for Conducting Polymer Composite Systems Through Different Sigmoidal Models. Journal of Electronic Materials, 51(4): 1788–1803. https://doi.org/10.1007/s11664-022-09444-7
  • Sastri, V. R., 2014. Plastics in Medical Devices, Second ed., Plastıcs Desıgn Lıbrary (Pdl), ISBN: 978-1-4557-3201-2, MA 02451, USA.
  • Tarani, E., Arvanitidis, I., Christofilos, D., Bikiaris, D.N., Chrissafis, K., Vourlias, G., 2023. Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: a comparative study. J Mater Sci., 58: 1621–1639. https://doi.org/10.1007/s10853-022-08125-4
  • Tarrío-Saavedra, J., López-Beceiro, J., Naya, S., Artiaga, R., 2008. Effect of silica content on thermal stability of fumed silica/epoxy composites. Polymer Degradation and Stability, 93 (12): 2133–2137. https://doi.org/10.1016/j.polymdegradstab.2008.08.006
  • Taşdemir, M., Karadirek, G. 2024. Polipropilen/Haşhaş Sapı (Papaver Somniferum) Polimer Kompozitinin Fiziksel Özelliklerine MAPP’nin Etkisi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 24(2): 457-464. https://doi.org/10.35414/akufemubid.1381608
  • Uzay, Ç. 2023. Investigating the Wear Behaviors of Silane Coated Silica Filled Glass/Epoxy Nanocomposites. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 23(1): 260-269. https://doi.org/10.35414/akufemubid.1106626
  • Wen, B., Zheng, X. 2019. Effect of the selective distribution of graphite nanoplatelets on the electrical and thermal conductivities of a polybutylene terephthalate/polycarbonate blend.Composites Science and Technology, 174: 68-75. https://doi.org/10.1016/j.compscitech.2019.02.017
  • Wijerathne, D., Gong, Y., Afroj, S., Karim, N., Abeykoon, C., 2023. Mechanical and thermal properties of graphene nanoplatelets-reinforced recycled polycarbonate composites. International Journal of Lightweight Materials and Manufacture, 6 (1): 117–128. https://doi.org/10.1016/j.ijlmm.2022.09.001
  • Zare, Y., 2016. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos Part A Appl Sci Manuf., 84: 158–164. https://doi.org/10.1016/j.compositesa.2016.01.020

GNP İlavesinin Polikarbonat-Poli(bütilen tereftalat) Karışımlarının Termal ve Elektriksel Özellikleri Üzerinde Etkisi

Yıl 2025, Cilt: 25 Sayı: 1, 144 - 151

Öz

PC-PBT/GNP nanokompozit numuneleri, eriyik karıştırma tekniği ile üretildi. Üretilen numunelerin topaklaşma durumu dijital mikroskopi ile incelendi. Numunelerin termal özellikleri DSC ve TGA teknikleri ile değerlendirildi. GNP ilavesi nedeniyle iletken bir yol oluşup oluşmadığını belirlemek için elektriksel iletkenlik testleri de yapıldı. DSC ölçümlerinden elde edilen kristallik hesaplamaları, GNP içeriği arttıkça numunelerin kristalliğinde bir miktar azalma olduğunu gösterdi. Dolgu maddesi içeriği arttıkça artan bozunma sıcaklıkları, PC-PBT karışımlarının termal kararlılığında dolgu oranının artmasıyla hafif bir iyileşme sağlandığını gösterdi. Elektriksel iletkenlik test sonuçları, % 5 ve % 7 ağırlık fraksiyonları için sırasıyla 1.35 x 10-4 S/m ve 6.89 x 10-4 S/m iletkenlik değerleri ile daha yüksek dolgu oranlarında iletken bir yol oluştuğunu gösterdi.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

123M666 (Tübitak 1002/A)

Kaynakça

  • Alshammari, B. A., Wilkinson, A. N., Alotaibi, B. M., Alotibi, M. F., 2022. Influence of Carbon Micro-and Nano-Fillers on the Viscoelastic Properties of Polyethylene Terephthalate. Polymers, 14 (12) 2440. https://doi.org/10.3390/polym14122440
  • Ajitha, A. R., Mathew, L. P., Thomas, S., 2020. Compatibilization of polymer blends by micro and nanofillers. Compatibilization of Polymer Blends: Micro and Nano Scale Phase Morphologies, Interphase Characterization, and Properties, 179–203. https://doi.org/10.1016/B978-0-12-816006-0.00006-2
  • Bai, L., Liu, Z., Yu, C., Ma, M., Chen, S., Shi, Y., He., H, Wang, X. 2022. Enhanced interfacial adhesion for effectively stress transfer inducing the plastic deformation of matrix towards high-toughness PC/PBT/ EMA-GMA blends. Polymer, 261: 125403. https://doi.org/10.1016/j.polymer.2022.125403
  • Chen, J., Gao, X., Song, W., 2019. Effect of various carbon nanofillers and different filler aspect ratios on the thermal conductivity of epoxy matrix nanocomposites. Results in Physics, 15, 102771. https://doi.org/10.1016/j.rinp.2019.102771
  • Cyras, V.P., D’Amico, D.A., Manfredi, L.B., 2018. Crystallization behavior of polymer nanocomposites, in: Crystallization in Multiphase Polymer Systems. Elsevier, 269–311. https://doi.org/10.1016/B978-0-12-809453-2.00010-4
  • Devaux, J., Godard, P., Mercier, J.P., 1982. The Transesterification of BisphenoI-A PoIycarbonate (PC) and Polybutylene Terephthalate (PBTP): A New Route to Block Copolycondensates. Polymer Engineering and Science, 22: 4, 229-233. https://doi.org/10.1002/pen.760220403
  • Ferreira, A. C., Diniz, M. F., Babetto Ferreira, A. C., 2020. Sanches, N. B., da Costa Mattos, E. FT-IR/UATR and FT-IR transmission quantitative analysis of PBT/PC blends. Polymer Testing, 85, 106447. https://doi.org/10.1016/j.polymertesting.2020.106447
  • Guchait, A., Saxena, A., Chattopadhyay, S., Mondal, T., 2022. Influence of Nanofillers on Adhesion Properties of Polymeric Composites. ACS Omega, 7 (5), 3844–3859. https://doi.org/10.1021/acsomega.1c05448
  • Gümüş, B., 2021. Effect of Montmorillonite Clay on Physical Properties of HDPE/ HGSComposites. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 21(3): 735-744. https://doi.org/10.35414/akufemubid.889971
  • Huang, T., Li, J.-L., Yang, J.-H., Zhang, N., Wang, Y., Zhou, Z.-W., 2018. Carbon nanotubes induced microstructure and property changes of polycarbonate/poly(butylene terephthalate) blend. Composites Part B, 133: 177-184. https://doi.org/10.1016/j.compositesb.2017.09.037
  • Liang, J.Z., Wang, J.Z., Tsui, G.C.P., Tang, C.Y., 2018. Thermal properties and thermal stability of polypropylene composites filled with graphene nanoplatelets. Journal of Thermoplastic Composite Material, 31: 246–264. https://doi.org/10.1177/089270571769777
  • Liu, T-Y., Cheng, Y-W., 2023. Advanced Polymer Nanocomposites, 1nd ed., Polymers, ISBN: 978-3-0365-5957-5, Basel, Switzerland.
  • Karteri, İ., Öge, M., Küçük, Y., Özdemir Öge, T., Özdemir, F. B., Karataşlı, M., Çulha, M. A., Babacan, T., 2023. Investigation of tribological properties of polypropylene (PP)— Acrylonitrile butadiene styrene (ABS) blends reinforced with graphene nano-platelets (GNPs). Tribology International. 183: 1084109. https://doi.org/10.1016/j.triboint.2023.108419
  • Krause, B., Barbier, C., Kunz, K., Pötschke, P., 2018. Comparative study of singlewalled, multiwalled, and branched carbon nanotubes melt mixed in different thermoplastic matrices. Polymer, 159: 75–85. https://doi.org/10.1016/j.polymer.2018.11.010
  • Mahmun, A., Kirtania, S., 2021. Evaluation of elastic properties of graphene nanoplatelet/epoxy nanocomposites. Materials Today: Proceedings, 44, 1531–1535, (2021). https://doi.org/10.1016/j.matpr.2020.11.735
  • Meschi Amoli, B., Hu, A., Zhou, N. Y., Zhao, B., 2015. Recent progresses on hybrid micro–nano filler systems for electrically conductive adhesives (ECAs) applications. Journal of Materials Science: Materials in Electronics, 26 (7), 4730–4745. https://doi.org/10.1007/s10854-015-3016-1
  • Mittal, G., Dhand, V., Rhee, K. Y., Park, S. J., Lee, W. R., 2015. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry, 21: 11–25. https://doi.org/10.1016/j.jiec.2014.03.022
  • Rahaman, M., Gupta, P., Hossain, M., Aldalbahi, A., 2022. Predicting Percolation Threshold Value of EMI SE for Conducting Polymer Composite Systems Through Different Sigmoidal Models. Journal of Electronic Materials, 51(4): 1788–1803. https://doi.org/10.1007/s11664-022-09444-7
  • Sastri, V. R., 2014. Plastics in Medical Devices, Second ed., Plastıcs Desıgn Lıbrary (Pdl), ISBN: 978-1-4557-3201-2, MA 02451, USA.
  • Tarani, E., Arvanitidis, I., Christofilos, D., Bikiaris, D.N., Chrissafis, K., Vourlias, G., 2023. Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: a comparative study. J Mater Sci., 58: 1621–1639. https://doi.org/10.1007/s10853-022-08125-4
  • Tarrío-Saavedra, J., López-Beceiro, J., Naya, S., Artiaga, R., 2008. Effect of silica content on thermal stability of fumed silica/epoxy composites. Polymer Degradation and Stability, 93 (12): 2133–2137. https://doi.org/10.1016/j.polymdegradstab.2008.08.006
  • Taşdemir, M., Karadirek, G. 2024. Polipropilen/Haşhaş Sapı (Papaver Somniferum) Polimer Kompozitinin Fiziksel Özelliklerine MAPP’nin Etkisi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 24(2): 457-464. https://doi.org/10.35414/akufemubid.1381608
  • Uzay, Ç. 2023. Investigating the Wear Behaviors of Silane Coated Silica Filled Glass/Epoxy Nanocomposites. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 23(1): 260-269. https://doi.org/10.35414/akufemubid.1106626
  • Wen, B., Zheng, X. 2019. Effect of the selective distribution of graphite nanoplatelets on the electrical and thermal conductivities of a polybutylene terephthalate/polycarbonate blend.Composites Science and Technology, 174: 68-75. https://doi.org/10.1016/j.compscitech.2019.02.017
  • Wijerathne, D., Gong, Y., Afroj, S., Karim, N., Abeykoon, C., 2023. Mechanical and thermal properties of graphene nanoplatelets-reinforced recycled polycarbonate composites. International Journal of Lightweight Materials and Manufacture, 6 (1): 117–128. https://doi.org/10.1016/j.ijlmm.2022.09.001
  • Zare, Y., 2016. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos Part A Appl Sci Manuf., 84: 158–164. https://doi.org/10.1016/j.compositesa.2016.01.020
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polimer Bilimi ve Teknolojileri, Kompozit ve Hibrit Malzemeler
Bölüm Makaleler
Yazarlar

Mecit Öge 0000-0001-5243-0828

Proje Numarası 123M666 (Tübitak 1002/A)
Erken Görünüm Tarihi 28 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 4 Temmuz 2024
Kabul Tarihi 11 Ekim 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 1

Kaynak Göster

APA Öge, M. (2025). Effect of GNP Addition on Thermal and Electrical Properties of Polycarbonate-poly(butylene terephthalate) Blends. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(1), 144-151.
AMA Öge M. Effect of GNP Addition on Thermal and Electrical Properties of Polycarbonate-poly(butylene terephthalate) Blends. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ocak 2025;25(1):144-151.
Chicago Öge, Mecit. “Effect of GNP Addition on Thermal and Electrical Properties of Polycarbonate-poly(butylene Terephthalate) Blends”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, sy. 1 (Ocak 2025): 144-51.
EndNote Öge M (01 Ocak 2025) Effect of GNP Addition on Thermal and Electrical Properties of Polycarbonate-poly(butylene terephthalate) Blends. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 1 144–151.
IEEE M. Öge, “Effect of GNP Addition on Thermal and Electrical Properties of Polycarbonate-poly(butylene terephthalate) Blends”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 1, ss. 144–151, 2025.
ISNAD Öge, Mecit. “Effect of GNP Addition on Thermal and Electrical Properties of Polycarbonate-poly(butylene Terephthalate) Blends”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/1 (Ocak 2025), 144-151.
JAMA Öge M. Effect of GNP Addition on Thermal and Electrical Properties of Polycarbonate-poly(butylene terephthalate) Blends. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:144–151.
MLA Öge, Mecit. “Effect of GNP Addition on Thermal and Electrical Properties of Polycarbonate-poly(butylene Terephthalate) Blends”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 1, 2025, ss. 144-51.
Vancouver Öge M. Effect of GNP Addition on Thermal and Electrical Properties of Polycarbonate-poly(butylene terephthalate) Blends. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(1):144-51.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.