Araştırma Makalesi
BibTex RIS Kaynak Göster

NaBH4'ten Hidrojen Üretimi için Yüksek Yüzey Alanlı Alümina Destekli Katalizörlerin Geliştirilmesi

Yıl 2025, Cilt: 25 Sayı: 1, 53 - 58

Öz

Değerli bir enerji taşıyıcısı olan hidrojen, yenilenebilir enerji teknolojilerinde atmosfere sera gazı emisyonunun azaltılmasında önemli bir rol oynamaktadır. Ancak hidrojen gazı doğada mevcut olmayıp hidrojen içeren bileşiklerden elde edilmesi gerekmektedir. Metal hidrürler hidrojen gazı üretimi için mükemmel adaylardır. Karmaşık metal hidrürler arasında sodyum borhidrür (NaBH4), gelişmiş hidrojen depolama kapasitesi ve düşük maliyeti gibi çeşitli avantajlara sahiptir. Bu çalışmada katalitik hidroliz yoluyla NaBH4’ten hidrojen gazı üretilmektedir. Bu amaçla yıkayarak kaplama yöntemi ile yüksek yüzey alanına sahip alümina destekli Ni/Al2O3, NiCo/Al2O3 ve Ru-NiCo/Al2O3 yapılı katalizörler hazırlanmış olup bu katalizörler sürekli akışlı reaktörde test edilmiştir. Elde edilen sonuçlara göre Ru-NiCo/Al2O3 yapılı katalizör başlangıçta en yüksek katalitik aktiviteye sahip olup reaksiyon boyunca aktivitesinde hızlı bir azalma gözlemlenmiştir. NiCo/Al2O3 yapılı katalizörün varlığında ise başlangıçta daha düşük bir katalitik aktivitesi görülmesine rağmen reaksiyon boyunca hidrojen üretimi hızla artmaya devam etmiştir. Bu nedenle NiCo/Al2O3 yapılı katalizör, Ru-NiCo/Al2O3 yapısına göre daha verimli bir katalizör olarak önerilebilir.

Kaynakça

  • Arzac, G. M., Hufschmidt, D., Jimenes De Haro, M. C., Fernandez, A., Sarmento, B., Jimenez, M. A., Jimenez, M. M., 2012. Deactivation, reactivation and memory effect on Co-B catalyst for sodium borohydride hydrolysis operating in high conversion conditions. International Journal of Hydrogen, 37, 14373-14381. https://doi.org/10.1016/j.ijhydene.2012.06.117
  • Balkanli, E. and Figen, H. E., 2019. Sodium borohydride hydrolysis by using ceramic foam supported bimetallic and trimetallic catalysts. International Journal of Hydrogen, 44, 9959-9969. https://doi.org/10.1016/j.ijhydene.2018.12.010
  • Baykara S., 2018. Hydrogen: A brief overview on its sources, production and environmental impact. International Journal of Hydrogen, 43, 10605-10614. https://doi.org/10.1016/j.ijhydene.2018.02.022
  • Baykara, Z. S., Figen, H. E., Karaismailoğlu, M., (2022). Environmental issues with hydrogen production. Comprehensive Renewable Energy, Second Edition, Amsterdam: Elsevier Science, Oxford/Amsterdam, 107-126. https://doi.org/10.1016/B978-0-12-819727-1.00025-X
  • Bozkurt, G., Özer, A., Yurtcan, A. B., 2019. Development of effective catalysts for hydrogen generation from sodium borohydride: Ru, Pt, Pd nanoparticles supported on Co3O4. Energy, 180, 702-713. https://doi.org/10.1016/j.energy.2019.04.196
  • Fernandes, R, Patel, N., Miotello, A., 2009. Hydrogen generation by hydrolysis of alkaline NaBH4 solution with Cr-promoted Co–B amorphous catalyst. Applied Catalysis B: Environmental, 92, 68-74. https://doi.org/10.1016/j.apcatb.2009.07.019
  • Filiz, B. C. and Figen, A. K., 2019. Hydrogen production from sodium borohydride originated compounds: Fabrication of electrospun nano-crystalline Co3O4 catalyst and its activity. International Journal of Hydrogen, 20, 9883-9895. https://doi.org/10.1016/j.ijhydene.2019.02.111
  • Laversenne, L., Goutaudier, C., Chiriac, R., Sigala, C., Bonnetot, B., 2008. Hydrogen storage in borohydrides Comparison of hydrolysis conditions of LiBH4, NaBH4 and KBH4. Journal of Thermal Analysis and Calorimetry, 94, 785-790. https://doi.org/10.1007/s10973-008-9073-4
  • Liu, B. H. and Li, Z. P., 2009. A review: hydrogen generation from borohydride hydrolysis reaction. Journal of Power Sources, 187, 527-534. https://doi.org/10.1016/j.jpowsour.2008.11.032
  • Luo, Y., Wang, Q., Li, J., Xu, F., Sun, L., Zou, Y., Chu, H., Li, B., Zhang, K., 2020. Enhanced hydrogen storage/sensing of metal hydrides by nano-modification. Materials Today Nano, 9, 10071-10100. https://doi.org/10.1016/j.mtnano.2019.100071.
  • Patel, N. and Miotello, A., 2015. Progress in Co–B related catalyst for hydrogen production by hydrolysis of boron-hydrides: A review and the perspectives to substitute noble metals. International Journal of Hydrogen, 40, 1429-1464. https://doi.org/10.1016/j.ijhydene.2014.11.052
  • Özkar, S. and Zahmakiran M., 2005. Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst. Journal of Alloys and Compounds, 404-406, 728-731. https://doi.org/10.1016/j.jallcom.2004.10.084
  • Schlesinger, H. I., Brown, H. C., Finholt, A. E., Gilbreath, J. R., Hoekstra, H. R., & Hyde, E. K. (1953). Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen1. Journal of the American Chemical Society, 75, 215-219. https://doi.org/10.1021/ja01097a057
  • Schneemann, A., White, J. L., Kang, S., Jeong, S., Wan, L. F., Cho, E. S., Heo, T. W., Prendergast, D., Urban, J. J., Wood, B. C., Allendorf, M. D., Stavila, V., 2018. Nanostructured metal hydrides for hydrogen storage. Chemical Reviews, 118, 10775-10839. https://doi.org/10.1021/acs.chemrev.8b00313
  • Solovev, M. V., Chashchikhin, O. V., Dorovatovski, P. V., Khrustalev, V. N., Zyubin, A. S., Zyubina, T. S., Kravchenko, O. V., Zaytsev, A. A., Dobrovosky, Y. A., 2018. Hydrolysis of Mg(BH4)2 and its coordination compounds as a way to obtain hydrogen. Journal of Power Sources, 377, 93-102. https://doi.org/10.1016/j.jpowsour.2017.11.090
  • Su, C-C., Lu, M-C., Wang, S-L., Huang, Y-H. (2012). Ruthenium immobilized on Al2O3 pellets as a catalyst for hydrogen generation from hydrolysis and methanolysis of sodium borohydride. RSC Advances, 2, 2073-2079. https://doi.org/10.1039/c2ra01233b
  • Uzundurukan, A. and Devrim., Y., 2019. Hydrogen generation from sodium borohydride hydrolysis by multi-walled carbon nanotube supported platinum catalyst: A kinetic study. International Journal of Hydrogen, 44, 17586-17594. https://doi.org/10.1016/j.ijhydene.2019.04.188
  • Xu, D., Zhang, H. Ye, W. (2007). Hydrogen generation from hydrolysis of alkaline sodium borohydride solution using Pt/C catalyst. Catalysis Communications, 8, 1767-1771. https://doi:10.1016/j.catcom.2007.02.028
  • Xu, F., Ren, J., Ma, J., Wang, Y., Zhang, K., Cao, Z., Sun, Q., Wu, S., Li, G., Bai, S., 2024. A review of hydrogen production kinetics from the hydrolysis of NaBH4 solution catalyzed by Co-based catalysts. International Journal of Hydrogen, 50, 827-844. https://doi.org/10.1016/j.ijhydene.2023.08.142
  • Wang, Y., Hu, Z., Chen, W., Wu, S., Li, G., Chou, S., 2021. Non-noble metal-based catalysts applied to hydrogen evolution from hydrolysis of boron hydrides. Small, 2, 2000135-2000161. https://doi.org/10.1002/sstr.202000135
  • Yang, C. C., Chen, M. S., Chen, Y. W., 2011. Hydrogen generation by hydrolysis of sodium borohydride on CoB/SiO2 catalyst. International Journal of Hydrogen, 36, 1418-1423. https://doi.org/10.1016/j.ijhydene.2010.11.006
  • Zhang H., Zhang, L., Rodriguez-Perez, I. A., Miao, W., Chen, K., Wang, W., Li, Y., Han, S., 2021. Carbon nanospheres supported bimetallic Pt-Co as an efficient catalyst for NaBH4 hydrolysis. Applied Surface Science, 540, 148296-148304. https://doi.org/10.1016/j.apsusc.2020.148296
  • Zhu, Y., Li, J., Yang, L., Huang, Z. , Yang X-S., Zhou, Q., Tang, R., Shen, S. and Ouyang, L., 2023. Closed loops for hydrogen storage: Hydrolysis and regeneration of metal borohydrides. Journal of Power Sources, 563, 232833-232847. https://doi.org/10.1016/jpowsour.2023.232833

Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4

Yıl 2025, Cilt: 25 Sayı: 1, 53 - 58

Öz

Hydrogen as a valuable energy carrier plays a significant role in renewable energy technologies to reduce the greenhouse gas emission into the atmosphere. However, natural hydrogen gas does not exist in the universe and should be gained from hydrogen-containing compounds. In this regard, metal hydrides are excellent candidates for producing hydrogen gas. Among complex metal hydrides, sodium borohydride (NaBH4) possesses its advantages due to its enhanced hydrogen storage capacity and low cost. In the present study, hydrogen gas was generated through the catalytic hydrolysis of NaBH4. In this regard, high-surface-area alumina-supported Ni/Al2O3, NiCo/Al2O3, and Ru-NiCo/Al2O3 catalysts have been prepared via wash coating method and tested in a continuous flow reactor. The results indicate that the Ru-NiCo/Al2O3 catalyst showed the highest initial catalytic activity but with a rapid loss in its avtivity. Compared to that, despite a lower initial catalytic activity in the presence of the NiCo/Al2O3 catalyst, the hydrogen generation kept rising during the reaction. Therefore, the NiCo/Al2O3 catalyst can be proposed much efficient catalyst compared to the Ru-NiCo/Al2O3.

Kaynakça

  • Arzac, G. M., Hufschmidt, D., Jimenes De Haro, M. C., Fernandez, A., Sarmento, B., Jimenez, M. A., Jimenez, M. M., 2012. Deactivation, reactivation and memory effect on Co-B catalyst for sodium borohydride hydrolysis operating in high conversion conditions. International Journal of Hydrogen, 37, 14373-14381. https://doi.org/10.1016/j.ijhydene.2012.06.117
  • Balkanli, E. and Figen, H. E., 2019. Sodium borohydride hydrolysis by using ceramic foam supported bimetallic and trimetallic catalysts. International Journal of Hydrogen, 44, 9959-9969. https://doi.org/10.1016/j.ijhydene.2018.12.010
  • Baykara S., 2018. Hydrogen: A brief overview on its sources, production and environmental impact. International Journal of Hydrogen, 43, 10605-10614. https://doi.org/10.1016/j.ijhydene.2018.02.022
  • Baykara, Z. S., Figen, H. E., Karaismailoğlu, M., (2022). Environmental issues with hydrogen production. Comprehensive Renewable Energy, Second Edition, Amsterdam: Elsevier Science, Oxford/Amsterdam, 107-126. https://doi.org/10.1016/B978-0-12-819727-1.00025-X
  • Bozkurt, G., Özer, A., Yurtcan, A. B., 2019. Development of effective catalysts for hydrogen generation from sodium borohydride: Ru, Pt, Pd nanoparticles supported on Co3O4. Energy, 180, 702-713. https://doi.org/10.1016/j.energy.2019.04.196
  • Fernandes, R, Patel, N., Miotello, A., 2009. Hydrogen generation by hydrolysis of alkaline NaBH4 solution with Cr-promoted Co–B amorphous catalyst. Applied Catalysis B: Environmental, 92, 68-74. https://doi.org/10.1016/j.apcatb.2009.07.019
  • Filiz, B. C. and Figen, A. K., 2019. Hydrogen production from sodium borohydride originated compounds: Fabrication of electrospun nano-crystalline Co3O4 catalyst and its activity. International Journal of Hydrogen, 20, 9883-9895. https://doi.org/10.1016/j.ijhydene.2019.02.111
  • Laversenne, L., Goutaudier, C., Chiriac, R., Sigala, C., Bonnetot, B., 2008. Hydrogen storage in borohydrides Comparison of hydrolysis conditions of LiBH4, NaBH4 and KBH4. Journal of Thermal Analysis and Calorimetry, 94, 785-790. https://doi.org/10.1007/s10973-008-9073-4
  • Liu, B. H. and Li, Z. P., 2009. A review: hydrogen generation from borohydride hydrolysis reaction. Journal of Power Sources, 187, 527-534. https://doi.org/10.1016/j.jpowsour.2008.11.032
  • Luo, Y., Wang, Q., Li, J., Xu, F., Sun, L., Zou, Y., Chu, H., Li, B., Zhang, K., 2020. Enhanced hydrogen storage/sensing of metal hydrides by nano-modification. Materials Today Nano, 9, 10071-10100. https://doi.org/10.1016/j.mtnano.2019.100071.
  • Patel, N. and Miotello, A., 2015. Progress in Co–B related catalyst for hydrogen production by hydrolysis of boron-hydrides: A review and the perspectives to substitute noble metals. International Journal of Hydrogen, 40, 1429-1464. https://doi.org/10.1016/j.ijhydene.2014.11.052
  • Özkar, S. and Zahmakiran M., 2005. Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst. Journal of Alloys and Compounds, 404-406, 728-731. https://doi.org/10.1016/j.jallcom.2004.10.084
  • Schlesinger, H. I., Brown, H. C., Finholt, A. E., Gilbreath, J. R., Hoekstra, H. R., & Hyde, E. K. (1953). Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen1. Journal of the American Chemical Society, 75, 215-219. https://doi.org/10.1021/ja01097a057
  • Schneemann, A., White, J. L., Kang, S., Jeong, S., Wan, L. F., Cho, E. S., Heo, T. W., Prendergast, D., Urban, J. J., Wood, B. C., Allendorf, M. D., Stavila, V., 2018. Nanostructured metal hydrides for hydrogen storage. Chemical Reviews, 118, 10775-10839. https://doi.org/10.1021/acs.chemrev.8b00313
  • Solovev, M. V., Chashchikhin, O. V., Dorovatovski, P. V., Khrustalev, V. N., Zyubin, A. S., Zyubina, T. S., Kravchenko, O. V., Zaytsev, A. A., Dobrovosky, Y. A., 2018. Hydrolysis of Mg(BH4)2 and its coordination compounds as a way to obtain hydrogen. Journal of Power Sources, 377, 93-102. https://doi.org/10.1016/j.jpowsour.2017.11.090
  • Su, C-C., Lu, M-C., Wang, S-L., Huang, Y-H. (2012). Ruthenium immobilized on Al2O3 pellets as a catalyst for hydrogen generation from hydrolysis and methanolysis of sodium borohydride. RSC Advances, 2, 2073-2079. https://doi.org/10.1039/c2ra01233b
  • Uzundurukan, A. and Devrim., Y., 2019. Hydrogen generation from sodium borohydride hydrolysis by multi-walled carbon nanotube supported platinum catalyst: A kinetic study. International Journal of Hydrogen, 44, 17586-17594. https://doi.org/10.1016/j.ijhydene.2019.04.188
  • Xu, D., Zhang, H. Ye, W. (2007). Hydrogen generation from hydrolysis of alkaline sodium borohydride solution using Pt/C catalyst. Catalysis Communications, 8, 1767-1771. https://doi:10.1016/j.catcom.2007.02.028
  • Xu, F., Ren, J., Ma, J., Wang, Y., Zhang, K., Cao, Z., Sun, Q., Wu, S., Li, G., Bai, S., 2024. A review of hydrogen production kinetics from the hydrolysis of NaBH4 solution catalyzed by Co-based catalysts. International Journal of Hydrogen, 50, 827-844. https://doi.org/10.1016/j.ijhydene.2023.08.142
  • Wang, Y., Hu, Z., Chen, W., Wu, S., Li, G., Chou, S., 2021. Non-noble metal-based catalysts applied to hydrogen evolution from hydrolysis of boron hydrides. Small, 2, 2000135-2000161. https://doi.org/10.1002/sstr.202000135
  • Yang, C. C., Chen, M. S., Chen, Y. W., 2011. Hydrogen generation by hydrolysis of sodium borohydride on CoB/SiO2 catalyst. International Journal of Hydrogen, 36, 1418-1423. https://doi.org/10.1016/j.ijhydene.2010.11.006
  • Zhang H., Zhang, L., Rodriguez-Perez, I. A., Miao, W., Chen, K., Wang, W., Li, Y., Han, S., 2021. Carbon nanospheres supported bimetallic Pt-Co as an efficient catalyst for NaBH4 hydrolysis. Applied Surface Science, 540, 148296-148304. https://doi.org/10.1016/j.apsusc.2020.148296
  • Zhu, Y., Li, J., Yang, L., Huang, Z. , Yang X-S., Zhou, Q., Tang, R., Shen, S. and Ouyang, L., 2023. Closed loops for hydrogen storage: Hydrolysis and regeneration of metal borohydrides. Journal of Power Sources, 563, 232833-232847. https://doi.org/10.1016/jpowsour.2023.232833
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Meltem Karaismailoğlu Elibol 0000-0003-3514-3768

Erken Görünüm Tarihi 28 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 13 Temmuz 2024
Kabul Tarihi 2 Eylül 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 1

Kaynak Göster

APA Karaismailoğlu Elibol, M. (2025). Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(1), 53-58.
AMA Karaismailoğlu Elibol M. Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ocak 2025;25(1):53-58.
Chicago Karaismailoğlu Elibol, Meltem. “Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, sy. 1 (Ocak 2025): 53-58.
EndNote Karaismailoğlu Elibol M (01 Ocak 2025) Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 1 53–58.
IEEE M. Karaismailoğlu Elibol, “Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 1, ss. 53–58, 2025.
ISNAD Karaismailoğlu Elibol, Meltem. “Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/1 (Ocak 2025), 53-58.
JAMA Karaismailoğlu Elibol M. Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:53–58.
MLA Karaismailoğlu Elibol, Meltem. “Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 1, 2025, ss. 53-58.
Vancouver Karaismailoğlu Elibol M. Development of High-Surface-Area Alumina-Supported Catalysts for the Generation of Hydrogen from NaBH4. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(1):53-8.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.